]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
model-conversion : add device option to embd run orig model (#18386)
authorDaniel Bevenius <redacted>
Mon, 29 Dec 2025 12:37:02 +0000 (13:37 +0100)
committerGitHub <redacted>
Mon, 29 Dec 2025 12:37:02 +0000 (13:37 +0100)
This commit refactors the original model embedding script to include a
device selection option. Users can now specify the device (cpu, cuda,
mps, auto) via command-line arguments. It also refactors the code to be
more structured.

examples/model-conversion/scripts/embedding/run-original-model.py

index 39f054d0e023d7688c3b6566c43046cd7c9b3dde..774e5638f7238c379077603c04e293d1d679e361 100755 (executable)
@@ -2,6 +2,7 @@
 
 import argparse
 import os
+import sys
 import numpy as np
 import importlib
 from pathlib import Path
@@ -9,169 +10,243 @@ from pathlib import Path
 from transformers import AutoTokenizer, AutoConfig, AutoModel
 import torch
 
-unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
-
-parser = argparse.ArgumentParser(description='Process model with specified path')
-parser.add_argument('--model-path', '-m', help='Path to the model')
-parser.add_argument('--prompts-file', '-p', help='Path to file containing prompts (one per line)')
-parser.add_argument('--use-sentence-transformers', action='store_true',
-                    help='Use SentenceTransformer to apply all numbered layers (01_Pooling, 02_Dense, 03_Dense, 04_Normalize)')
-args = parser.parse_args()
-
-def read_prompt_from_file(file_path):
-    try:
-        with open(file_path, 'r', encoding='utf-8') as f:
-            return f.read().strip()
-    except FileNotFoundError:
-        print(f"Error: Prompts file '{file_path}' not found")
-        exit(1)
-    except Exception as e:
-        print(f"Error reading prompts file: {e}")
-        exit(1)
-
-model_path = os.environ.get('EMBEDDING_MODEL_PATH', args.model_path)
-if model_path is None:
-    parser.error("Model path must be specified either via --model-path argument or EMBEDDING_MODEL_PATH environment variable")
-
-# Determine if we should use SentenceTransformer
-use_sentence_transformers = args.use_sentence_transformers or os.environ.get('USE_SENTENCE_TRANSFORMERS', '').lower() in ('1', 'true', 'yes')
-
-if use_sentence_transformers:
-    from sentence_transformers import SentenceTransformer
-    print("Using SentenceTransformer to apply all numbered layers")
-    model = SentenceTransformer(model_path)
-    tokenizer = model.tokenizer
-    config = model[0].auto_model.config  # type: ignore
-else:
-    tokenizer = AutoTokenizer.from_pretrained(model_path)
-
-    config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
-
-    # This can be used to override the sliding window size for manual testing. This
-    # can be useful to verify the sliding window attention mask in the original model
-    # and compare it with the converted .gguf model.
-    if hasattr(config, 'sliding_window'):
-        original_sliding_window = config.sliding_window
-        #original_sliding_window = 6
-        print(f"Modified sliding window: {original_sliding_window} -> {config.sliding_window}")
-
-    print(f"Using unreleased model: {unreleased_model_name}")
-    if unreleased_model_name:
-        model_name_lower = unreleased_model_name.lower()
-        unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
-        class_name = f"{unreleased_model_name}Model"
-        print(f"Importing unreleased model module: {unreleased_module_path}")
 
+def parse_arguments():
+    parser = argparse.ArgumentParser(description='Run original embedding model')
+    parser.add_argument(
+        '--model-path',
+        '-m',
+        help='Path to the model'
+    )
+    parser.add_argument(
+        '--prompts-file',
+        '-p',
+        help='Path to file containing prompts (one per line)'
+    )
+    parser.add_argument(
+        '--use-sentence-transformers',
+        action='store_true',
+        help=('Use SentenceTransformer to apply all numbered layers '
+              '(01_Pooling, 02_Dense, 03_Dense, 04_Normalize)')
+    )
+    parser.add_argument(
+        '--device',
+        '-d',
+        help='Device to use (cpu, cuda, mps, auto)',
+        default='auto'
+    )
+    return parser.parse_args()
+
+
+def load_model_and_tokenizer(model_path, use_sentence_transformers=False, device="auto"):
+    if device == "cpu":
+        device_map = {"": "cpu"}
+        print("Forcing CPU usage")
+    elif device == "auto":
+        # On Mac, "auto" device_map can cause issues with accelerate
+        # So we detect the best device manually
+        if torch.cuda.is_available():
+            device_map = {"": "cuda"}
+            print("Using CUDA")
+        elif torch.backends.mps.is_available():
+            device_map = {"": "mps"}
+            print("Using MPS (Apple Metal)")
+        else:
+            device_map = {"": "cpu"}
+            print("Using CPU")
+    else:
+        device_map = {"": device}
+
+    if use_sentence_transformers:
+        from sentence_transformers import SentenceTransformer
+        print("Using SentenceTransformer to apply all numbered layers")
+        model = SentenceTransformer(model_path)
+        tokenizer = model.tokenizer
+        config = model[0].auto_model.config  # type: ignore
+    else:
+        tokenizer = AutoTokenizer.from_pretrained(model_path)
+        config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
+
+        # This can be used to override the sliding window size for manual testing. This
+        # can be useful to verify the sliding window attention mask in the original model
+        # and compare it with the converted .gguf model.
+        if hasattr(config, 'sliding_window'):
+            original_sliding_window = config.sliding_window
+            print(f"Modified sliding window: {original_sliding_window} -> {config.sliding_window}")
+
+        unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
+        print(f"Using unreleased model: {unreleased_model_name}")
+        if unreleased_model_name:
+            model_name_lower = unreleased_model_name.lower()
+            unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
+            class_name = f"{unreleased_model_name}Model"
+            print(f"Importing unreleased model module: {unreleased_module_path}")
+
+            try:
+                model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
+                model = model_class.from_pretrained(
+                    model_path,
+                    device_map=device_map,
+                    offload_folder="offload",
+                    trust_remote_code=True,
+                    config=config
+                )
+            except (ImportError, AttributeError) as e:
+                print(f"Failed to import or load model: {e}")
+                sys.exit(1)
+        else:
+            model = AutoModel.from_pretrained(
+                model_path,
+                device_map=device_map,
+                offload_folder="offload",
+                trust_remote_code=True,
+                config=config
+            )
+        print(f"Model class: {type(model)}")
+        print(f"Model file: {type(model).__module__}")
+
+        # Verify the model is using the correct sliding window
+        if hasattr(model.config, 'sliding_window'):  # type: ignore
+            print(f"Model's sliding_window: {model.config.sliding_window}")  # type: ignore
+        else:
+            print("Model config does not have sliding_window attribute")
+
+    return model, tokenizer, config
+
+
+def get_prompt(args):
+    if args.prompts_file:
         try:
-            model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
-            model = model_class.from_pretrained(model_path, config=config, trust_remote_code=True)
-        except (ImportError, AttributeError) as e:
-            print(f"Failed to import or load model: {e}")
-            exit(1)
+            with open(args.prompts_file, 'r', encoding='utf-8') as f:
+                return f.read().strip()
+        except FileNotFoundError:
+            print(f"Error: Prompts file '{args.prompts_file}' not found")
+            sys.exit(1)
+        except Exception as e:
+            print(f"Error reading prompts file: {e}")
+            sys.exit(1)
     else:
-        model = AutoModel.from_pretrained(model_path, config=config, trust_remote_code=True)
-    print(f"Model class: {type(model)}")
-    print(f"Model file: {type(model).__module__}")
-
-# Verify the model is using the correct sliding window
-if not use_sentence_transformers:
-    if hasattr(model.config, 'sliding_window'):  # type: ignore
-        print(f"Model's sliding_window: {model.config.sliding_window}")  # type: ignore
+        return "Hello world today"
+
+
+def main():
+    args = parse_arguments()
+
+    model_path = os.environ.get('EMBEDDING_MODEL_PATH', args.model_path)
+    if model_path is None:
+        print("Error: Model path must be specified either via --model-path argument "
+              "or EMBEDDING_MODEL_PATH environment variable")
+        sys.exit(1)
+
+    # Determine if we should use SentenceTransformer
+    use_st = (
+        args.use_sentence_transformers or os.environ.get('USE_SENTENCE_TRANSFORMERS', '').lower() in ('1', 'true', 'yes')
+    )
+
+    model, tokenizer, config = load_model_and_tokenizer(model_path, use_st, args.device)
+
+    # Get the device the model is on
+    if not use_st:
+        device = next(model.parameters()).device
     else:
-        print("Model config does not have sliding_window attribute")
+        # For SentenceTransformer, get device from the underlying model
+        device = next(model[0].auto_model.parameters()).device  # type: ignore
 
-model_name = os.path.basename(model_path)
+    model_name = os.path.basename(model_path)
 
-if args.prompts_file:
-    prompt_text = read_prompt_from_file(args.prompts_file)
+    prompt_text = get_prompt(args)
     texts = [prompt_text]
-else:
-    texts = ["Hello world today"]
 
-with torch.no_grad():
-    if use_sentence_transformers:
-        embeddings = model.encode(texts, convert_to_numpy=True)
-        all_embeddings = embeddings  # Shape: [batch_size, hidden_size]
-
-        encoded = tokenizer(
-            texts,
-            padding=True,
-            truncation=True,
-            return_tensors="pt"
-        )
-        tokens = encoded['input_ids'][0]
-        token_strings = tokenizer.convert_ids_to_tokens(tokens)
-        for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
-            print(f"{token_id:6d} -> '{token_str}'")
-
-        print(f"Embeddings shape (after all SentenceTransformer layers): {all_embeddings.shape}")
-        print(f"Embedding dimension: {all_embeddings.shape[1] if len(all_embeddings.shape) > 1 else all_embeddings.shape[0]}")  # type: ignore
-    else:
-        # Standard approach: use base model output only
-        encoded = tokenizer(
-            texts,
-            padding=True,
-            truncation=True,
-            return_tensors="pt"
-        )
-
-        tokens = encoded['input_ids'][0]
-        token_strings = tokenizer.convert_ids_to_tokens(tokens)
-        for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
-            print(f"{token_id:6d} -> '{token_str}'")
-
-        outputs = model(**encoded)
-        hidden_states = outputs.last_hidden_state  # Shape: [batch_size, seq_len, hidden_size]
-
-        all_embeddings = hidden_states[0].float().cpu().numpy()  # Shape: [seq_len, hidden_size]
-
-        print(f"Hidden states shape: {hidden_states.shape}")
-        print(f"All embeddings shape: {all_embeddings.shape}")
-        print(f"Embedding dimension: {all_embeddings.shape[1]}")
-
-    if len(all_embeddings.shape) == 1:
-        n_embd = all_embeddings.shape[0]  # type: ignore
-        n_embd_count = 1
-        all_embeddings = all_embeddings.reshape(1, -1)
-    else:
-        n_embd = all_embeddings.shape[1]  # type: ignore
-        n_embd_count = all_embeddings.shape[0]  # type: ignore
+    with torch.no_grad():
+        if use_st:
+            embeddings = model.encode(texts, convert_to_numpy=True)
+            all_embeddings = embeddings  # Shape: [batch_size, hidden_size]
+
+            encoded = tokenizer(
+                texts,
+                padding=True,
+                truncation=True,
+                return_tensors="pt"
+            )
+            tokens = encoded['input_ids'][0]
+            token_strings = tokenizer.convert_ids_to_tokens(tokens)
+            for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
+                print(f"{token_id:6d} -> '{token_str}'")
+
+            print(f"Embeddings shape (after all SentenceTransformer layers): {all_embeddings.shape}")
+            print(f"Embedding dimension: {all_embeddings.shape[1] if len(all_embeddings.shape) > 1 else all_embeddings.shape[0]}")  # type: ignore
+        else:
+            # Standard approach: use base model output only
+            encoded = tokenizer(
+                texts,
+                padding=True,
+                truncation=True,
+                return_tensors="pt"
+            )
+
+            tokens = encoded['input_ids'][0]
+            token_strings = tokenizer.convert_ids_to_tokens(tokens)
+            for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
+                print(f"{token_id:6d} -> '{token_str}'")
+
+            # Move inputs to the same device as the model
+            encoded = {k: v.to(device) for k, v in encoded.items()}
+            outputs = model(**encoded)
+            hidden_states = outputs.last_hidden_state  # Shape: [batch_size, seq_len, hidden_size]
+
+            all_embeddings = hidden_states[0].float().cpu().numpy()  # Shape: [seq_len, hidden_size]
+
+            print(f"Hidden states shape: {hidden_states.shape}")
+            print(f"All embeddings shape: {all_embeddings.shape}")
+            print(f"Embedding dimension: {all_embeddings.shape[1]}")
+
+        if len(all_embeddings.shape) == 1:
+            n_embd = all_embeddings.shape[0]  # type: ignore
+            n_embd_count = 1
+            all_embeddings = all_embeddings.reshape(1, -1)
+        else:
+            n_embd = all_embeddings.shape[1]  # type: ignore
+            n_embd_count = all_embeddings.shape[0]  # type: ignore
+
+        print()
+
+        for j in range(n_embd_count):
+            embedding = all_embeddings[j]
+            print(f"embedding {j}: ", end="")
 
-    print()
+            # Print first 3 values
+            for i in range(min(3, n_embd)):
+                print(f"{embedding[i]:9.6f} ", end="")
 
-    for j in range(n_embd_count):
-        embedding = all_embeddings[j]
-        print(f"embedding {j}: ", end="")
+            print(" ... ", end="")
 
-        # Print first 3 values
-        for i in range(min(3, n_embd)):
-            print(f"{embedding[i]:9.6f} ", end="")
+            # Print last 3 values
+            for i in range(n_embd - 3, n_embd):
+                print(f"{embedding[i]:9.6f} ", end="")
 
-        print(" ... ", end="")
+            print()  # New line
 
-        # Print last 3 values
-        for i in range(n_embd - 3, n_embd):
-            print(f"{embedding[i]:9.6f} ", end="")
+        print()
 
-        print()  # New line
+        data_dir = Path("data")
+        data_dir.mkdir(exist_ok=True)
+        bin_filename = data_dir / f"pytorch-{model_name}-embeddings.bin"
+        txt_filename = data_dir / f"pytorch-{model_name}-embeddings.txt"
 
-    print()
+        flattened_embeddings = all_embeddings.flatten()
+        flattened_embeddings.astype(np.float32).tofile(bin_filename)
 
-    data_dir = Path("data")
-    data_dir.mkdir(exist_ok=True)
-    bin_filename = data_dir / f"pytorch-{model_name}-embeddings.bin"
-    txt_filename = data_dir / f"pytorch-{model_name}-embeddings.txt"
+        with open(txt_filename, "w") as f:
+            idx = 0
+            for j in range(n_embd_count):
+                for value in all_embeddings[j]:
+                    f.write(f"{idx}: {value:.6f}\n")
+                    idx += 1
+        print(f"Total values: {len(flattened_embeddings)} ({n_embd_count} embeddings × {n_embd} dimensions)")
+        print("")
+        print(f"Saved bin embeddings to: {bin_filename}")
+        print(f"Saved txt embeddings to: {txt_filename}")
 
-    flattened_embeddings = all_embeddings.flatten()
-    flattened_embeddings.astype(np.float32).tofile(bin_filename)
 
-    with open(txt_filename, "w") as f:
-        idx = 0
-        for j in range(n_embd_count):
-            for value in all_embeddings[j]:
-                f.write(f"{idx}: {value:.6f}\n")
-                idx += 1
-    print(f"Total values: {len(flattened_embeddings)} ({n_embd_count} embeddings × {n_embd} dimensions)")
-    print("")
-    print(f"Saved bin embeddings to: {bin_filename}")
-    print(f"Saved txt embeddings to: {txt_filename}")
+if __name__ == "__main__":
+    main()