}
aclTensor* acl_gamma = get_f32_cache_acl_tensor(
ctx,
- &ctx.f32_one_cache,
- ctx.f32_one_cache_element,
+ &ctx.rms_norm_one_tensor_cache.cache,
+ ctx.rms_norm_one_tensor_cache.size,
src->ne,
acl_gamma_nb,
1, // dims
}
aclTensor* acl_rstd = get_f32_cache_acl_tensor(
ctx,
- &ctx.f32_zero_cache,
- ctx.f32_zero_cache_element,
+ &ctx.rms_norm_zero_tensor_cache.cache,
+ ctx.rms_norm_zero_tensor_cache.size,
src->ne,
acl_rstd_nb,
GGML_MAX_DIMS,
* 5. Compute sin(θ), cos(θ) and optionally scale by attn_factor.
* 6. Expand sin/cos values by repeat or repeat_interleave depending
* on whether @param is_neox is enabled.
- * 7. Store the computed values into persistent buffers
- * (ctx.rope_sin_ptr / ctx.rope_cos_ptr).
- *
- * @param ctx The CANN backend context, holding memory pool,
- * stream, and persistent buffers for rope init/cache.
- * @param dst The destination ggml_tensor whose computation
- * depends on the cached RoPE values (usually Qcur/Kcur).
- * @param theta_scale Scalar exponent base for computing theta scale values.
- * @param freq_scale Frequency scaling factor, applied to theta scale.
- * @param attn_factor Attention scaling factor, applied to sin/cos.
- * @param is_neox Whether to use Neox-style repeat strategy
- * (dim expansion vs repeat_interleave).
+ *
+ * @param ctx The CANN backend context, holding memory pool,
+ * stream, and persistent buffers for rope init/cache.
+ * @param dst The destination ggml_tensor whose computation
+ * depends on the RoPE values (usually Qcur/Kcur).
+ * @param sin_tensor_buffer Pre-allocated buffer for storing repeated sin values.
+ * @param cos_tensor_buffer Pre-allocated buffer for storing repeated cos values.
+ * @param theta_scale Scalar exponent base for computing theta scale values.
+ * @param freq_scale Frequency scaling factor, applied to theta scale.
+ * @param attn_factor Attention scaling factor, applied to sin/cos.
+ * @param is_neox Whether to use Neox-style repeat strategy
+ * (dim expansion vs repeat_interleave).
*/
static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
+ void* sin_tensor_buffer, void* cos_tensor_buffer,
float theta_scale, float freq_scale,
float attn_factor, bool is_neox) {
// int sin/cos cache, cache has different repeat method depond on
// @param.is_neox
- bool is_q = (std::strncmp(dst->name, "Qcur-", 5) == 0);
- bool is_k = (std::strncmp(dst->name, "Kcur-", 5) == 0);
-
- // used for accuracy testing
- bool is_attention = is_q || is_k;
-
- // just compute in first layer in attention
- bool is_fisrt_layer = (std::strncmp(dst->name, "Qcur-0", GGML_MAX_NAME) == 0);
- if(is_attention && !is_fisrt_layer) {
- return;
- }
ggml_tensor* src0 = dst->src[0]; // input
ggml_tensor* src1 = dst->src[1]; // position
ggml_tensor* src2 = dst->src[2]; // freq_factors
- GGML_TENSOR_BINARY_OP_LOCALS
-
- int64_t theta_scale_length = ne00 / 2;
+ int64_t theta_scale_length = src0->ne[0] / 2;
int64_t theta_scale_ne[] = {theta_scale_length, 1, 1, 1};
size_t theta_scale_nb[] = {sizeof(float_t), sizeof(float_t), sizeof(float_t),
theta_scale_length * sizeof(float_t)};
theta_nb[i] = theta_nb[i - 1] * theta_ne[i - 1];
}
- // init theta scale, just one time
- if(ctx.rope_init_ptr == nullptr || !is_attention) {
- // theta_scale arange, [0,1,...,ne00/2 - 1]
- if(ctx.rope_init_ptr != nullptr){
- ACL_CHECK(aclrtFree(ctx.rope_init_ptr));
+ // theta_scale arange, [0,1,...,ne00/2 - 1]
+ aclTensor* acl_theta_scale_tensor = nullptr;
+ // cache theta scale
+ if (ctx.rope_cache.theta_scale_length != theta_scale_length ||
+ // theta_scale and freq_scale should not change during the current token inference process,
+ // so we can directly use == here instead of comparing the absolute difference.
+ ctx.rope_cache.theta_scale != theta_scale ||
+ ctx.rope_cache.freq_scale != freq_scale) {
+
+ ctx.rope_cache.theta_scale_length = theta_scale_length;
+ ctx.rope_cache.theta_scale = theta_scale;
+ ctx.rope_cache.freq_scale = freq_scale;
+
+ if (ctx.rope_cache.theta_scale_cache != nullptr) {
+ ACL_CHECK(aclrtFree(ctx.rope_cache.theta_scale_cache));
}
- ACL_CHECK(aclrtMalloc(&ctx.rope_init_ptr, theta_scale_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
+ ACL_CHECK(aclrtMalloc(&ctx.rope_cache.theta_scale_cache, theta_scale_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
- aclTensor* acl_theta_scale_tensor =
- ggml_cann_create_tensor(ctx.rope_init_ptr, ACL_FLOAT, sizeof(float_t),
+ acl_theta_scale_tensor =
+ ggml_cann_create_tensor(ctx.rope_cache.theta_scale_cache, ACL_FLOAT, sizeof(float_t),
theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
+
float start = 0;
float step = 1;
- float stop = ne00 / 2;
- float n_elements = ne00 / 2;
+ float stop = theta_scale_length;
+ float n_elements = theta_scale_length;
aclnn_arange(ctx, acl_theta_scale_tensor, start, stop, step, n_elements);
// power
if (freq_scale != 1) {
aclnn_muls(ctx, acl_theta_scale_tensor, freq_scale, nullptr, true);
}
-
- // freq_factors
- if (src2) {
- aclTensor* acl_freq_factors_tensor = ggml_cann_create_tensor(
- src2->data, ggml_cann_type_mapping(src2->type),
- ggml_type_size(src2->type), theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
- aclnn_div(ctx, acl_theta_scale_tensor, acl_freq_factors_tensor);
- ggml_cann_release_resources(ctx, acl_freq_factors_tensor);
- }
- // release
- ggml_cann_release_resources(ctx, acl_theta_scale_tensor,acl_theta_scale);
+ ggml_cann_release_resources(ctx, acl_theta_scale);
+ } else {
+ // use cache
+ acl_theta_scale_tensor =
+ ggml_cann_create_tensor(ctx.rope_cache.theta_scale_cache, ACL_FLOAT, sizeof(float_t),
+ theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
}
- // init sin_repeat && cos_repeat, one token just init in 0 layer
- if(position_length > ctx.max_prompt_length) {
- ctx.max_prompt_length = position_length;
- int64_t repeat_theta_length = theta_scale_length * ctx.max_prompt_length * 2;
- if(ctx.rope_sin_ptr != nullptr) {
- ACL_CHECK(aclrtFree(ctx.rope_sin_ptr));
- ACL_CHECK(aclrtFree(ctx.rope_cos_ptr));
- }
- ACL_CHECK(aclrtMalloc(&ctx.rope_sin_ptr, repeat_theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
- ACL_CHECK(aclrtMalloc(&ctx.rope_cos_ptr, repeat_theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
+ ggml_cann_pool_alloc freq_fac_res_allocator(ctx.pool());
+ // freq_factors
+ if (src2) {
+ freq_fac_res_allocator.alloc(theta_scale_length * sizeof(float_t));
+ void* freq_fac_res_ptr = freq_fac_res_allocator.get();
+ aclTensor* acl_freq_factors_tensor = ggml_cann_create_tensor(
+ src2->data, ggml_cann_type_mapping(src2->type),
+ ggml_type_size(src2->type), theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
+ aclTensor* acl_freq_fac_res_tensor = ggml_cann_create_tensor(
+ freq_fac_res_ptr, ACL_FLOAT, sizeof(float_t),
+ theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
+ aclnn_div(ctx, acl_theta_scale_tensor, acl_freq_factors_tensor, acl_freq_fac_res_tensor);
+ std::swap(acl_theta_scale_tensor, acl_freq_fac_res_tensor);
+ ggml_cann_release_resources(ctx, acl_freq_factors_tensor, acl_freq_fac_res_tensor);
}
- aclTensor* acl_theta_scale_tensor =
- ggml_cann_create_tensor(ctx.rope_init_ptr, ACL_FLOAT, sizeof(float_t),
- theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
-
// position
aclTensor* acl_position_tensor = ggml_cann_create_tensor(
src1->data, ggml_cann_type_mapping(src1->type),
aclnn_muls(ctx, acl_cos_tensor, attn_factor, nullptr, true);
}
- int64_t sin_reshape_ne[4] = {ne00, 1, ne02, 1};
+ int64_t sin_reshape_ne[4] = {src0->ne[0], 1, src0->ne[2], 1};
size_t sin_reshape_nb[GGML_MAX_DIMS];
sin_reshape_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
sin_reshape_nb[i] = sin_reshape_nb[i - 1] * sin_reshape_ne[i - 1];
}
aclTensor* acl_sin_repeat_tensor =
- ggml_cann_create_tensor(ctx.rope_sin_ptr, ACL_FLOAT, sizeof(float_t),
+ ggml_cann_create_tensor(sin_tensor_buffer, ACL_FLOAT, sizeof(float_t),
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
aclTensor* acl_cos_repeat_tensor =
- ggml_cann_create_tensor(ctx.rope_cos_ptr, ACL_FLOAT, sizeof(float_t),
+ ggml_cann_create_tensor(cos_tensor_buffer, ACL_FLOAT, sizeof(float_t),
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
// repeat
// TODO: use ascendc
// Only test with LLAMA model.
ggml_tensor* src0 = dst->src[0]; // input
+ ggml_tensor* src1 = dst->src[1];
// param
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
+ // sin/cos tensor length.
+ int64_t repeat_theta_length = src0->ne[0] * src1->ne[0];
+ ggml_cann_pool_alloc sin_tensor_allocator(ctx.pool(), repeat_theta_length * sizeof(float));
+ ggml_cann_pool_alloc cos_tensor_allocator(ctx.pool(), repeat_theta_length * sizeof(float));
+ void *sin_tensor_buffer = sin_tensor_allocator.get();
+ void *cos_tensor_buffer = cos_tensor_allocator.get();
+
// init ctx.rope_cos/rope_sin cache
- aclnn_cache_init(ctx, dst, theta_scale, freq_scale, attn_factor, is_neox);
+ aclnn_cache_init(ctx, dst, sin_tensor_buffer, cos_tensor_buffer,
+ theta_scale, freq_scale, attn_factor, is_neox);
int64_t sin_reshape_ne[4] = {ne00, 1, ne02, 1};
size_t sin_reshape_nb[GGML_MAX_DIMS];
sin_reshape_nb[i] = sin_reshape_nb[i - 1] * sin_reshape_ne[i - 1];
}
aclTensor* acl_sin_reshape_tensor =
- ggml_cann_create_tensor(ctx.rope_sin_ptr, ACL_FLOAT, sizeof(float_t),
+ ggml_cann_create_tensor(sin_tensor_buffer, ACL_FLOAT, sizeof(float_t),
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
aclTensor* acl_cos_reshape_tensor =
- ggml_cann_create_tensor(ctx.rope_cos_ptr, ACL_FLOAT, sizeof(float_t),
+ ggml_cann_create_tensor(cos_tensor_buffer, ACL_FLOAT, sizeof(float_t),
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
aclTensor* acl_src = ggml_cann_create_tensor(src0);