]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
gguf : add support for I64 and F64 arrays (#6062)
authorOndřej Čertík <redacted>
Fri, 15 Mar 2024 08:46:51 +0000 (02:46 -0600)
committerGitHub <redacted>
Fri, 15 Mar 2024 08:46:51 +0000 (10:46 +0200)
* gguf : add support for I64 and F64 arrays

GGML currently does not support I64 or F64 arrays and they are not often
used in machine learning, however if in the future the need arises, it
would be nice to add them now, so that the types are next to the other
types I8, I16, I32 in the enums, and it also reserves their type number.

Furthermore, with this addition the GGUF format becomes very usable for
most computational applications of NumPy (being compatible with the most
common NumPy dtypes: i8, i16, i32, i64, f32, f64), providing a faster,
and more versatile alternative to the `npz` format, and a simpler
alternative to the `hdf5` format.

The change in this PR seems small, not significantly increasing the
maintenance burden. I tested this from Python using GGUFWriter/Reader
and `gguf-dump`, as well as from C, everything seems to work.

* Fix compiler warnings

ggml.c
ggml.h
gguf-py/gguf/constants.py
gguf-py/gguf/gguf_reader.py
gguf-py/gguf/gguf_writer.py

diff --git a/ggml.c b/ggml.c
index fbc66f65b105214748f3d5e9020f52ffa3cd782f..c94006e51a092f132ae8baea338cbcde596f7bb9 100644 (file)
--- a/ggml.c
+++ b/ggml.c
@@ -470,6 +470,19 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
         .type_size                = sizeof(int32_t),
         .is_quantized             = false,
     },
+    [GGML_TYPE_I64] = {
+        .type_name                = "i64",
+        .blck_size                = 1,
+        .type_size                = sizeof(int64_t),
+        .is_quantized             = false,
+    },
+    [GGML_TYPE_F64] = {
+        .type_name                = "f64",
+        .blck_size                = 1,
+        .type_size                = sizeof(double),
+        .is_quantized             = false,
+        .nrows                    = 1,
+    },
     [GGML_TYPE_F32] = {
         .type_name                = "f32",
         .blck_size                = 1,
@@ -12418,6 +12431,8 @@ static void ggml_compute_forward_alibi(
         case GGML_TYPE_I8:
         case GGML_TYPE_I16:
         case GGML_TYPE_I32:
+        case GGML_TYPE_I64:
+        case GGML_TYPE_F64:
         case GGML_TYPE_COUNT:
             {
                 GGML_ASSERT(false);
@@ -12504,6 +12519,8 @@ static void ggml_compute_forward_clamp(
         case GGML_TYPE_I8:
         case GGML_TYPE_I16:
         case GGML_TYPE_I32:
+        case GGML_TYPE_I64:
+        case GGML_TYPE_F64:
         case GGML_TYPE_COUNT:
             {
                 GGML_ASSERT(false);
diff --git a/ggml.h b/ggml.h
index ab26c8f5908c72f4fe94336d6c55a44140731088..c937d4a535adbd3cef589234f637e60b62755de1 100644 (file)
--- a/ggml.h
+++ b/ggml.h
@@ -366,6 +366,8 @@ extern "C" {
         GGML_TYPE_I8      = 24,
         GGML_TYPE_I16     = 25,
         GGML_TYPE_I32     = 26,
+        GGML_TYPE_I64     = 27,
+        GGML_TYPE_F64     = 28,
         GGML_TYPE_COUNT,
     };
 
index 2d7cf16c14ed1f86ba92b5441bef9de0c3c95448..458a641dcd2297e58f4213601f12f8c4cded9637 100644 (file)
@@ -665,6 +665,8 @@ class GGMLQuantizationType(IntEnum):
     I8      = 24
     I16     = 25
     I32     = 26
+    I64     = 27
+    F64     = 28
 
 
 class GGUFEndian(IntEnum):
@@ -734,6 +736,8 @@ GGML_QUANT_SIZES = {
     GGMLQuantizationType.I8:      (1, 1),
     GGMLQuantizationType.I16:     (1, 2),
     GGMLQuantizationType.I32:     (1, 4),
+    GGMLQuantizationType.I64:     (1, 8),
+    GGMLQuantizationType.F64:     (1, 8),
 }
 
 
index 1c10f575389924b18eb38f43257dbfa19a69b0b6..33afac552ca7523b7da16f854ef34908fafc11f3 100644 (file)
@@ -242,12 +242,15 @@ class GGUFReader:
             n_bytes = n_elems * type_size // block_size
             data_offs = int(start_offs + offset_tensor[0])
             item_type: npt.DTypeLike
-            if ggml_type == GGMLQuantizationType.F32:
+            if ggml_type == GGMLQuantizationType.F16:
+                item_count = n_elems
+                item_type = np.float16
+            elif ggml_type == GGMLQuantizationType.F32:
                 item_count = n_elems
                 item_type = np.float32
-            elif ggml_type == GGMLQuantizationType.F16:
+            elif ggml_type == GGMLQuantizationType.F64:
                 item_count = n_elems
-                item_type = np.float16
+                item_type = np.float64
             elif ggml_type == GGMLQuantizationType.I8:
                 item_count = n_elems
                 item_type = np.int8
@@ -257,6 +260,9 @@ class GGUFReader:
             elif ggml_type == GGMLQuantizationType.I32:
                 item_count = n_elems
                 item_type = np.int32
+            elif ggml_type == GGMLQuantizationType.I64:
+                item_count = n_elems
+                item_type = np.int64
             else:
                 item_count = n_bytes
                 item_type = np.uint8
index 81b2eb884d4854cca98915fb94033324ba754429..1967b633ce2619d4814161686ab76feb0b8dc9d7 100644 (file)
@@ -204,18 +204,22 @@ class GGUFWriter:
         for i in range(n_dims):
             self.ti_data += self._pack("Q", tensor_shape[n_dims - 1 - i])
         if raw_dtype is None:
-            if tensor_dtype == np.float32:
-                dtype = GGMLQuantizationType.F32
-            elif tensor_dtype == np.float16:
+            if tensor_dtype == np.float16:
                 dtype = GGMLQuantizationType.F16
+            elif tensor_dtype == np.float32:
+                dtype = GGMLQuantizationType.F32
+            elif tensor_dtype == np.float64:
+                dtype = GGMLQuantizationType.F64
             elif tensor_dtype == np.int8:
                 dtype = GGMLQuantizationType.I8
             elif tensor_dtype == np.int16:
                 dtype = GGMLQuantizationType.I16
             elif tensor_dtype == np.int32:
                 dtype = GGMLQuantizationType.I32
+            elif tensor_dtype == np.int64:
+                dtype = GGMLQuantizationType.I64
             else:
-                raise ValueError("Only F32, F16, I8, I16, I32 tensors are supported for now")
+                raise ValueError("Only F16, F32, F64, I8, I16, I32, I64 tensors are supported for now")
         else:
             dtype = raw_dtype
         self.ti_data += self._pack("I", dtype)