]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
ggml : vectorize Q8_0 quantization
authorGeorgi Gerganov <redacted>
Wed, 3 May 2023 20:24:20 +0000 (23:24 +0300)
committerGeorgi Gerganov <redacted>
Wed, 3 May 2023 20:24:20 +0000 (23:24 +0300)
https://github.com/ggerganov/ggml/pull/127#issuecomment-1533648531

ggml.c

diff --git a/ggml.c b/ggml.c
index addf0c308078c8536d6b961a1b31e49725089d32..0bcb5f617f202e2b56eab1956bdcc290c5ca52de 100644 (file)
--- a/ggml.c
+++ b/ggml.c
@@ -1509,15 +1509,135 @@ static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * r
 }
 
 static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
+    assert(QK8_0 == 32);
     assert(k % QK8_0 == 0);
+    const int nb = k / QK8_0;
 
     block_q8_0 * restrict y = vy;
 
+#if defined(__ARM_NEON)
+    for (int i = 0; i < nb; i++) {
+        float32x4_t srcv [8];
+        float32x4_t asrcv[8];
+        float32x4_t amaxv[8];
+
+        for (int l = 0; l < 8; l++) srcv[l]  = vld1q_f32(x + i*32 + 4*l);
+        for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
+
+        for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
+        for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
+        for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
+
+        const float amax = vmaxvq_f32(amaxv[0]);
+
+        const float d = amax / ((1 << 7) - 1);
+        const float id = d ? 1.0f/d : 0.0f;
+
+        y[i].d = d;
+
+        for (int l = 0; l < 8; l++) {
+            const float32x4_t v  = vmulq_n_f32(srcv[l], id);
+            const int32x4_t   vi = vcvtnq_s32_f32(v);
+
+            y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
+            y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
+            y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
+            y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
+        }
+    }
+#elif defined(__AVX2__) || defined(__AVX__)
+    for (int i = 0; i < nb; i++) {
+        // Load elements into 4 AVX vectors
+        __m256 v0 = _mm256_loadu_ps( x );
+        __m256 v1 = _mm256_loadu_ps( x + 8 );
+        __m256 v2 = _mm256_loadu_ps( x + 16 );
+        __m256 v3 = _mm256_loadu_ps( x + 24 );
+        x += 32;
+
+        // Compute max(abs(e)) for the block
+        const __m256 signBit = _mm256_set1_ps( -0.0f );
+        __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
+        maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
+        maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
+        maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
+
+        __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
+        max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
+        max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
+        const float maxScalar = _mm_cvtss_f32( max4 );
+
+        // Quantize these floats
+        const float d = maxScalar / 127.f;
+        y[i].d = d;
+        const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
+        const __m256 mul = _mm256_set1_ps( id );
+
+        // Apply the multiplier
+        v0 = _mm256_mul_ps( v0, mul );
+        v1 = _mm256_mul_ps( v1, mul );
+        v2 = _mm256_mul_ps( v2, mul );
+        v3 = _mm256_mul_ps( v3, mul );
+
+        // Round to nearest integer
+        v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
+        v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
+        v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
+        v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
+
+        // Convert floats to integers
+        __m256i i0 = _mm256_cvtps_epi32( v0 );
+        __m256i i1 = _mm256_cvtps_epi32( v1 );
+        __m256i i2 = _mm256_cvtps_epi32( v2 );
+        __m256i i3 = _mm256_cvtps_epi32( v3 );
+
+#if defined(__AVX2__)
+        // Convert int32 to int16
+        i0 = _mm256_packs_epi32( i0, i1 );     // 0, 1, 2, 3,  8, 9, 10, 11,  4, 5, 6, 7, 12, 13, 14, 15
+        i2 = _mm256_packs_epi32( i2, i3 );     // 16, 17, 18, 19,  24, 25, 26, 27,  20, 21, 22, 23, 28, 29, 30, 31
+                                            // Convert int16 to int8
+        i0 = _mm256_packs_epi16( i0, i2 );     // 0, 1, 2, 3,  8, 9, 10, 11,  16, 17, 18, 19,  24, 25, 26, 27,  4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
+
+        // We got our precious signed bytes, but the order is now wrong
+        // These AVX2 pack instructions process 16-byte pieces independently
+        // The following instruction is fixing the order
+        const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
+        i0 = _mm256_permutevar8x32_epi32( i0, perm );
+
+        _mm256_storeu_si256((__m256i *)y[i].qs, i0);
+#else
+        // Since we don't have in AVX some necessary functions,
+        // we split the registers in half and call AVX2 analogs from SSE
+        __m128i ni0 = _mm256_castsi256_si128( i0 );
+        __m128i ni1 = _mm256_extractf128_si256( i0, 1);
+        __m128i ni2 = _mm256_castsi256_si128( i1 );
+        __m128i ni3 = _mm256_extractf128_si256( i1, 1);
+        __m128i ni4 = _mm256_castsi256_si128( i2 );
+        __m128i ni5 = _mm256_extractf128_si256( i2, 1);
+        __m128i ni6 = _mm256_castsi256_si128( i3 );
+        __m128i ni7 = _mm256_extractf128_si256( i3, 1);
+
+        // Convert int32 to int16
+        ni0 = _mm_packs_epi32( ni0, ni1 );
+        ni2 = _mm_packs_epi32( ni2, ni3 );
+        ni4 = _mm_packs_epi32( ni4, ni5 );
+        ni6 = _mm_packs_epi32( ni6, ni7 );
+        // Convert int16 to int8
+        ni0 = _mm_packs_epi16( ni0, ni2 );
+        ni4 = _mm_packs_epi16( ni4, ni6 );
+
+        _mm_storeu_si128((__m128i *)(y[i].qs +  0), ni0);
+        _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
+#endif
+    }
+#else
+    // scalar
     quantize_row_q8_0_reference(x, y, k);
+#endif
 }
 
 // reference implementation for deterministic creation of model files
 static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
+    assert(QK8_1 == 32);
     assert(k % QK8_1 == 0);
     const int nb = k / QK8_1;