+++ /dev/null
-# AWQ: Activation-aware Weight Quantization for LLM - version apply to llamacpp
-[[Paper](https://arxiv.org/abs/2306.00978)][[Original Repo](https://github.com/mit-han-lab/llm-awq)][[Easy-to-use Repo](https://github.com/casper-hansen/AutoAWQ)]
-
-**Supported models:**
-
-- [X] LLaMA
-- [x] LLaMA 2
-- [X] MPT
-- [X] Mistral AI v0.1
-- [ ] Bloom
-- [ ] Mixtral MoE
-
-**TODO:**
-- [x] Update version work with both MPT and MPT-AWQ model
-- [ ] Add OPT model
-- [ ] Add Bloom model
-- [ ] Add Mixtral MoE
-- [ ] Support w3, w2
-
-
-## Contents
-
-- [Install](##Install)
-- [Convert](##Convert)
-- [Quantize](##Quantize)
-- [Test](##Test)
-- [Benchmark](##Benchmark)
-- [Results](##Results)
-
-## Install
-Install requirements
-```bash
-pip install -r requirements.txt
-```
-Get the pre-computed AWQ search results for multiple model families, including LLaMA, LLaMA2, MPT, OPT
-```bash
-git clone https://huggingface.co/datasets/mit-han-lab/awq-model-zoo awq_cache
-```
-
-## Convert
-Example for llama model
-```bash
-# For llama7b and llama2 models
-python convert.py models/llama-7b/ --awq-path awq_cache/llama-7b-w4-g128.pt --outfile models/llama_7b_fp16.gguf
-# For mistral and mpt models
-python convert-hf-to-gguf.py models/mpt-7b/ --awq-path awq_cache/mpt-7b-w4-g128.pt --outfile models/mpt_7b_fp16.gguf
-```
-
-## Quantize
-```bash
-# We only benchmark and confirm the results on q4_0, q4_1, and q2_k types.
-./quantize models/llama_7b_fp16.gguf models/llama_7b_q4_0.gguf q4_0
-```
-
-## Test
-```bash
-# For all models.
-./build/bin/main -m models/llama_7b_q4_0.gguf -n 128 --prompt "Once upon a time"
-```
-
-## Benchmark
-The perplexity measurements in table above are done against the `wikitext2` test dataset (https://paperswithcode.com/dataset/wikitext-2), with context length of 512.
-```bash
-# For llama and llama2, and mistral models.
-./perplexity -m models/llama_7b_q4_0.gguf -f datasets/wikitext-2-raw/wiki.test.raw
-```
-
-## Results
-Results are run on OpenBLAS (CPU) and CuBLAS (GPU) for fair comparison
-We use three types of llamacpp quantization methods to work with our version, including q4_0, q4_1, and q2_k
-
-### Llama 7B (Build with OpenBLAS)
-
-| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
-|-----------:|--------------|-------:|-------:|-------:|-------:|
-|Llama 7B | perplexity | 5.9066 | 6.1214 | 6.0643 | 6.5808 |
-|Llama 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G |
-|Llama 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
-|AWQ-LLama 7B| perplexity | 5.9175 | 6.0252 | 5.9987 | 6.3692 |
-|AWQ-LLama 7B| file size | 12.9G | 3.5G | 3.9G | 2.7G |
-|AWQ-LLama 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
-
-
-### Llama2 7B (Build with CuBLAS)
-
-| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
-|------------:|--------------|-------:|-------:|-------:|-------:|
-|Llama2 7B | perplexity | 5.8664 | 6.0260 | 6.0656 | 6.4496 |
-|Llama2 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G |
-|Llama2 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
-|AWQ-LLama2 7B| perplexity | 5.8801 | 6.0054 | 5.9849 | 6.3650 |
-|AWQ-LLama2 7B| file size | 12.9G | 3.5G | 3.9G | 2.7G |
-|AWQ-LLama2 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
-
-
-### Mistral 7B v0.1 (Build with CuBLAS)
-
-| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
-|-------------:|--------------|-------:|-------:|-------:|-------:|
-|Mistral 7B | perplexity | 5.6931 | 5.8202 | 5.8268 | 6.1645 |
-|Mistral 7B | file size | 14.5G | 4.1G | 4.5G | 3.1G |
-|Mistral 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
-|AWQ-Mistral 7B| perplexity | 5.6934 | 5.8020 | 5.7691 | 6.0426 |
-|AWQ-Mistral 7B| file size | 14.5G | 4.1G | 4.5G | 3.1G |
-|AWQ-Mistral 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
-
-### MPT 7B (Build with OpenBLAS)
-
-| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
-|---------:|--------------|-------:|-------:|-------:|--------:|
-|MPT 7B | perplexity | 8.4369 | 8.7956 | 8.6265 | 11.4913 |
-|MPT 7B | file size | 13.7G | 3.9G | 4.3G | 2.8G |
-|MPT 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
-|AWQ-MPT 7B| perplexity | 8.4944 | 8.7053 | 8.6750 | 10.2873|
-|AWQ-MPT 7B| file size | 13.7G | 3.9G | 4.3G | 2.8G |
-|AWQ-MPT 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
+++ /dev/null
-"""
-Implements the AWQ for llama.cpp use cases.
-Original paper: https://arxiv.org/abs/2306.00978
-
-This code is based on versions of the AWQ implementation found in the following repositories:
-* https://github.com/mit-han-lab/llm-awq
-* https://github.com/casper-hansen/AutoAWQ
-"""
-
-import os
-import torch
-import torch.nn as nn
-
-from transformers import AutoModelForCausalLM, AutoConfig
-from transformers.models.bloom.modeling_bloom import BloomGelu
-from transformers.models.llama.modeling_llama import LlamaRMSNorm
-from transformers.activations import GELUActivation
-
-
-class ScaledActivation(nn.Module):
- """
- ScaledActivation module wraps an existing activation function and applies a
- scale factor to its output.
-
- Args:
- module (nn.Module): The activation function to be scaled.
- scales (torch.Tensor): A tensor of size (num_features,) containing the initial
- scale factors for each feature.
-
- Returns:
- torch.Tensor: The scaled output of the activation function.
- """
-
- def __init__(self, module, scales):
- super().__init__()
- self.act = module
- self.scales = nn.Parameter(scales.data)
-
- def forward(self, x):
- return self.act(x) / self.scales.view(1, 1, -1).to(x.device)
-
-
-def set_op_by_name(layer, name, new_module):
- """
- Set the new module for given module's name.
-
- Args:
- layer (nn.Module): The layer in which to replace the submodule.
- name (str): The path to the submodule to be replaced, using dot notation
- to access nested modules.
- new_module (nn.Module): The new module to replace the existing one.
- """
- levels = name.split(".")
- if len(levels) > 1:
- mod_ = layer
- for l_idx in range(len(levels) - 1):
- if levels[l_idx].isdigit():
- mod_ = mod_[int(levels[l_idx])]
- else:
- mod_ = getattr(mod_, levels[l_idx])
- setattr(mod_, levels[-1], new_module)
- else:
- setattr(layer, name, new_module)
-
-
-def get_op_by_name(module, op_name):
- """
- Retrieves a submodule within a given layer based on its name.
-
- Args:
- module (nn.Module): The layer containing the submodule to find.
- op_name (str): The name of the submodule.
-
- Returns:
- nn.Module: The requested submodule found within the given layer.
-
- Raises:
- ValueError: If the specified submodule cannot be found within the layer.
- """
- for name, m in module.named_modules():
- if name == op_name:
- return m
- raise ValueError(f"Cannot find op {op_name} in module {module}")
-
-
-@torch.no_grad()
-def scale_ln_fcs(ln, fcs, scales):
- """
- Scales the weights of a LayerNorm and a list of fully-connected layers proportionally.
-
- Args:
- ln (nn.LayerNorm): The LayerNorm module to be scaled.
- fcs (List[nn.Linear]): A list of fully-connected layers to be scaled.
- scales (torch.Tensor): A 1D tensor of size (num_features,).
- """
-
- if not isinstance(fcs, list):
- fcs = [fcs]
-
- scales = scales.to(ln.weight.device)
-
- ln.weight.div_(scales)
- if hasattr(ln, "bias") and ln.bias is not None:
- ln.bias.div_(scales)
-
- for fc in fcs:
- fc.weight.mul_(scales.view(1, -1))
-
- for p in ln.parameters():
- assert torch.isnan(p).sum() == 0
- for fc in fcs:
- for p in fc.parameters():
- assert torch.isnan(p).sum() == 0
-
-
-@torch.no_grad()
-def scale_fc_fc(fc1, fc2, scales):
- """
- Scales the weights of two fully-connected layers in a specific pattern.
-
- Args:
- fc1 (nn.Linear): The first fully-connected layer to be scaled.
- fc2 (nn.Linear): The second fully-connected layer to be scaled.
- scales (torch.Tensor): A 1D tensor of size (num_features,).
- """
- assert isinstance(fc1, nn.Linear)
- assert isinstance(fc2, nn.Linear)
-
- scales = scales.to(fc1.weight.device)
-
- fc1.weight[-scales.size(0):].div_(scales.view(-1, 1))
- if fc1.bias is not None:
- fc1.bias.div_(scales.view(-1))
-
- fc2.weight.mul_(scales.view(1, -1))
-
- for p in fc1.parameters():
- assert torch.isnan(p).sum() == 0
- for p in fc2.parameters():
- assert torch.isnan(p).sum() == 0
-
-
-@torch.no_grad()
-def scale_gelu_fc(gelu, fc, scales):
- """
- Scales the weight of a GELU activation and a fully-connected layer proportionally.
-
- Args:
- gelu (Union[nn.GELU, BloomGelu, GELUActivation]): The GELU activation module to be scaled.
- fc (nn.Linear): The fully-connected layer to be scaled.
- scales (torch.Tensor): A 1D tensor of size (num_features,).
-
- Raises:
- TypeError: If the `gelu` module is not of type `nn.GELU`, `BloomGelu`, or `GELUActivation`.
- TypeError: If the `fc` module is not of type `nn.Linear`.
- """
- assert isinstance(gelu, (nn.GELU, BloomGelu, GELUActivation))
- assert isinstance(fc, nn.Linear)
-
- fc.weight.mul_(scales.view(1, -1).to(fc.weight.device))
-
- for p in fc.parameters():
- assert torch.isnan(p).sum() == 0
-
-
-def apply_scale(module, scales_list, input_feat_dict=None):
- """
- Applies different scaling strategies to layers based on their type and hierarchy within a given module.
-
- Args:
- module (nn.Module): The module containing the layers to be scaled.
- scales_list (List[Tuple[str, List[str], torch.Tensor]]): A list of tuples containing:
- * prev_op_name (str): The name of the preceding operation or module,
- relative to which the layers to be scaled are located.
- * layer_names (List[str]): A list of names of the layers to be scaled, relative to the preceding operation.
- * scales (torch.Tensor): A 1D tensor of size (num_features,) containing the scaling factors for each feature.
- input_feat_dict (Optional[Dict[str, torch.Tensor]]): A dictionary mapping layer names to their corresponding
- input features (optional).
- """
- for prev_op_name, layer_names, scales in scales_list:
- prev_op = get_op_by_name(module, prev_op_name)
- layers = [get_op_by_name(module, name) for name in layer_names]
-
- prev_op.cuda()
- for layer in layers:
- layer.cuda()
- scales.cuda()
-
- if isinstance(prev_op, nn.Linear):
- assert len(layers) == 1
- scale_fc_fc(prev_op, layers[0], scales)
- elif isinstance(prev_op, (nn.LayerNorm, LlamaRMSNorm)) or "rmsnorm" in str(prev_op.__class__).lower():
- scale_ln_fcs(prev_op, layers, scales)
- elif isinstance(prev_op, (nn.GELU, BloomGelu, GELUActivation)):
- new_module = ScaledActivation(prev_op, scales)
- set_op_by_name(module, prev_op_name, new_module)
- scale_gelu_fc(prev_op, layers[0], scales)
- else:
- raise NotImplementedError(f"prev_op {type(prev_op)} not supported yet!")
-
- # apply the scaling to input feat if given; prepare it for clipping
- if input_feat_dict is not None:
- for layer_name in layer_names:
- inp = input_feat_dict[layer_name]
- inp.div_(scales.view(1, -1).to(inp.device))
-
- prev_op.cpu()
- for layer in layers:
- layer.cpu()
- scales.cpu()
-
-
-@torch.no_grad()
-def apply_clip(module, clip_list):
- """
- Applies element-wise clipping to the weight of a specific layer within a given module.
-
- Args:
- module (nn.Module): The module containing the layer to be clipped.
- clip_list (List[Tuple[str, torch.Tensor]]): A list of tuples containing:
- * name (str): The name of the layer to be clipped, relative to the root of the module.
- * max_val (torch.Tensor): A 1D or 2D tensor defining the upper bound for each element of the layer's weight.
- """
- for name, max_val in clip_list:
- layer = get_op_by_name(module, name)
- layer.cuda()
- max_val = max_val.to(layer.weight.device)
- org_shape = layer.weight.shape
- layer.weight.data = layer.weight.data.reshape(*max_val.shape[:2], -1)
- layer.weight.data = torch.clamp(layer.weight.data, -max_val, max_val)
- layer.weight.data = layer.weight.data.reshape(org_shape)
- layer.cpu()
-
-
-def add_scale_weights(model_path, scale_path, tmp_path):
- """
- Adds pre-computed Activation Weight Quantization (AWQ) results to a model,
- including scaling factors and clipping bounds.
-
- Args:
- model_path (str): Path to the pre-trained model to be equipped with AWQ.
- scale_path (str): Path to the AWQ scale factors (.pt file).
- tmp_path (str): Path to the temporary directory where the equipped model will be saved.
- """
- config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
- model = AutoModelForCausalLM.from_pretrained(
- model_path, config=config, trust_remote_code=True
- )
- model.eval()
- awq_results = torch.load(str(scale_path), map_location="cpu")
- apply_scale(model, awq_results["scale"])
- apply_clip(model, awq_results["clip"])
- model.save_pretrained(str(tmp_path))
- os.system(f"cp {str(model_path)}/tokenizer* {str(tmp_path)}")