self.gguf_writer.add_add_space_prefix(add_prefix)
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
+ old_eos = special_vocab.special_token_ids["eos"]
+ if "chat" in os.path.basename(self.dir_model.absolute()):
+ # For the chat model, we replace the eos with '<|im_end|>'.
+ special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
+ print(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
+in chat mode so that the conversation can end normally.")
+
special_vocab.add_to_gguf(self.gguf_writer)
+ def _try_get_sft_eos(self, tokenizer):
+ unused_145_list = tokenizer.encode('[UNUSED_TOKEN_145]')
+ im_end_list = tokenizer.encode('<|im_end|>')
+ assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
+ if len(unused_145_list) == 1:
+ eos_token = unused_145_list[0]
+ if len(im_end_list) == 1:
+ eos_token = im_end_list[0]
+ return eos_token
+
+ def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
+ if n_head_kv is not None and n_head != n_head_kv:
+ n_head = n_head_kv
+ return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
+ .swapaxes(1, 2)
+ .reshape(weights.shape))
+
def set_gguf_parameters(self):
self.gguf_writer.add_name("InternLM2")
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
qkv = data_torch
qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
- q = rearrange(q, " o g n i -> o (g n i)").T
- k = rearrange(k, " o g n i -> o (g n i)").T
+ # The model weights of q and k equire additional reshape.
+ q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
+ k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
v = rearrange(v, " o g n i -> o (g n i)").T
self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wq.weight", q)
self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wk.weight", k)