--- /dev/null
+#include "moe-expert-reduce.cuh"
+
+// This kernel is a fusion of the expert weight reduce, common in MoE models
+
+template <int n_expert_used_template>
+__global__ void moe_expert_reduce_cuda(const float * __restrict__ experts,
+ const float * __restrict__ weights,
+ float * __restrict__ dst,
+ const int n_expert_used,
+ const int n_cols) {
+ const int row = blockIdx.x;
+ const int col = blockIdx.y * blockDim.x + threadIdx.x;
+ if (col >= n_cols) {
+ return;
+ }
+
+ experts += row * n_cols * n_expert_used;
+ weights += row * n_expert_used;
+ dst += row * n_cols;
+
+ float acc = 0.f;
+ if constexpr (n_expert_used_template == 0) {
+ for (int expert = 0; expert < n_expert_used; ++expert) {
+ ggml_cuda_mad(acc, experts[col], weights[expert]);
+ experts += n_cols;
+ }
+ dst[col] = acc;
+ } else {
+#pragma unroll
+ for (int i = 0; i < n_expert_used_template; ++i) {
+ ggml_cuda_mad(acc, experts[col], weights[i]);
+ experts += n_cols;
+ }
+ dst[col] = acc;
+ }
+}
+
+static void launch_moe_expert_reduce(ggml_backend_cuda_context & ctx,
+ const float * experts,
+ const float * weights,
+ float * dst,
+ const int n_expert_used,
+ const int n_cols,
+ const int n_rows) {
+ const int block_size = 32;
+
+ const int n_blocks_x = n_rows;
+ const int n_blocks_y = (n_cols + block_size - 1) / block_size;
+
+ dim3 block_dims(block_size);
+ dim3 grid_dims(n_blocks_x, n_blocks_y);
+
+ cudaStream_t stream = ctx.stream();
+ switch (n_expert_used) {
+ case 1:
+ moe_expert_reduce_cuda<1>
+ <<<grid_dims, block_dims, 0, stream>>>(experts, weights, dst, n_expert_used, n_cols);
+ break;
+ case 2:
+ moe_expert_reduce_cuda<2>
+ <<<grid_dims, block_dims, 0, stream>>>(experts, weights, dst, n_expert_used, n_cols);
+ break;
+ case 4:
+ moe_expert_reduce_cuda<4>
+ <<<grid_dims, block_dims, 0, stream>>>(experts, weights, dst, n_expert_used, n_cols);
+ break;
+ case 6:
+ moe_expert_reduce_cuda<6>
+ <<<grid_dims, block_dims, 0, stream>>>(experts, weights, dst, n_expert_used, n_cols);
+ break;
+ case 8:
+ moe_expert_reduce_cuda<8>
+ <<<grid_dims, block_dims, 0, stream>>>(experts, weights, dst, n_expert_used, n_cols);
+ break;
+ case 16:
+ moe_expert_reduce_cuda<16>
+ <<<grid_dims, block_dims, 0, stream>>>(experts, weights, dst, n_expert_used, n_cols);
+ break;
+ case 32:
+ moe_expert_reduce_cuda<32>
+ <<<grid_dims, block_dims, 0, stream>>>(experts, weights, dst, n_expert_used, n_cols);
+ break;
+ case 64:
+ moe_expert_reduce_cuda<64>
+ <<<grid_dims, block_dims, 0, stream>>>(experts, weights, dst, n_expert_used, n_cols);
+ break;
+ case 128:
+ moe_expert_reduce_cuda<128>
+ <<<grid_dims, block_dims, 0, stream>>>(experts, weights, dst, n_expert_used, n_cols);
+ break;
+ default:
+ moe_expert_reduce_cuda<0>
+ <<<grid_dims, block_dims, 0, stream>>>(experts, weights, dst, n_expert_used, n_cols);
+ break;
+ }
+}
+
+bool ggml_cuda_should_use_moe_expert_reduce(const ggml_cgraph * cgraph, int start_index, int end_index) {
+ const ggml_tensor * mul = cgraph->nodes[start_index];
+
+ if (mul->op != GGML_OP_MUL || !ggml_is_contiguous(mul->src[0]) || !ggml_is_contiguous(mul->src[1])) {
+ return false;
+ }
+
+ int current_node = start_index + 1;
+ size_t current_offset = 0;
+
+ std::vector<const ggml_tensor *> view_nodes;
+ //check if all are views of the expert in increasing order
+ while (current_node < end_index && cgraph->nodes[current_node]->op == GGML_OP_VIEW) {
+ const ggml_tensor * node = cgraph->nodes[current_node];
+ if (node->view_src != mul) {
+ return false;
+ }
+ if (node->view_offs < current_offset) {
+ return false;
+ }
+ current_offset = node->view_offs;
+ current_node++;
+ view_nodes.push_back(node);
+ }
+
+ //check if all the adds are in increasing order
+ const ggml_tensor * prev_add_src = view_nodes.empty() ? nullptr : view_nodes[0];
+ int num_adds = 0;
+ int num_views = view_nodes.size();
+ while (current_node < end_index && cgraph->nodes[current_node]->op == GGML_OP_ADD) {
+ const ggml_tensor * add_node = cgraph->nodes[current_node];
+
+ bool is_first_op_ok = num_views > num_adds ? add_node->src[0] == prev_add_src : false;
+ bool is_second_op_ok = num_views > num_adds ? add_node->src[1] == view_nodes[num_adds + 1] : false;
+
+ if (!is_first_op_ok || !is_second_op_ok) {
+ return false;
+ }
+ prev_add_src = add_node;
+
+ num_adds++;
+ current_node++;
+ }
+
+ if (num_views != num_adds + 1) {
+ return false;
+ }
+
+ return true;
+}
+
+void ggml_cuda_op_moe_expert_reduce(ggml_backend_cuda_context & ctx,
+ const ggml_tensor * experts,
+ const ggml_tensor * weights,
+ ggml_tensor * dst) {
+ const int n_rows = experts->ne[2];
+ const int n_expert_used = experts->ne[1];
+ const int n_cols = experts->ne[0];
+
+ GGML_ASSERT(experts->type == GGML_TYPE_F32);
+ GGML_ASSERT(weights->type == GGML_TYPE_F32);
+ GGML_ASSERT(ggml_is_contiguous(experts));
+ GGML_ASSERT(ggml_is_contiguous(weights));
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
+
+ const float * experts_d = (const float *) experts->data;
+ const float * weights_d = (const float *) weights->data;
+ float * dst_d = (float *) dst->data;
+
+ launch_moe_expert_reduce(ctx, experts_d, weights_d, dst_d, n_expert_used, n_cols, n_rows);
+}