--- /dev/null
+/*
+WAV audio loader and writer. Choice of public domain or MIT-0. See license statements at the end of this file.
+dr_wav - v0.12.16 - 2020-12-02
+
+David Reid - mackron@gmail.com
+
+GitHub: https://github.com/mackron/dr_libs
+*/
+
+/*
+RELEASE NOTES - VERSION 0.12
+============================
+Version 0.12 includes breaking changes to custom chunk handling.
+
+
+Changes to Chunk Callback
+-------------------------
+dr_wav supports the ability to fire a callback when a chunk is encounted (except for WAVE and FMT chunks). The callback has been updated to include both the
+container (RIFF or Wave64) and the FMT chunk which contains information about the format of the data in the wave file.
+
+Previously, there was no direct way to determine the container, and therefore no way to discriminate against the different IDs in the chunk header (RIFF and
+Wave64 containers encode chunk ID's differently). The `container` parameter can be used to know which ID to use.
+
+Sometimes it can be useful to know the data format at the time the chunk callback is fired. A pointer to a `drwav_fmt` object is now passed into the chunk
+callback which will give you information about the data format. To determine the sample format, use `drwav_fmt_get_format()`. This will return one of the
+`DR_WAVE_FORMAT_*` tokens.
+*/
+
+/*
+Introduction
+============
+This is a single file library. To use it, do something like the following in one .c file.
+
+ ```c
+ #define DR_WAV_IMPLEMENTATION
+ #include "dr_wav.h"
+ ```
+
+You can then #include this file in other parts of the program as you would with any other header file. Do something like the following to read audio data:
+
+ ```c
+ drwav wav;
+ if (!drwav_init_file(&wav, "my_song.wav", NULL)) {
+ // Error opening WAV file.
+ }
+
+ drwav_int32* pDecodedInterleavedPCMFrames = malloc(wav.totalPCMFrameCount * wav.channels * sizeof(drwav_int32));
+ size_t numberOfSamplesActuallyDecoded = drwav_read_pcm_frames_s32(&wav, wav.totalPCMFrameCount, pDecodedInterleavedPCMFrames);
+
+ ...
+
+ drwav_uninit(&wav);
+ ```
+
+If you just want to quickly open and read the audio data in a single operation you can do something like this:
+
+ ```c
+ unsigned int channels;
+ unsigned int sampleRate;
+ drwav_uint64 totalPCMFrameCount;
+ float* pSampleData = drwav_open_file_and_read_pcm_frames_f32("my_song.wav", &channels, &sampleRate, &totalPCMFrameCount, NULL);
+ if (pSampleData == NULL) {
+ // Error opening and reading WAV file.
+ }
+
+ ...
+
+ drwav_free(pSampleData);
+ ```
+
+The examples above use versions of the API that convert the audio data to a consistent format (32-bit signed PCM, in this case), but you can still output the
+audio data in its internal format (see notes below for supported formats):
+
+ ```c
+ size_t framesRead = drwav_read_pcm_frames(&wav, wav.totalPCMFrameCount, pDecodedInterleavedPCMFrames);
+ ```
+
+You can also read the raw bytes of audio data, which could be useful if dr_wav does not have native support for a particular data format:
+
+ ```c
+ size_t bytesRead = drwav_read_raw(&wav, bytesToRead, pRawDataBuffer);
+ ```
+
+dr_wav can also be used to output WAV files. This does not currently support compressed formats. To use this, look at `drwav_init_write()`,
+`drwav_init_file_write()`, etc. Use `drwav_write_pcm_frames()` to write samples, or `drwav_write_raw()` to write raw data in the "data" chunk.
+
+ ```c
+ drwav_data_format format;
+ format.container = drwav_container_riff; // <-- drwav_container_riff = normal WAV files, drwav_container_w64 = Sony Wave64.
+ format.format = DR_WAVE_FORMAT_PCM; // <-- Any of the DR_WAVE_FORMAT_* codes.
+ format.channels = 2;
+ format.sampleRate = 44100;
+ format.bitsPerSample = 16;
+ drwav_init_file_write(&wav, "data/recording.wav", &format, NULL);
+
+ ...
+
+ drwav_uint64 framesWritten = drwav_write_pcm_frames(pWav, frameCount, pSamples);
+ ```
+
+dr_wav has seamless support the Sony Wave64 format. The decoder will automatically detect it and it should Just Work without any manual intervention.
+
+
+Build Options
+=============
+#define these options before including this file.
+
+#define DR_WAV_NO_CONVERSION_API
+ Disables conversion APIs such as `drwav_read_pcm_frames_f32()` and `drwav_s16_to_f32()`.
+
+#define DR_WAV_NO_STDIO
+ Disables APIs that initialize a decoder from a file such as `drwav_init_file()`, `drwav_init_file_write()`, etc.
+
+
+
+Notes
+=====
+- Samples are always interleaved.
+- The default read function does not do any data conversion. Use `drwav_read_pcm_frames_f32()`, `drwav_read_pcm_frames_s32()` and `drwav_read_pcm_frames_s16()`
+ to read and convert audio data to 32-bit floating point, signed 32-bit integer and signed 16-bit integer samples respectively. Tested and supported internal
+ formats include the following:
+ - Unsigned 8-bit PCM
+ - Signed 12-bit PCM
+ - Signed 16-bit PCM
+ - Signed 24-bit PCM
+ - Signed 32-bit PCM
+ - IEEE 32-bit floating point
+ - IEEE 64-bit floating point
+ - A-law and u-law
+ - Microsoft ADPCM
+ - IMA ADPCM (DVI, format code 0x11)
+- dr_wav will try to read the WAV file as best it can, even if it's not strictly conformant to the WAV format.
+*/
+
+#ifndef dr_wav_h
+#define dr_wav_h
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#define DRWAV_STRINGIFY(x) #x
+#define DRWAV_XSTRINGIFY(x) DRWAV_STRINGIFY(x)
+
+#define DRWAV_VERSION_MAJOR 0
+#define DRWAV_VERSION_MINOR 12
+#define DRWAV_VERSION_REVISION 16
+#define DRWAV_VERSION_STRING DRWAV_XSTRINGIFY(DRWAV_VERSION_MAJOR) "." DRWAV_XSTRINGIFY(DRWAV_VERSION_MINOR) "." DRWAV_XSTRINGIFY(DRWAV_VERSION_REVISION)
+
+#include <stddef.h> /* For size_t. */
+
+/* Sized types. */
+typedef signed char drwav_int8;
+typedef unsigned char drwav_uint8;
+typedef signed short drwav_int16;
+typedef unsigned short drwav_uint16;
+typedef signed int drwav_int32;
+typedef unsigned int drwav_uint32;
+#if defined(_MSC_VER)
+ typedef signed __int64 drwav_int64;
+ typedef unsigned __int64 drwav_uint64;
+#else
+ #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)))
+ #pragma GCC diagnostic push
+ #pragma GCC diagnostic ignored "-Wlong-long"
+ #if defined(__clang__)
+ #pragma GCC diagnostic ignored "-Wc++11-long-long"
+ #endif
+ #endif
+ typedef signed long long drwav_int64;
+ typedef unsigned long long drwav_uint64;
+ #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)))
+ #pragma GCC diagnostic pop
+ #endif
+#endif
+#if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__)) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__)
+ typedef drwav_uint64 drwav_uintptr;
+#else
+ typedef drwav_uint32 drwav_uintptr;
+#endif
+typedef drwav_uint8 drwav_bool8;
+typedef drwav_uint32 drwav_bool32;
+#define DRWAV_TRUE 1
+#define DRWAV_FALSE 0
+
+#if !defined(DRWAV_API)
+ #if defined(DRWAV_DLL)
+ #if defined(_WIN32)
+ #define DRWAV_DLL_IMPORT __declspec(dllimport)
+ #define DRWAV_DLL_EXPORT __declspec(dllexport)
+ #define DRWAV_DLL_PRIVATE static
+ #else
+ #if defined(__GNUC__) && __GNUC__ >= 4
+ #define DRWAV_DLL_IMPORT __attribute__((visibility("default")))
+ #define DRWAV_DLL_EXPORT __attribute__((visibility("default")))
+ #define DRWAV_DLL_PRIVATE __attribute__((visibility("hidden")))
+ #else
+ #define DRWAV_DLL_IMPORT
+ #define DRWAV_DLL_EXPORT
+ #define DRWAV_DLL_PRIVATE static
+ #endif
+ #endif
+
+ #if defined(DR_WAV_IMPLEMENTATION) || defined(DRWAV_IMPLEMENTATION)
+ #define DRWAV_API DRWAV_DLL_EXPORT
+ #else
+ #define DRWAV_API DRWAV_DLL_IMPORT
+ #endif
+ #define DRWAV_PRIVATE DRWAV_DLL_PRIVATE
+ #else
+ #define DRWAV_API extern
+ #define DRWAV_PRIVATE static
+ #endif
+#endif
+
+typedef drwav_int32 drwav_result;
+#define DRWAV_SUCCESS 0
+#define DRWAV_ERROR -1 /* A generic error. */
+#define DRWAV_INVALID_ARGS -2
+#define DRWAV_INVALID_OPERATION -3
+#define DRWAV_OUT_OF_MEMORY -4
+#define DRWAV_OUT_OF_RANGE -5
+#define DRWAV_ACCESS_DENIED -6
+#define DRWAV_DOES_NOT_EXIST -7
+#define DRWAV_ALREADY_EXISTS -8
+#define DRWAV_TOO_MANY_OPEN_FILES -9
+#define DRWAV_INVALID_FILE -10
+#define DRWAV_TOO_BIG -11
+#define DRWAV_PATH_TOO_LONG -12
+#define DRWAV_NAME_TOO_LONG -13
+#define DRWAV_NOT_DIRECTORY -14
+#define DRWAV_IS_DIRECTORY -15
+#define DRWAV_DIRECTORY_NOT_EMPTY -16
+#define DRWAV_END_OF_FILE -17
+#define DRWAV_NO_SPACE -18
+#define DRWAV_BUSY -19
+#define DRWAV_IO_ERROR -20
+#define DRWAV_INTERRUPT -21
+#define DRWAV_UNAVAILABLE -22
+#define DRWAV_ALREADY_IN_USE -23
+#define DRWAV_BAD_ADDRESS -24
+#define DRWAV_BAD_SEEK -25
+#define DRWAV_BAD_PIPE -26
+#define DRWAV_DEADLOCK -27
+#define DRWAV_TOO_MANY_LINKS -28
+#define DRWAV_NOT_IMPLEMENTED -29
+#define DRWAV_NO_MESSAGE -30
+#define DRWAV_BAD_MESSAGE -31
+#define DRWAV_NO_DATA_AVAILABLE -32
+#define DRWAV_INVALID_DATA -33
+#define DRWAV_TIMEOUT -34
+#define DRWAV_NO_NETWORK -35
+#define DRWAV_NOT_UNIQUE -36
+#define DRWAV_NOT_SOCKET -37
+#define DRWAV_NO_ADDRESS -38
+#define DRWAV_BAD_PROTOCOL -39
+#define DRWAV_PROTOCOL_UNAVAILABLE -40
+#define DRWAV_PROTOCOL_NOT_SUPPORTED -41
+#define DRWAV_PROTOCOL_FAMILY_NOT_SUPPORTED -42
+#define DRWAV_ADDRESS_FAMILY_NOT_SUPPORTED -43
+#define DRWAV_SOCKET_NOT_SUPPORTED -44
+#define DRWAV_CONNECTION_RESET -45
+#define DRWAV_ALREADY_CONNECTED -46
+#define DRWAV_NOT_CONNECTED -47
+#define DRWAV_CONNECTION_REFUSED -48
+#define DRWAV_NO_HOST -49
+#define DRWAV_IN_PROGRESS -50
+#define DRWAV_CANCELLED -51
+#define DRWAV_MEMORY_ALREADY_MAPPED -52
+#define DRWAV_AT_END -53
+
+/* Common data formats. */
+#define DR_WAVE_FORMAT_PCM 0x1
+#define DR_WAVE_FORMAT_ADPCM 0x2
+#define DR_WAVE_FORMAT_IEEE_FLOAT 0x3
+#define DR_WAVE_FORMAT_ALAW 0x6
+#define DR_WAVE_FORMAT_MULAW 0x7
+#define DR_WAVE_FORMAT_DVI_ADPCM 0x11
+#define DR_WAVE_FORMAT_EXTENSIBLE 0xFFFE
+
+/* Constants. */
+#ifndef DRWAV_MAX_SMPL_LOOPS
+#define DRWAV_MAX_SMPL_LOOPS 1
+#endif
+
+/* Flags to pass into drwav_init_ex(), etc. */
+#define DRWAV_SEQUENTIAL 0x00000001
+
+DRWAV_API void drwav_version(drwav_uint32* pMajor, drwav_uint32* pMinor, drwav_uint32* pRevision);
+DRWAV_API const char* drwav_version_string(void);
+
+typedef enum
+{
+ drwav_seek_origin_start,
+ drwav_seek_origin_current
+} drwav_seek_origin;
+
+typedef enum
+{
+ drwav_container_riff,
+ drwav_container_w64,
+ drwav_container_rf64
+} drwav_container;
+
+typedef struct
+{
+ union
+ {
+ drwav_uint8 fourcc[4];
+ drwav_uint8 guid[16];
+ } id;
+
+ /* The size in bytes of the chunk. */
+ drwav_uint64 sizeInBytes;
+
+ /*
+ RIFF = 2 byte alignment.
+ W64 = 8 byte alignment.
+ */
+ unsigned int paddingSize;
+} drwav_chunk_header;
+
+typedef struct
+{
+ /*
+ The format tag exactly as specified in the wave file's "fmt" chunk. This can be used by applications
+ that require support for data formats not natively supported by dr_wav.
+ */
+ drwav_uint16 formatTag;
+
+ /* The number of channels making up the audio data. When this is set to 1 it is mono, 2 is stereo, etc. */
+ drwav_uint16 channels;
+
+ /* The sample rate. Usually set to something like 44100. */
+ drwav_uint32 sampleRate;
+
+ /* Average bytes per second. You probably don't need this, but it's left here for informational purposes. */
+ drwav_uint32 avgBytesPerSec;
+
+ /* Block align. This is equal to the number of channels * bytes per sample. */
+ drwav_uint16 blockAlign;
+
+ /* Bits per sample. */
+ drwav_uint16 bitsPerSample;
+
+ /* The size of the extended data. Only used internally for validation, but left here for informational purposes. */
+ drwav_uint16 extendedSize;
+
+ /*
+ The number of valid bits per sample. When <formatTag> is equal to WAVE_FORMAT_EXTENSIBLE, <bitsPerSample>
+ is always rounded up to the nearest multiple of 8. This variable contains information about exactly how
+ many bits are valid per sample. Mainly used for informational purposes.
+ */
+ drwav_uint16 validBitsPerSample;
+
+ /* The channel mask. Not used at the moment. */
+ drwav_uint32 channelMask;
+
+ /* The sub-format, exactly as specified by the wave file. */
+ drwav_uint8 subFormat[16];
+} drwav_fmt;
+
+DRWAV_API drwav_uint16 drwav_fmt_get_format(const drwav_fmt* pFMT);
+
+
+/*
+Callback for when data is read. Return value is the number of bytes actually read.
+
+pUserData [in] The user data that was passed to drwav_init() and family.
+pBufferOut [out] The output buffer.
+bytesToRead [in] The number of bytes to read.
+
+Returns the number of bytes actually read.
+
+A return value of less than bytesToRead indicates the end of the stream. Do _not_ return from this callback until
+either the entire bytesToRead is filled or you have reached the end of the stream.
+*/
+typedef size_t (* drwav_read_proc)(void* pUserData, void* pBufferOut, size_t bytesToRead);
+
+/*
+Callback for when data is written. Returns value is the number of bytes actually written.
+
+pUserData [in] The user data that was passed to drwav_init_write() and family.
+pData [out] A pointer to the data to write.
+bytesToWrite [in] The number of bytes to write.
+
+Returns the number of bytes actually written.
+
+If the return value differs from bytesToWrite, it indicates an error.
+*/
+typedef size_t (* drwav_write_proc)(void* pUserData, const void* pData, size_t bytesToWrite);
+
+/*
+Callback for when data needs to be seeked.
+
+pUserData [in] The user data that was passed to drwav_init() and family.
+offset [in] The number of bytes to move, relative to the origin. Will never be negative.
+origin [in] The origin of the seek - the current position or the start of the stream.
+
+Returns whether or not the seek was successful.
+
+Whether or not it is relative to the beginning or current position is determined by the "origin" parameter which will be either drwav_seek_origin_start or
+drwav_seek_origin_current.
+*/
+typedef drwav_bool32 (* drwav_seek_proc)(void* pUserData, int offset, drwav_seek_origin origin);
+
+/*
+Callback for when drwav_init_ex() finds a chunk.
+
+pChunkUserData [in] The user data that was passed to the pChunkUserData parameter of drwav_init_ex() and family.
+onRead [in] A pointer to the function to call when reading.
+onSeek [in] A pointer to the function to call when seeking.
+pReadSeekUserData [in] The user data that was passed to the pReadSeekUserData parameter of drwav_init_ex() and family.
+pChunkHeader [in] A pointer to an object containing basic header information about the chunk. Use this to identify the chunk.
+container [in] Whether or not the WAV file is a RIFF or Wave64 container. If you're unsure of the difference, assume RIFF.
+pFMT [in] A pointer to the object containing the contents of the "fmt" chunk.
+
+Returns the number of bytes read + seeked.
+
+To read data from the chunk, call onRead(), passing in pReadSeekUserData as the first parameter. Do the same for seeking with onSeek(). The return value must
+be the total number of bytes you have read _plus_ seeked.
+
+Use the `container` argument to discriminate the fields in `pChunkHeader->id`. If the container is `drwav_container_riff` or `drwav_container_rf64` you should
+use `id.fourcc`, otherwise you should use `id.guid`.
+
+The `pFMT` parameter can be used to determine the data format of the wave file. Use `drwav_fmt_get_format()` to get the sample format, which will be one of the
+`DR_WAVE_FORMAT_*` identifiers.
+
+The read pointer will be sitting on the first byte after the chunk's header. You must not attempt to read beyond the boundary of the chunk.
+*/
+typedef drwav_uint64 (* drwav_chunk_proc)(void* pChunkUserData, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pReadSeekUserData, const drwav_chunk_header* pChunkHeader, drwav_container container, const drwav_fmt* pFMT);
+
+typedef struct
+{
+ void* pUserData;
+ void* (* onMalloc)(size_t sz, void* pUserData);
+ void* (* onRealloc)(void* p, size_t sz, void* pUserData);
+ void (* onFree)(void* p, void* pUserData);
+} drwav_allocation_callbacks;
+
+/* Structure for internal use. Only used for loaders opened with drwav_init_memory(). */
+typedef struct
+{
+ const drwav_uint8* data;
+ size_t dataSize;
+ size_t currentReadPos;
+} drwav__memory_stream;
+
+/* Structure for internal use. Only used for writers opened with drwav_init_memory_write(). */
+typedef struct
+{
+ void** ppData;
+ size_t* pDataSize;
+ size_t dataSize;
+ size_t dataCapacity;
+ size_t currentWritePos;
+} drwav__memory_stream_write;
+
+typedef struct
+{
+ drwav_container container; /* RIFF, W64. */
+ drwav_uint32 format; /* DR_WAVE_FORMAT_* */
+ drwav_uint32 channels;
+ drwav_uint32 sampleRate;
+ drwav_uint32 bitsPerSample;
+} drwav_data_format;
+
+
+/* See the following for details on the 'smpl' chunk: https://sites.google.com/site/musicgapi/technical-documents/wav-file-format#smpl */
+typedef struct
+{
+ drwav_uint32 cuePointId;
+ drwav_uint32 type;
+ drwav_uint32 start;
+ drwav_uint32 end;
+ drwav_uint32 fraction;
+ drwav_uint32 playCount;
+} drwav_smpl_loop;
+
+ typedef struct
+{
+ drwav_uint32 manufacturer;
+ drwav_uint32 product;
+ drwav_uint32 samplePeriod;
+ drwav_uint32 midiUnityNotes;
+ drwav_uint32 midiPitchFraction;
+ drwav_uint32 smpteFormat;
+ drwav_uint32 smpteOffset;
+ drwav_uint32 numSampleLoops;
+ drwav_uint32 samplerData;
+ drwav_smpl_loop loops[DRWAV_MAX_SMPL_LOOPS];
+} drwav_smpl;
+
+typedef struct
+{
+ /* A pointer to the function to call when more data is needed. */
+ drwav_read_proc onRead;
+
+ /* A pointer to the function to call when data needs to be written. Only used when the drwav object is opened in write mode. */
+ drwav_write_proc onWrite;
+
+ /* A pointer to the function to call when the wav file needs to be seeked. */
+ drwav_seek_proc onSeek;
+
+ /* The user data to pass to callbacks. */
+ void* pUserData;
+
+ /* Allocation callbacks. */
+ drwav_allocation_callbacks allocationCallbacks;
+
+
+ /* Whether or not the WAV file is formatted as a standard RIFF file or W64. */
+ drwav_container container;
+
+
+ /* Structure containing format information exactly as specified by the wav file. */
+ drwav_fmt fmt;
+
+ /* The sample rate. Will be set to something like 44100. */
+ drwav_uint32 sampleRate;
+
+ /* The number of channels. This will be set to 1 for monaural streams, 2 for stereo, etc. */
+ drwav_uint16 channels;
+
+ /* The bits per sample. Will be set to something like 16, 24, etc. */
+ drwav_uint16 bitsPerSample;
+
+ /* Equal to fmt.formatTag, or the value specified by fmt.subFormat if fmt.formatTag is equal to 65534 (WAVE_FORMAT_EXTENSIBLE). */
+ drwav_uint16 translatedFormatTag;
+
+ /* The total number of PCM frames making up the audio data. */
+ drwav_uint64 totalPCMFrameCount;
+
+
+ /* The size in bytes of the data chunk. */
+ drwav_uint64 dataChunkDataSize;
+
+ /* The position in the stream of the first byte of the data chunk. This is used for seeking. */
+ drwav_uint64 dataChunkDataPos;
+
+ /* The number of bytes remaining in the data chunk. */
+ drwav_uint64 bytesRemaining;
+
+
+ /*
+ Only used in sequential write mode. Keeps track of the desired size of the "data" chunk at the point of initialization time. Always
+ set to 0 for non-sequential writes and when the drwav object is opened in read mode. Used for validation.
+ */
+ drwav_uint64 dataChunkDataSizeTargetWrite;
+
+ /* Keeps track of whether or not the wav writer was initialized in sequential mode. */
+ drwav_bool32 isSequentialWrite;
+
+
+ /* smpl chunk. */
+ drwav_smpl smpl;
+
+
+ /* A hack to avoid a DRWAV_MALLOC() when opening a decoder with drwav_init_memory(). */
+ drwav__memory_stream memoryStream;
+ drwav__memory_stream_write memoryStreamWrite;
+
+ /* Generic data for compressed formats. This data is shared across all block-compressed formats. */
+ struct
+ {
+ drwav_uint64 iCurrentPCMFrame; /* The index of the next PCM frame that will be read by drwav_read_*(). This is used with "totalPCMFrameCount" to ensure we don't read excess samples at the end of the last block. */
+ } compressed;
+
+ /* Microsoft ADPCM specific data. */
+ struct
+ {
+ drwav_uint32 bytesRemainingInBlock;
+ drwav_uint16 predictor[2];
+ drwav_int32 delta[2];
+ drwav_int32 cachedFrames[4]; /* Samples are stored in this cache during decoding. */
+ drwav_uint32 cachedFrameCount;
+ drwav_int32 prevFrames[2][2]; /* The previous 2 samples for each channel (2 channels at most). */
+ } msadpcm;
+
+ /* IMA ADPCM specific data. */
+ struct
+ {
+ drwav_uint32 bytesRemainingInBlock;
+ drwav_int32 predictor[2];
+ drwav_int32 stepIndex[2];
+ drwav_int32 cachedFrames[16]; /* Samples are stored in this cache during decoding. */
+ drwav_uint32 cachedFrameCount;
+ } ima;
+} drwav;
+
+
+/*
+Initializes a pre-allocated drwav object for reading.
+
+pWav [out] A pointer to the drwav object being initialized.
+onRead [in] The function to call when data needs to be read from the client.
+onSeek [in] The function to call when the read position of the client data needs to move.
+onChunk [in, optional] The function to call when a chunk is enumerated at initialized time.
+pUserData, pReadSeekUserData [in, optional] A pointer to application defined data that will be passed to onRead and onSeek.
+pChunkUserData [in, optional] A pointer to application defined data that will be passed to onChunk.
+flags [in, optional] A set of flags for controlling how things are loaded.
+
+Returns true if successful; false otherwise.
+
+Close the loader with drwav_uninit().
+
+This is the lowest level function for initializing a WAV file. You can also use drwav_init_file() and drwav_init_memory()
+to open the stream from a file or from a block of memory respectively.
+
+Possible values for flags:
+ DRWAV_SEQUENTIAL: Never perform a backwards seek while loading. This disables the chunk callback and will cause this function
+ to return as soon as the data chunk is found. Any chunks after the data chunk will be ignored.
+
+drwav_init() is equivalent to "drwav_init_ex(pWav, onRead, onSeek, NULL, pUserData, NULL, 0);".
+
+The onChunk callback is not called for the WAVE or FMT chunks. The contents of the FMT chunk can be read from pWav->fmt
+after the function returns.
+
+See also: drwav_init_file(), drwav_init_memory(), drwav_uninit()
+*/
+DRWAV_API drwav_bool32 drwav_init(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_ex(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, drwav_chunk_proc onChunk, void* pReadSeekUserData, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks);
+
+/*
+Initializes a pre-allocated drwav object for writing.
+
+onWrite [in] The function to call when data needs to be written.
+onSeek [in] The function to call when the write position needs to move.
+pUserData [in, optional] A pointer to application defined data that will be passed to onWrite and onSeek.
+
+Returns true if successful; false otherwise.
+
+Close the writer with drwav_uninit().
+
+This is the lowest level function for initializing a WAV file. You can also use drwav_init_file_write() and drwav_init_memory_write()
+to open the stream from a file or from a block of memory respectively.
+
+If the total sample count is known, you can use drwav_init_write_sequential(). This avoids the need for dr_wav to perform
+a post-processing step for storing the total sample count and the size of the data chunk which requires a backwards seek.
+
+See also: drwav_init_file_write(), drwav_init_memory_write(), drwav_uninit()
+*/
+DRWAV_API drwav_bool32 drwav_init_write(drwav* pWav, const drwav_data_format* pFormat, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_write_sequential(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_write_sequential_pcm_frames(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks);
+
+/*
+Utility function to determine the target size of the entire data to be written (including all headers and chunks).
+
+Returns the target size in bytes.
+
+Useful if the application needs to know the size to allocate.
+
+Only writing to the RIFF chunk and one data chunk is currently supported.
+
+See also: drwav_init_write(), drwav_init_file_write(), drwav_init_memory_write()
+*/
+DRWAV_API drwav_uint64 drwav_target_write_size_bytes(const drwav_data_format* pFormat, drwav_uint64 totalSampleCount);
+
+/*
+Uninitializes the given drwav object.
+
+Use this only for objects initialized with drwav_init*() functions (drwav_init(), drwav_init_ex(), drwav_init_write(), drwav_init_write_sequential()).
+*/
+DRWAV_API drwav_result drwav_uninit(drwav* pWav);
+
+
+/*
+Reads raw audio data.
+
+This is the lowest level function for reading audio data. It simply reads the given number of
+bytes of the raw internal sample data.
+
+Consider using drwav_read_pcm_frames_s16(), drwav_read_pcm_frames_s32() or drwav_read_pcm_frames_f32() for
+reading sample data in a consistent format.
+
+pBufferOut can be NULL in which case a seek will be performed.
+
+Returns the number of bytes actually read.
+*/
+DRWAV_API size_t drwav_read_raw(drwav* pWav, size_t bytesToRead, void* pBufferOut);
+
+/*
+Reads up to the specified number of PCM frames from the WAV file.
+
+The output data will be in the file's internal format, converted to native-endian byte order. Use
+drwav_read_pcm_frames_s16/f32/s32() to read data in a specific format.
+
+If the return value is less than <framesToRead> it means the end of the file has been reached or
+you have requested more PCM frames than can possibly fit in the output buffer.
+
+This function will only work when sample data is of a fixed size and uncompressed. If you are
+using a compressed format consider using drwav_read_raw() or drwav_read_pcm_frames_s16/s32/f32().
+
+pBufferOut can be NULL in which case a seek will be performed.
+*/
+DRWAV_API drwav_uint64 drwav_read_pcm_frames(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut);
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_le(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut);
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_be(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut);
+
+/*
+Seeks to the given PCM frame.
+
+Returns true if successful; false otherwise.
+*/
+DRWAV_API drwav_bool32 drwav_seek_to_pcm_frame(drwav* pWav, drwav_uint64 targetFrameIndex);
+
+
+/*
+Writes raw audio data.
+
+Returns the number of bytes actually written. If this differs from bytesToWrite, it indicates an error.
+*/
+DRWAV_API size_t drwav_write_raw(drwav* pWav, size_t bytesToWrite, const void* pData);
+
+/*
+Writes PCM frames.
+
+Returns the number of PCM frames written.
+
+Input samples need to be in native-endian byte order. On big-endian architectures the input data will be converted to
+little-endian. Use drwav_write_raw() to write raw audio data without performing any conversion.
+*/
+DRWAV_API drwav_uint64 drwav_write_pcm_frames(drwav* pWav, drwav_uint64 framesToWrite, const void* pData);
+DRWAV_API drwav_uint64 drwav_write_pcm_frames_le(drwav* pWav, drwav_uint64 framesToWrite, const void* pData);
+DRWAV_API drwav_uint64 drwav_write_pcm_frames_be(drwav* pWav, drwav_uint64 framesToWrite, const void* pData);
+
+
+/* Conversion Utilities */
+#ifndef DR_WAV_NO_CONVERSION_API
+
+/*
+Reads a chunk of audio data and converts it to signed 16-bit PCM samples.
+
+pBufferOut can be NULL in which case a seek will be performed.
+
+Returns the number of PCM frames actually read.
+
+If the return value is less than <framesToRead> it means the end of the file has been reached.
+*/
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut);
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16le(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut);
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16be(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut);
+
+/* Low-level function for converting unsigned 8-bit PCM samples to signed 16-bit PCM samples. */
+DRWAV_API void drwav_u8_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount);
+
+/* Low-level function for converting signed 24-bit PCM samples to signed 16-bit PCM samples. */
+DRWAV_API void drwav_s24_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount);
+
+/* Low-level function for converting signed 32-bit PCM samples to signed 16-bit PCM samples. */
+DRWAV_API void drwav_s32_to_s16(drwav_int16* pOut, const drwav_int32* pIn, size_t sampleCount);
+
+/* Low-level function for converting IEEE 32-bit floating point samples to signed 16-bit PCM samples. */
+DRWAV_API void drwav_f32_to_s16(drwav_int16* pOut, const float* pIn, size_t sampleCount);
+
+/* Low-level function for converting IEEE 64-bit floating point samples to signed 16-bit PCM samples. */
+DRWAV_API void drwav_f64_to_s16(drwav_int16* pOut, const double* pIn, size_t sampleCount);
+
+/* Low-level function for converting A-law samples to signed 16-bit PCM samples. */
+DRWAV_API void drwav_alaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount);
+
+/* Low-level function for converting u-law samples to signed 16-bit PCM samples. */
+DRWAV_API void drwav_mulaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount);
+
+
+/*
+Reads a chunk of audio data and converts it to IEEE 32-bit floating point samples.
+
+pBufferOut can be NULL in which case a seek will be performed.
+
+Returns the number of PCM frames actually read.
+
+If the return value is less than <framesToRead> it means the end of the file has been reached.
+*/
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut);
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32le(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut);
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32be(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut);
+
+/* Low-level function for converting unsigned 8-bit PCM samples to IEEE 32-bit floating point samples. */
+DRWAV_API void drwav_u8_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount);
+
+/* Low-level function for converting signed 16-bit PCM samples to IEEE 32-bit floating point samples. */
+DRWAV_API void drwav_s16_to_f32(float* pOut, const drwav_int16* pIn, size_t sampleCount);
+
+/* Low-level function for converting signed 24-bit PCM samples to IEEE 32-bit floating point samples. */
+DRWAV_API void drwav_s24_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount);
+
+/* Low-level function for converting signed 32-bit PCM samples to IEEE 32-bit floating point samples. */
+DRWAV_API void drwav_s32_to_f32(float* pOut, const drwav_int32* pIn, size_t sampleCount);
+
+/* Low-level function for converting IEEE 64-bit floating point samples to IEEE 32-bit floating point samples. */
+DRWAV_API void drwav_f64_to_f32(float* pOut, const double* pIn, size_t sampleCount);
+
+/* Low-level function for converting A-law samples to IEEE 32-bit floating point samples. */
+DRWAV_API void drwav_alaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount);
+
+/* Low-level function for converting u-law samples to IEEE 32-bit floating point samples. */
+DRWAV_API void drwav_mulaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount);
+
+
+/*
+Reads a chunk of audio data and converts it to signed 32-bit PCM samples.
+
+pBufferOut can be NULL in which case a seek will be performed.
+
+Returns the number of PCM frames actually read.
+
+If the return value is less than <framesToRead> it means the end of the file has been reached.
+*/
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut);
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32le(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut);
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32be(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut);
+
+/* Low-level function for converting unsigned 8-bit PCM samples to signed 32-bit PCM samples. */
+DRWAV_API void drwav_u8_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount);
+
+/* Low-level function for converting signed 16-bit PCM samples to signed 32-bit PCM samples. */
+DRWAV_API void drwav_s16_to_s32(drwav_int32* pOut, const drwav_int16* pIn, size_t sampleCount);
+
+/* Low-level function for converting signed 24-bit PCM samples to signed 32-bit PCM samples. */
+DRWAV_API void drwav_s24_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount);
+
+/* Low-level function for converting IEEE 32-bit floating point samples to signed 32-bit PCM samples. */
+DRWAV_API void drwav_f32_to_s32(drwav_int32* pOut, const float* pIn, size_t sampleCount);
+
+/* Low-level function for converting IEEE 64-bit floating point samples to signed 32-bit PCM samples. */
+DRWAV_API void drwav_f64_to_s32(drwav_int32* pOut, const double* pIn, size_t sampleCount);
+
+/* Low-level function for converting A-law samples to signed 32-bit PCM samples. */
+DRWAV_API void drwav_alaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount);
+
+/* Low-level function for converting u-law samples to signed 32-bit PCM samples. */
+DRWAV_API void drwav_mulaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount);
+
+#endif /* DR_WAV_NO_CONVERSION_API */
+
+
+/* High-Level Convenience Helpers */
+
+#ifndef DR_WAV_NO_STDIO
+/*
+Helper for initializing a wave file for reading using stdio.
+
+This holds the internal FILE object until drwav_uninit() is called. Keep this in mind if you're caching drwav
+objects because the operating system may restrict the number of file handles an application can have open at
+any given time.
+*/
+DRWAV_API drwav_bool32 drwav_init_file(drwav* pWav, const char* filename, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_file_ex(drwav* pWav, const char* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_file_w(drwav* pWav, const wchar_t* filename, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_file_ex_w(drwav* pWav, const wchar_t* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks);
+
+/*
+Helper for initializing a wave file for writing using stdio.
+
+This holds the internal FILE object until drwav_uninit() is called. Keep this in mind if you're caching drwav
+objects because the operating system may restrict the number of file handles an application can have open at
+any given time.
+*/
+DRWAV_API drwav_bool32 drwav_init_file_write(drwav* pWav, const char* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_file_write_sequential(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_file_write_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_file_write_sequential_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks);
+#endif /* DR_WAV_NO_STDIO */
+
+/*
+Helper for initializing a loader from a pre-allocated memory buffer.
+
+This does not create a copy of the data. It is up to the application to ensure the buffer remains valid for
+the lifetime of the drwav object.
+
+The buffer should contain the contents of the entire wave file, not just the sample data.
+*/
+DRWAV_API drwav_bool32 drwav_init_memory(drwav* pWav, const void* data, size_t dataSize, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_memory_ex(drwav* pWav, const void* data, size_t dataSize, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks);
+
+/*
+Helper for initializing a writer which outputs data to a memory buffer.
+
+dr_wav will manage the memory allocations, however it is up to the caller to free the data with drwav_free().
+
+The buffer will remain allocated even after drwav_uninit() is called. The buffer should not be considered valid
+until after drwav_uninit() has been called.
+*/
+DRWAV_API drwav_bool32 drwav_init_memory_write(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_memory_write_sequential(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_memory_write_sequential_pcm_frames(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks);
+
+
+#ifndef DR_WAV_NO_CONVERSION_API
+/*
+Opens and reads an entire wav file in a single operation.
+
+The return value is a heap-allocated buffer containing the audio data. Use drwav_free() to free the buffer.
+*/
+DRWAV_API drwav_int16* drwav_open_and_read_pcm_frames_s16(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API float* drwav_open_and_read_pcm_frames_f32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_int32* drwav_open_and_read_pcm_frames_s32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+#ifndef DR_WAV_NO_STDIO
+/*
+Opens and decodes an entire wav file in a single operation.
+
+The return value is a heap-allocated buffer containing the audio data. Use drwav_free() to free the buffer.
+*/
+DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+#endif
+/*
+Opens and decodes an entire wav file from a block of memory in a single operation.
+
+The return value is a heap-allocated buffer containing the audio data. Use drwav_free() to free the buffer.
+*/
+DRWAV_API drwav_int16* drwav_open_memory_and_read_pcm_frames_s16(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API float* drwav_open_memory_and_read_pcm_frames_f32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_int32* drwav_open_memory_and_read_pcm_frames_s32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+#endif
+
+/* Frees data that was allocated internally by dr_wav. */
+DRWAV_API void drwav_free(void* p, const drwav_allocation_callbacks* pAllocationCallbacks);
+
+/* Converts bytes from a wav stream to a sized type of native endian. */
+DRWAV_API drwav_uint16 drwav_bytes_to_u16(const drwav_uint8* data);
+DRWAV_API drwav_int16 drwav_bytes_to_s16(const drwav_uint8* data);
+DRWAV_API drwav_uint32 drwav_bytes_to_u32(const drwav_uint8* data);
+DRWAV_API drwav_int32 drwav_bytes_to_s32(const drwav_uint8* data);
+DRWAV_API drwav_uint64 drwav_bytes_to_u64(const drwav_uint8* data);
+DRWAV_API drwav_int64 drwav_bytes_to_s64(const drwav_uint8* data);
+
+/* Compares a GUID for the purpose of checking the type of a Wave64 chunk. */
+DRWAV_API drwav_bool32 drwav_guid_equal(const drwav_uint8 a[16], const drwav_uint8 b[16]);
+
+/* Compares a four-character-code for the purpose of checking the type of a RIFF chunk. */
+DRWAV_API drwav_bool32 drwav_fourcc_equal(const drwav_uint8* a, const char* b);
+
+#ifdef __cplusplus
+}
+#endif
+#endif /* dr_wav_h */
+
+
+/************************************************************************************************************************************************************
+ ************************************************************************************************************************************************************
+
+ IMPLEMENTATION
+
+ ************************************************************************************************************************************************************
+ ************************************************************************************************************************************************************/
+#if defined(DR_WAV_IMPLEMENTATION) || defined(DRWAV_IMPLEMENTATION)
+#ifndef dr_wav_c
+#define dr_wav_c
+
+#include <stdlib.h>
+#include <string.h> /* For memcpy(), memset() */
+#include <limits.h> /* For INT_MAX */
+
+#ifndef DR_WAV_NO_STDIO
+#include <stdio.h>
+#include <wchar.h>
+#endif
+
+/* Standard library stuff. */
+#ifndef DRWAV_ASSERT
+#include <assert.h>
+#define DRWAV_ASSERT(expression) assert(expression)
+#endif
+#ifndef DRWAV_MALLOC
+#define DRWAV_MALLOC(sz) malloc((sz))
+#endif
+#ifndef DRWAV_REALLOC
+#define DRWAV_REALLOC(p, sz) realloc((p), (sz))
+#endif
+#ifndef DRWAV_FREE
+#define DRWAV_FREE(p) free((p))
+#endif
+#ifndef DRWAV_COPY_MEMORY
+#define DRWAV_COPY_MEMORY(dst, src, sz) memcpy((dst), (src), (sz))
+#endif
+#ifndef DRWAV_ZERO_MEMORY
+#define DRWAV_ZERO_MEMORY(p, sz) memset((p), 0, (sz))
+#endif
+#ifndef DRWAV_ZERO_OBJECT
+#define DRWAV_ZERO_OBJECT(p) DRWAV_ZERO_MEMORY((p), sizeof(*p))
+#endif
+
+#define drwav_countof(x) (sizeof(x) / sizeof(x[0]))
+#define drwav_align(x, a) ((((x) + (a) - 1) / (a)) * (a))
+#define drwav_min(a, b) (((a) < (b)) ? (a) : (b))
+#define drwav_max(a, b) (((a) > (b)) ? (a) : (b))
+#define drwav_clamp(x, lo, hi) (drwav_max((lo), drwav_min((hi), (x))))
+
+#define DRWAV_MAX_SIMD_VECTOR_SIZE 64 /* 64 for AVX-512 in the future. */
+
+/* CPU architecture. */
+#if defined(__x86_64__) || defined(_M_X64)
+ #define DRWAV_X64
+#elif defined(__i386) || defined(_M_IX86)
+ #define DRWAV_X86
+#elif defined(__arm__) || defined(_M_ARM)
+ #define DRWAV_ARM
+#endif
+
+#ifdef _MSC_VER
+ #define DRWAV_INLINE __forceinline
+#elif defined(__GNUC__)
+ /*
+ I've had a bug report where GCC is emitting warnings about functions possibly not being inlineable. This warning happens when
+ the __attribute__((always_inline)) attribute is defined without an "inline" statement. I think therefore there must be some
+ case where "__inline__" is not always defined, thus the compiler emitting these warnings. When using -std=c89 or -ansi on the
+ command line, we cannot use the "inline" keyword and instead need to use "__inline__". In an attempt to work around this issue
+ I am using "__inline__" only when we're compiling in strict ANSI mode.
+ */
+ #if defined(__STRICT_ANSI__)
+ #define DRWAV_INLINE __inline__ __attribute__((always_inline))
+ #else
+ #define DRWAV_INLINE inline __attribute__((always_inline))
+ #endif
+#elif defined(__WATCOMC__)
+ #define DRWAV_INLINE __inline
+#else
+ #define DRWAV_INLINE
+#endif
+
+#if defined(SIZE_MAX)
+ #define DRWAV_SIZE_MAX SIZE_MAX
+#else
+ #if defined(_WIN64) || defined(_LP64) || defined(__LP64__)
+ #define DRWAV_SIZE_MAX ((drwav_uint64)0xFFFFFFFFFFFFFFFF)
+ #else
+ #define DRWAV_SIZE_MAX 0xFFFFFFFF
+ #endif
+#endif
+
+#if defined(_MSC_VER) && _MSC_VER >= 1400
+ #define DRWAV_HAS_BYTESWAP16_INTRINSIC
+ #define DRWAV_HAS_BYTESWAP32_INTRINSIC
+ #define DRWAV_HAS_BYTESWAP64_INTRINSIC
+#elif defined(__clang__)
+ #if defined(__has_builtin)
+ #if __has_builtin(__builtin_bswap16)
+ #define DRWAV_HAS_BYTESWAP16_INTRINSIC
+ #endif
+ #if __has_builtin(__builtin_bswap32)
+ #define DRWAV_HAS_BYTESWAP32_INTRINSIC
+ #endif
+ #if __has_builtin(__builtin_bswap64)
+ #define DRWAV_HAS_BYTESWAP64_INTRINSIC
+ #endif
+ #endif
+#elif defined(__GNUC__)
+ #if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3))
+ #define DRWAV_HAS_BYTESWAP32_INTRINSIC
+ #define DRWAV_HAS_BYTESWAP64_INTRINSIC
+ #endif
+ #if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))
+ #define DRWAV_HAS_BYTESWAP16_INTRINSIC
+ #endif
+#endif
+
+DRWAV_API void drwav_version(drwav_uint32* pMajor, drwav_uint32* pMinor, drwav_uint32* pRevision)
+{
+ if (pMajor) {
+ *pMajor = DRWAV_VERSION_MAJOR;
+ }
+
+ if (pMinor) {
+ *pMinor = DRWAV_VERSION_MINOR;
+ }
+
+ if (pRevision) {
+ *pRevision = DRWAV_VERSION_REVISION;
+ }
+}
+
+DRWAV_API const char* drwav_version_string(void)
+{
+ return DRWAV_VERSION_STRING;
+}
+
+/*
+These limits are used for basic validation when initializing the decoder. If you exceed these limits, first of all: what on Earth are
+you doing?! (Let me know, I'd be curious!) Second, you can adjust these by #define-ing them before the dr_wav implementation.
+*/
+#ifndef DRWAV_MAX_SAMPLE_RATE
+#define DRWAV_MAX_SAMPLE_RATE 384000
+#endif
+#ifndef DRWAV_MAX_CHANNELS
+#define DRWAV_MAX_CHANNELS 256
+#endif
+#ifndef DRWAV_MAX_BITS_PER_SAMPLE
+#define DRWAV_MAX_BITS_PER_SAMPLE 64
+#endif
+
+static const drwav_uint8 drwavGUID_W64_RIFF[16] = {0x72,0x69,0x66,0x66, 0x2E,0x91, 0xCF,0x11, 0xA5,0xD6, 0x28,0xDB,0x04,0xC1,0x00,0x00}; /* 66666972-912E-11CF-A5D6-28DB04C10000 */
+static const drwav_uint8 drwavGUID_W64_WAVE[16] = {0x77,0x61,0x76,0x65, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; /* 65766177-ACF3-11D3-8CD1-00C04F8EDB8A */
+/*static const drwav_uint8 drwavGUID_W64_JUNK[16] = {0x6A,0x75,0x6E,0x6B, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A};*/ /* 6B6E756A-ACF3-11D3-8CD1-00C04F8EDB8A */
+static const drwav_uint8 drwavGUID_W64_FMT [16] = {0x66,0x6D,0x74,0x20, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; /* 20746D66-ACF3-11D3-8CD1-00C04F8EDB8A */
+static const drwav_uint8 drwavGUID_W64_FACT[16] = {0x66,0x61,0x63,0x74, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; /* 74636166-ACF3-11D3-8CD1-00C04F8EDB8A */
+static const drwav_uint8 drwavGUID_W64_DATA[16] = {0x64,0x61,0x74,0x61, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; /* 61746164-ACF3-11D3-8CD1-00C04F8EDB8A */
+static const drwav_uint8 drwavGUID_W64_SMPL[16] = {0x73,0x6D,0x70,0x6C, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; /* 6C706D73-ACF3-11D3-8CD1-00C04F8EDB8A */
+
+static DRWAV_INLINE drwav_bool32 drwav__guid_equal(const drwav_uint8 a[16], const drwav_uint8 b[16])
+{
+ int i;
+ for (i = 0; i < 16; i += 1) {
+ if (a[i] != b[i]) {
+ return DRWAV_FALSE;
+ }
+ }
+
+ return DRWAV_TRUE;
+}
+
+static DRWAV_INLINE drwav_bool32 drwav__fourcc_equal(const drwav_uint8* a, const char* b)
+{
+ return
+ a[0] == b[0] &&
+ a[1] == b[1] &&
+ a[2] == b[2] &&
+ a[3] == b[3];
+}
+
+
+
+static DRWAV_INLINE int drwav__is_little_endian(void)
+{
+#if defined(DRWAV_X86) || defined(DRWAV_X64)
+ return DRWAV_TRUE;
+#elif defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && __BYTE_ORDER == __LITTLE_ENDIAN
+ return DRWAV_TRUE;
+#else
+ int n = 1;
+ return (*(char*)&n) == 1;
+#endif
+}
+
+static DRWAV_INLINE drwav_uint16 drwav__bytes_to_u16(const drwav_uint8* data)
+{
+ return (data[0] << 0) | (data[1] << 8);
+}
+
+static DRWAV_INLINE drwav_int16 drwav__bytes_to_s16(const drwav_uint8* data)
+{
+ return (short)drwav__bytes_to_u16(data);
+}
+
+static DRWAV_INLINE drwav_uint32 drwav__bytes_to_u32(const drwav_uint8* data)
+{
+ return (data[0] << 0) | (data[1] << 8) | (data[2] << 16) | (data[3] << 24);
+}
+
+static DRWAV_INLINE drwav_int32 drwav__bytes_to_s32(const drwav_uint8* data)
+{
+ return (drwav_int32)drwav__bytes_to_u32(data);
+}
+
+static DRWAV_INLINE drwav_uint64 drwav__bytes_to_u64(const drwav_uint8* data)
+{
+ return
+ ((drwav_uint64)data[0] << 0) | ((drwav_uint64)data[1] << 8) | ((drwav_uint64)data[2] << 16) | ((drwav_uint64)data[3] << 24) |
+ ((drwav_uint64)data[4] << 32) | ((drwav_uint64)data[5] << 40) | ((drwav_uint64)data[6] << 48) | ((drwav_uint64)data[7] << 56);
+}
+
+static DRWAV_INLINE drwav_int64 drwav__bytes_to_s64(const drwav_uint8* data)
+{
+ return (drwav_int64)drwav__bytes_to_u64(data);
+}
+
+static DRWAV_INLINE void drwav__bytes_to_guid(const drwav_uint8* data, drwav_uint8* guid)
+{
+ int i;
+ for (i = 0; i < 16; ++i) {
+ guid[i] = data[i];
+ }
+}
+
+
+static DRWAV_INLINE drwav_uint16 drwav__bswap16(drwav_uint16 n)
+{
+#ifdef DRWAV_HAS_BYTESWAP16_INTRINSIC
+ #if defined(_MSC_VER)
+ return _byteswap_ushort(n);
+ #elif defined(__GNUC__) || defined(__clang__)
+ return __builtin_bswap16(n);
+ #else
+ #error "This compiler does not support the byte swap intrinsic."
+ #endif
+#else
+ return ((n & 0xFF00) >> 8) |
+ ((n & 0x00FF) << 8);
+#endif
+}
+
+static DRWAV_INLINE drwav_uint32 drwav__bswap32(drwav_uint32 n)
+{
+#ifdef DRWAV_HAS_BYTESWAP32_INTRINSIC
+ #if defined(_MSC_VER)
+ return _byteswap_ulong(n);
+ #elif defined(__GNUC__) || defined(__clang__)
+ #if defined(DRWAV_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 6) && !defined(DRWAV_64BIT) /* <-- 64-bit inline assembly has not been tested, so disabling for now. */
+ /* Inline assembly optimized implementation for ARM. In my testing, GCC does not generate optimized code with __builtin_bswap32(). */
+ drwav_uint32 r;
+ __asm__ __volatile__ (
+ #if defined(DRWAV_64BIT)
+ "rev %w[out], %w[in]" : [out]"=r"(r) : [in]"r"(n) /* <-- This is untested. If someone in the community could test this, that would be appreciated! */
+ #else
+ "rev %[out], %[in]" : [out]"=r"(r) : [in]"r"(n)
+ #endif
+ );
+ return r;
+ #else
+ return __builtin_bswap32(n);
+ #endif
+ #else
+ #error "This compiler does not support the byte swap intrinsic."
+ #endif
+#else
+ return ((n & 0xFF000000) >> 24) |
+ ((n & 0x00FF0000) >> 8) |
+ ((n & 0x0000FF00) << 8) |
+ ((n & 0x000000FF) << 24);
+#endif
+}
+
+static DRWAV_INLINE drwav_uint64 drwav__bswap64(drwav_uint64 n)
+{
+#ifdef DRWAV_HAS_BYTESWAP64_INTRINSIC
+ #if defined(_MSC_VER)
+ return _byteswap_uint64(n);
+ #elif defined(__GNUC__) || defined(__clang__)
+ return __builtin_bswap64(n);
+ #else
+ #error "This compiler does not support the byte swap intrinsic."
+ #endif
+#else
+ /* Weird "<< 32" bitshift is required for C89 because it doesn't support 64-bit constants. Should be optimized out by a good compiler. */
+ return ((n & ((drwav_uint64)0xFF000000 << 32)) >> 56) |
+ ((n & ((drwav_uint64)0x00FF0000 << 32)) >> 40) |
+ ((n & ((drwav_uint64)0x0000FF00 << 32)) >> 24) |
+ ((n & ((drwav_uint64)0x000000FF << 32)) >> 8) |
+ ((n & ((drwav_uint64)0xFF000000 )) << 8) |
+ ((n & ((drwav_uint64)0x00FF0000 )) << 24) |
+ ((n & ((drwav_uint64)0x0000FF00 )) << 40) |
+ ((n & ((drwav_uint64)0x000000FF )) << 56);
+#endif
+}
+
+
+static DRWAV_INLINE drwav_int16 drwav__bswap_s16(drwav_int16 n)
+{
+ return (drwav_int16)drwav__bswap16((drwav_uint16)n);
+}
+
+static DRWAV_INLINE void drwav__bswap_samples_s16(drwav_int16* pSamples, drwav_uint64 sampleCount)
+{
+ drwav_uint64 iSample;
+ for (iSample = 0; iSample < sampleCount; iSample += 1) {
+ pSamples[iSample] = drwav__bswap_s16(pSamples[iSample]);
+ }
+}
+
+
+static DRWAV_INLINE void drwav__bswap_s24(drwav_uint8* p)
+{
+ drwav_uint8 t;
+ t = p[0];
+ p[0] = p[2];
+ p[2] = t;
+}
+
+static DRWAV_INLINE void drwav__bswap_samples_s24(drwav_uint8* pSamples, drwav_uint64 sampleCount)
+{
+ drwav_uint64 iSample;
+ for (iSample = 0; iSample < sampleCount; iSample += 1) {
+ drwav_uint8* pSample = pSamples + (iSample*3);
+ drwav__bswap_s24(pSample);
+ }
+}
+
+
+static DRWAV_INLINE drwav_int32 drwav__bswap_s32(drwav_int32 n)
+{
+ return (drwav_int32)drwav__bswap32((drwav_uint32)n);
+}
+
+static DRWAV_INLINE void drwav__bswap_samples_s32(drwav_int32* pSamples, drwav_uint64 sampleCount)
+{
+ drwav_uint64 iSample;
+ for (iSample = 0; iSample < sampleCount; iSample += 1) {
+ pSamples[iSample] = drwav__bswap_s32(pSamples[iSample]);
+ }
+}
+
+
+static DRWAV_INLINE float drwav__bswap_f32(float n)
+{
+ union {
+ drwav_uint32 i;
+ float f;
+ } x;
+ x.f = n;
+ x.i = drwav__bswap32(x.i);
+
+ return x.f;
+}
+
+static DRWAV_INLINE void drwav__bswap_samples_f32(float* pSamples, drwav_uint64 sampleCount)
+{
+ drwav_uint64 iSample;
+ for (iSample = 0; iSample < sampleCount; iSample += 1) {
+ pSamples[iSample] = drwav__bswap_f32(pSamples[iSample]);
+ }
+}
+
+
+static DRWAV_INLINE double drwav__bswap_f64(double n)
+{
+ union {
+ drwav_uint64 i;
+ double f;
+ } x;
+ x.f = n;
+ x.i = drwav__bswap64(x.i);
+
+ return x.f;
+}
+
+static DRWAV_INLINE void drwav__bswap_samples_f64(double* pSamples, drwav_uint64 sampleCount)
+{
+ drwav_uint64 iSample;
+ for (iSample = 0; iSample < sampleCount; iSample += 1) {
+ pSamples[iSample] = drwav__bswap_f64(pSamples[iSample]);
+ }
+}
+
+
+static DRWAV_INLINE void drwav__bswap_samples_pcm(void* pSamples, drwav_uint64 sampleCount, drwav_uint32 bytesPerSample)
+{
+ /* Assumes integer PCM. Floating point PCM is done in drwav__bswap_samples_ieee(). */
+ switch (bytesPerSample)
+ {
+ case 2: /* s16, s12 (loosely packed) */
+ {
+ drwav__bswap_samples_s16((drwav_int16*)pSamples, sampleCount);
+ } break;
+ case 3: /* s24 */
+ {
+ drwav__bswap_samples_s24((drwav_uint8*)pSamples, sampleCount);
+ } break;
+ case 4: /* s32 */
+ {
+ drwav__bswap_samples_s32((drwav_int32*)pSamples, sampleCount);
+ } break;
+ default:
+ {
+ /* Unsupported format. */
+ DRWAV_ASSERT(DRWAV_FALSE);
+ } break;
+ }
+}
+
+static DRWAV_INLINE void drwav__bswap_samples_ieee(void* pSamples, drwav_uint64 sampleCount, drwav_uint32 bytesPerSample)
+{
+ switch (bytesPerSample)
+ {
+ #if 0 /* Contributions welcome for f16 support. */
+ case 2: /* f16 */
+ {
+ drwav__bswap_samples_f16((drwav_float16*)pSamples, sampleCount);
+ } break;
+ #endif
+ case 4: /* f32 */
+ {
+ drwav__bswap_samples_f32((float*)pSamples, sampleCount);
+ } break;
+ case 8: /* f64 */
+ {
+ drwav__bswap_samples_f64((double*)pSamples, sampleCount);
+ } break;
+ default:
+ {
+ /* Unsupported format. */
+ DRWAV_ASSERT(DRWAV_FALSE);
+ } break;
+ }
+}
+
+static DRWAV_INLINE void drwav__bswap_samples(void* pSamples, drwav_uint64 sampleCount, drwav_uint32 bytesPerSample, drwav_uint16 format)
+{
+ switch (format)
+ {
+ case DR_WAVE_FORMAT_PCM:
+ {
+ drwav__bswap_samples_pcm(pSamples, sampleCount, bytesPerSample);
+ } break;
+
+ case DR_WAVE_FORMAT_IEEE_FLOAT:
+ {
+ drwav__bswap_samples_ieee(pSamples, sampleCount, bytesPerSample);
+ } break;
+
+ case DR_WAVE_FORMAT_ALAW:
+ case DR_WAVE_FORMAT_MULAW:
+ {
+ drwav__bswap_samples_s16((drwav_int16*)pSamples, sampleCount);
+ } break;
+
+ case DR_WAVE_FORMAT_ADPCM:
+ case DR_WAVE_FORMAT_DVI_ADPCM:
+ default:
+ {
+ /* Unsupported format. */
+ DRWAV_ASSERT(DRWAV_FALSE);
+ } break;
+ }
+}
+
+
+static void* drwav__malloc_default(size_t sz, void* pUserData)
+{
+ (void)pUserData;
+ return DRWAV_MALLOC(sz);
+}
+
+static void* drwav__realloc_default(void* p, size_t sz, void* pUserData)
+{
+ (void)pUserData;
+ return DRWAV_REALLOC(p, sz);
+}
+
+static void drwav__free_default(void* p, void* pUserData)
+{
+ (void)pUserData;
+ DRWAV_FREE(p);
+}
+
+
+static void* drwav__malloc_from_callbacks(size_t sz, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pAllocationCallbacks == NULL) {
+ return NULL;
+ }
+
+ if (pAllocationCallbacks->onMalloc != NULL) {
+ return pAllocationCallbacks->onMalloc(sz, pAllocationCallbacks->pUserData);
+ }
+
+ /* Try using realloc(). */
+ if (pAllocationCallbacks->onRealloc != NULL) {
+ return pAllocationCallbacks->onRealloc(NULL, sz, pAllocationCallbacks->pUserData);
+ }
+
+ return NULL;
+}
+
+static void* drwav__realloc_from_callbacks(void* p, size_t szNew, size_t szOld, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pAllocationCallbacks == NULL) {
+ return NULL;
+ }
+
+ if (pAllocationCallbacks->onRealloc != NULL) {
+ return pAllocationCallbacks->onRealloc(p, szNew, pAllocationCallbacks->pUserData);
+ }
+
+ /* Try emulating realloc() in terms of malloc()/free(). */
+ if (pAllocationCallbacks->onMalloc != NULL && pAllocationCallbacks->onFree != NULL) {
+ void* p2;
+
+ p2 = pAllocationCallbacks->onMalloc(szNew, pAllocationCallbacks->pUserData);
+ if (p2 == NULL) {
+ return NULL;
+ }
+
+ if (p != NULL) {
+ DRWAV_COPY_MEMORY(p2, p, szOld);
+ pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData);
+ }
+
+ return p2;
+ }
+
+ return NULL;
+}
+
+static void drwav__free_from_callbacks(void* p, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (p == NULL || pAllocationCallbacks == NULL) {
+ return;
+ }
+
+ if (pAllocationCallbacks->onFree != NULL) {
+ pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData);
+ }
+}
+
+
+static drwav_allocation_callbacks drwav_copy_allocation_callbacks_or_defaults(const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pAllocationCallbacks != NULL) {
+ /* Copy. */
+ return *pAllocationCallbacks;
+ } else {
+ /* Defaults. */
+ drwav_allocation_callbacks allocationCallbacks;
+ allocationCallbacks.pUserData = NULL;
+ allocationCallbacks.onMalloc = drwav__malloc_default;
+ allocationCallbacks.onRealloc = drwav__realloc_default;
+ allocationCallbacks.onFree = drwav__free_default;
+ return allocationCallbacks;
+ }
+}
+
+
+static DRWAV_INLINE drwav_bool32 drwav__is_compressed_format_tag(drwav_uint16 formatTag)
+{
+ return
+ formatTag == DR_WAVE_FORMAT_ADPCM ||
+ formatTag == DR_WAVE_FORMAT_DVI_ADPCM;
+}
+
+static unsigned int drwav__chunk_padding_size_riff(drwav_uint64 chunkSize)
+{
+ return (unsigned int)(chunkSize % 2);
+}
+
+static unsigned int drwav__chunk_padding_size_w64(drwav_uint64 chunkSize)
+{
+ return (unsigned int)(chunkSize % 8);
+}
+
+static drwav_uint64 drwav_read_pcm_frames_s16__msadpcm(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut);
+static drwav_uint64 drwav_read_pcm_frames_s16__ima(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut);
+static drwav_bool32 drwav_init_write__internal(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount);
+
+static drwav_result drwav__read_chunk_header(drwav_read_proc onRead, void* pUserData, drwav_container container, drwav_uint64* pRunningBytesReadOut, drwav_chunk_header* pHeaderOut)
+{
+ if (container == drwav_container_riff || container == drwav_container_rf64) {
+ drwav_uint8 sizeInBytes[4];
+
+ if (onRead(pUserData, pHeaderOut->id.fourcc, 4) != 4) {
+ return DRWAV_AT_END;
+ }
+
+ if (onRead(pUserData, sizeInBytes, 4) != 4) {
+ return DRWAV_INVALID_FILE;
+ }
+
+ pHeaderOut->sizeInBytes = drwav__bytes_to_u32(sizeInBytes);
+ pHeaderOut->paddingSize = drwav__chunk_padding_size_riff(pHeaderOut->sizeInBytes);
+ *pRunningBytesReadOut += 8;
+ } else {
+ drwav_uint8 sizeInBytes[8];
+
+ if (onRead(pUserData, pHeaderOut->id.guid, 16) != 16) {
+ return DRWAV_AT_END;
+ }
+
+ if (onRead(pUserData, sizeInBytes, 8) != 8) {
+ return DRWAV_INVALID_FILE;
+ }
+
+ pHeaderOut->sizeInBytes = drwav__bytes_to_u64(sizeInBytes) - 24; /* <-- Subtract 24 because w64 includes the size of the header. */
+ pHeaderOut->paddingSize = drwav__chunk_padding_size_w64(pHeaderOut->sizeInBytes);
+ *pRunningBytesReadOut += 24;
+ }
+
+ return DRWAV_SUCCESS;
+}
+
+static drwav_bool32 drwav__seek_forward(drwav_seek_proc onSeek, drwav_uint64 offset, void* pUserData)
+{
+ drwav_uint64 bytesRemainingToSeek = offset;
+ while (bytesRemainingToSeek > 0) {
+ if (bytesRemainingToSeek > 0x7FFFFFFF) {
+ if (!onSeek(pUserData, 0x7FFFFFFF, drwav_seek_origin_current)) {
+ return DRWAV_FALSE;
+ }
+ bytesRemainingToSeek -= 0x7FFFFFFF;
+ } else {
+ if (!onSeek(pUserData, (int)bytesRemainingToSeek, drwav_seek_origin_current)) {
+ return DRWAV_FALSE;
+ }
+ bytesRemainingToSeek = 0;
+ }
+ }
+
+ return DRWAV_TRUE;
+}
+
+static drwav_bool32 drwav__seek_from_start(drwav_seek_proc onSeek, drwav_uint64 offset, void* pUserData)
+{
+ if (offset <= 0x7FFFFFFF) {
+ return onSeek(pUserData, (int)offset, drwav_seek_origin_start);
+ }
+
+ /* Larger than 32-bit seek. */
+ if (!onSeek(pUserData, 0x7FFFFFFF, drwav_seek_origin_start)) {
+ return DRWAV_FALSE;
+ }
+ offset -= 0x7FFFFFFF;
+
+ for (;;) {
+ if (offset <= 0x7FFFFFFF) {
+ return onSeek(pUserData, (int)offset, drwav_seek_origin_current);
+ }
+
+ if (!onSeek(pUserData, 0x7FFFFFFF, drwav_seek_origin_current)) {
+ return DRWAV_FALSE;
+ }
+ offset -= 0x7FFFFFFF;
+ }
+
+ /* Should never get here. */
+ /*return DRWAV_TRUE; */
+}
+
+
+static drwav_bool32 drwav__read_fmt(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, drwav_container container, drwav_uint64* pRunningBytesReadOut, drwav_fmt* fmtOut)
+{
+ drwav_chunk_header header;
+ drwav_uint8 fmt[16];
+
+ if (drwav__read_chunk_header(onRead, pUserData, container, pRunningBytesReadOut, &header) != DRWAV_SUCCESS) {
+ return DRWAV_FALSE;
+ }
+
+
+ /* Skip non-fmt chunks. */
+ while (((container == drwav_container_riff || container == drwav_container_rf64) && !drwav__fourcc_equal(header.id.fourcc, "fmt ")) || (container == drwav_container_w64 && !drwav__guid_equal(header.id.guid, drwavGUID_W64_FMT))) {
+ if (!drwav__seek_forward(onSeek, header.sizeInBytes + header.paddingSize, pUserData)) {
+ return DRWAV_FALSE;
+ }
+ *pRunningBytesReadOut += header.sizeInBytes + header.paddingSize;
+
+ /* Try the next header. */
+ if (drwav__read_chunk_header(onRead, pUserData, container, pRunningBytesReadOut, &header) != DRWAV_SUCCESS) {
+ return DRWAV_FALSE;
+ }
+ }
+
+
+ /* Validation. */
+ if (container == drwav_container_riff || container == drwav_container_rf64) {
+ if (!drwav__fourcc_equal(header.id.fourcc, "fmt ")) {
+ return DRWAV_FALSE;
+ }
+ } else {
+ if (!drwav__guid_equal(header.id.guid, drwavGUID_W64_FMT)) {
+ return DRWAV_FALSE;
+ }
+ }
+
+
+ if (onRead(pUserData, fmt, sizeof(fmt)) != sizeof(fmt)) {
+ return DRWAV_FALSE;
+ }
+ *pRunningBytesReadOut += sizeof(fmt);
+
+ fmtOut->formatTag = drwav__bytes_to_u16(fmt + 0);
+ fmtOut->channels = drwav__bytes_to_u16(fmt + 2);
+ fmtOut->sampleRate = drwav__bytes_to_u32(fmt + 4);
+ fmtOut->avgBytesPerSec = drwav__bytes_to_u32(fmt + 8);
+ fmtOut->blockAlign = drwav__bytes_to_u16(fmt + 12);
+ fmtOut->bitsPerSample = drwav__bytes_to_u16(fmt + 14);
+
+ fmtOut->extendedSize = 0;
+ fmtOut->validBitsPerSample = 0;
+ fmtOut->channelMask = 0;
+ memset(fmtOut->subFormat, 0, sizeof(fmtOut->subFormat));
+
+ if (header.sizeInBytes > 16) {
+ drwav_uint8 fmt_cbSize[2];
+ int bytesReadSoFar = 0;
+
+ if (onRead(pUserData, fmt_cbSize, sizeof(fmt_cbSize)) != sizeof(fmt_cbSize)) {
+ return DRWAV_FALSE; /* Expecting more data. */
+ }
+ *pRunningBytesReadOut += sizeof(fmt_cbSize);
+
+ bytesReadSoFar = 18;
+
+ fmtOut->extendedSize = drwav__bytes_to_u16(fmt_cbSize);
+ if (fmtOut->extendedSize > 0) {
+ /* Simple validation. */
+ if (fmtOut->formatTag == DR_WAVE_FORMAT_EXTENSIBLE) {
+ if (fmtOut->extendedSize != 22) {
+ return DRWAV_FALSE;
+ }
+ }
+
+ if (fmtOut->formatTag == DR_WAVE_FORMAT_EXTENSIBLE) {
+ drwav_uint8 fmtext[22];
+ if (onRead(pUserData, fmtext, fmtOut->extendedSize) != fmtOut->extendedSize) {
+ return DRWAV_FALSE; /* Expecting more data. */
+ }
+
+ fmtOut->validBitsPerSample = drwav__bytes_to_u16(fmtext + 0);
+ fmtOut->channelMask = drwav__bytes_to_u32(fmtext + 2);
+ drwav__bytes_to_guid(fmtext + 6, fmtOut->subFormat);
+ } else {
+ if (!onSeek(pUserData, fmtOut->extendedSize, drwav_seek_origin_current)) {
+ return DRWAV_FALSE;
+ }
+ }
+ *pRunningBytesReadOut += fmtOut->extendedSize;
+
+ bytesReadSoFar += fmtOut->extendedSize;
+ }
+
+ /* Seek past any leftover bytes. For w64 the leftover will be defined based on the chunk size. */
+ if (!onSeek(pUserData, (int)(header.sizeInBytes - bytesReadSoFar), drwav_seek_origin_current)) {
+ return DRWAV_FALSE;
+ }
+ *pRunningBytesReadOut += (header.sizeInBytes - bytesReadSoFar);
+ }
+
+ if (header.paddingSize > 0) {
+ if (!onSeek(pUserData, header.paddingSize, drwav_seek_origin_current)) {
+ return DRWAV_FALSE;
+ }
+ *pRunningBytesReadOut += header.paddingSize;
+ }
+
+ return DRWAV_TRUE;
+}
+
+
+static size_t drwav__on_read(drwav_read_proc onRead, void* pUserData, void* pBufferOut, size_t bytesToRead, drwav_uint64* pCursor)
+{
+ size_t bytesRead;
+
+ DRWAV_ASSERT(onRead != NULL);
+ DRWAV_ASSERT(pCursor != NULL);
+
+ bytesRead = onRead(pUserData, pBufferOut, bytesToRead);
+ *pCursor += bytesRead;
+ return bytesRead;
+}
+
+#if 0
+static drwav_bool32 drwav__on_seek(drwav_seek_proc onSeek, void* pUserData, int offset, drwav_seek_origin origin, drwav_uint64* pCursor)
+{
+ DRWAV_ASSERT(onSeek != NULL);
+ DRWAV_ASSERT(pCursor != NULL);
+
+ if (!onSeek(pUserData, offset, origin)) {
+ return DRWAV_FALSE;
+ }
+
+ if (origin == drwav_seek_origin_start) {
+ *pCursor = offset;
+ } else {
+ *pCursor += offset;
+ }
+
+ return DRWAV_TRUE;
+}
+#endif
+
+
+
+static drwav_uint32 drwav_get_bytes_per_pcm_frame(drwav* pWav)
+{
+ /*
+ The bytes per frame is a bit ambiguous. It can be either be based on the bits per sample, or the block align. The way I'm doing it here
+ is that if the bits per sample is a multiple of 8, use floor(bitsPerSample*channels/8), otherwise fall back to the block align.
+ */
+ if ((pWav->bitsPerSample & 0x7) == 0) {
+ /* Bits per sample is a multiple of 8. */
+ return (pWav->bitsPerSample * pWav->fmt.channels) >> 3;
+ } else {
+ return pWav->fmt.blockAlign;
+ }
+}
+
+DRWAV_API drwav_uint16 drwav_fmt_get_format(const drwav_fmt* pFMT)
+{
+ if (pFMT == NULL) {
+ return 0;
+ }
+
+ if (pFMT->formatTag != DR_WAVE_FORMAT_EXTENSIBLE) {
+ return pFMT->formatTag;
+ } else {
+ return drwav__bytes_to_u16(pFMT->subFormat); /* Only the first two bytes are required. */
+ }
+}
+
+static drwav_bool32 drwav_preinit(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pReadSeekUserData, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pWav == NULL || onRead == NULL || onSeek == NULL) {
+ return DRWAV_FALSE;
+ }
+
+ DRWAV_ZERO_MEMORY(pWav, sizeof(*pWav));
+ pWav->onRead = onRead;
+ pWav->onSeek = onSeek;
+ pWav->pUserData = pReadSeekUserData;
+ pWav->allocationCallbacks = drwav_copy_allocation_callbacks_or_defaults(pAllocationCallbacks);
+
+ if (pWav->allocationCallbacks.onFree == NULL || (pWav->allocationCallbacks.onMalloc == NULL && pWav->allocationCallbacks.onRealloc == NULL)) {
+ return DRWAV_FALSE; /* Invalid allocation callbacks. */
+ }
+
+ return DRWAV_TRUE;
+}
+
+static drwav_bool32 drwav_init__internal(drwav* pWav, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags)
+{
+ /* This function assumes drwav_preinit() has been called beforehand. */
+
+ drwav_uint64 cursor; /* <-- Keeps track of the byte position so we can seek to specific locations. */
+ drwav_bool32 sequential;
+ drwav_uint8 riff[4];
+ drwav_fmt fmt;
+ unsigned short translatedFormatTag;
+ drwav_bool32 foundDataChunk;
+ drwav_uint64 dataChunkSize = 0; /* <-- Important! Don't explicitly set this to 0 anywhere else. Calculation of the size of the data chunk is performed in different paths depending on the container. */
+ drwav_uint64 sampleCountFromFactChunk = 0; /* Same as dataChunkSize - make sure this is the only place this is initialized to 0. */
+ drwav_uint64 chunkSize;
+
+ cursor = 0;
+ sequential = (flags & DRWAV_SEQUENTIAL) != 0;
+
+ /* The first 4 bytes should be the RIFF identifier. */
+ if (drwav__on_read(pWav->onRead, pWav->pUserData, riff, sizeof(riff), &cursor) != sizeof(riff)) {
+ return DRWAV_FALSE;
+ }
+
+ /*
+ The first 4 bytes can be used to identify the container. For RIFF files it will start with "RIFF" and for
+ w64 it will start with "riff".
+ */
+ if (drwav__fourcc_equal(riff, "RIFF")) {
+ pWav->container = drwav_container_riff;
+ } else if (drwav__fourcc_equal(riff, "riff")) {
+ int i;
+ drwav_uint8 riff2[12];
+
+ pWav->container = drwav_container_w64;
+
+ /* Check the rest of the GUID for validity. */
+ if (drwav__on_read(pWav->onRead, pWav->pUserData, riff2, sizeof(riff2), &cursor) != sizeof(riff2)) {
+ return DRWAV_FALSE;
+ }
+
+ for (i = 0; i < 12; ++i) {
+ if (riff2[i] != drwavGUID_W64_RIFF[i+4]) {
+ return DRWAV_FALSE;
+ }
+ }
+ } else if (drwav__fourcc_equal(riff, "RF64")) {
+ pWav->container = drwav_container_rf64;
+ } else {
+ return DRWAV_FALSE; /* Unknown or unsupported container. */
+ }
+
+
+ if (pWav->container == drwav_container_riff || pWav->container == drwav_container_rf64) {
+ drwav_uint8 chunkSizeBytes[4];
+ drwav_uint8 wave[4];
+
+ /* RIFF/WAVE */
+ if (drwav__on_read(pWav->onRead, pWav->pUserData, chunkSizeBytes, sizeof(chunkSizeBytes), &cursor) != sizeof(chunkSizeBytes)) {
+ return DRWAV_FALSE;
+ }
+
+ if (pWav->container == drwav_container_riff) {
+ if (drwav__bytes_to_u32(chunkSizeBytes) < 36) {
+ return DRWAV_FALSE; /* Chunk size should always be at least 36 bytes. */
+ }
+ } else {
+ if (drwav__bytes_to_u32(chunkSizeBytes) != 0xFFFFFFFF) {
+ return DRWAV_FALSE; /* Chunk size should always be set to -1/0xFFFFFFFF for RF64. The actual size is retrieved later. */
+ }
+ }
+
+ if (drwav__on_read(pWav->onRead, pWav->pUserData, wave, sizeof(wave), &cursor) != sizeof(wave)) {
+ return DRWAV_FALSE;
+ }
+
+ if (!drwav__fourcc_equal(wave, "WAVE")) {
+ return DRWAV_FALSE; /* Expecting "WAVE". */
+ }
+ } else {
+ drwav_uint8 chunkSizeBytes[8];
+ drwav_uint8 wave[16];
+
+ /* W64 */
+ if (drwav__on_read(pWav->onRead, pWav->pUserData, chunkSizeBytes, sizeof(chunkSizeBytes), &cursor) != sizeof(chunkSizeBytes)) {
+ return DRWAV_FALSE;
+ }
+
+ if (drwav__bytes_to_u64(chunkSizeBytes) < 80) {
+ return DRWAV_FALSE;
+ }
+
+ if (drwav__on_read(pWav->onRead, pWav->pUserData, wave, sizeof(wave), &cursor) != sizeof(wave)) {
+ return DRWAV_FALSE;
+ }
+
+ if (!drwav__guid_equal(wave, drwavGUID_W64_WAVE)) {
+ return DRWAV_FALSE;
+ }
+ }
+
+
+ /* For RF64, the "ds64" chunk must come next, before the "fmt " chunk. */
+ if (pWav->container == drwav_container_rf64) {
+ drwav_uint8 sizeBytes[8];
+ drwav_uint64 bytesRemainingInChunk;
+ drwav_chunk_header header;
+ drwav_result result = drwav__read_chunk_header(pWav->onRead, pWav->pUserData, pWav->container, &cursor, &header);
+ if (result != DRWAV_SUCCESS) {
+ return DRWAV_FALSE;
+ }
+
+ if (!drwav__fourcc_equal(header.id.fourcc, "ds64")) {
+ return DRWAV_FALSE; /* Expecting "ds64". */
+ }
+
+ bytesRemainingInChunk = header.sizeInBytes + header.paddingSize;
+
+ /* We don't care about the size of the RIFF chunk - skip it. */
+ if (!drwav__seek_forward(pWav->onSeek, 8, pWav->pUserData)) {
+ return DRWAV_FALSE;
+ }
+ bytesRemainingInChunk -= 8;
+ cursor += 8;
+
+
+ /* Next 8 bytes is the size of the "data" chunk. */
+ if (drwav__on_read(pWav->onRead, pWav->pUserData, sizeBytes, sizeof(sizeBytes), &cursor) != sizeof(sizeBytes)) {
+ return DRWAV_FALSE;
+ }
+ bytesRemainingInChunk -= 8;
+ dataChunkSize = drwav__bytes_to_u64(sizeBytes);
+
+
+ /* Next 8 bytes is the same count which we would usually derived from the FACT chunk if it was available. */
+ if (drwav__on_read(pWav->onRead, pWav->pUserData, sizeBytes, sizeof(sizeBytes), &cursor) != sizeof(sizeBytes)) {
+ return DRWAV_FALSE;
+ }
+ bytesRemainingInChunk -= 8;
+ sampleCountFromFactChunk = drwav__bytes_to_u64(sizeBytes);
+
+
+ /* Skip over everything else. */
+ if (!drwav__seek_forward(pWav->onSeek, bytesRemainingInChunk, pWav->pUserData)) {
+ return DRWAV_FALSE;
+ }
+ cursor += bytesRemainingInChunk;
+ }
+
+
+ /* The next bytes should be the "fmt " chunk. */
+ if (!drwav__read_fmt(pWav->onRead, pWav->onSeek, pWav->pUserData, pWav->container, &cursor, &fmt)) {
+ return DRWAV_FALSE; /* Failed to read the "fmt " chunk. */
+ }
+
+ /* Basic validation. */
+ if ((fmt.sampleRate == 0 || fmt.sampleRate > DRWAV_MAX_SAMPLE_RATE) ||
+ (fmt.channels == 0 || fmt.channels > DRWAV_MAX_CHANNELS) ||
+ (fmt.bitsPerSample == 0 || fmt.bitsPerSample > DRWAV_MAX_BITS_PER_SAMPLE) ||
+ fmt.blockAlign == 0) {
+ return DRWAV_FALSE; /* Probably an invalid WAV file. */
+ }
+
+
+ /* Translate the internal format. */
+ translatedFormatTag = fmt.formatTag;
+ if (translatedFormatTag == DR_WAVE_FORMAT_EXTENSIBLE) {
+ translatedFormatTag = drwav__bytes_to_u16(fmt.subFormat + 0);
+ }
+
+
+ /*
+ We need to enumerate over each chunk for two reasons:
+ 1) The "data" chunk may not be the next one
+ 2) We may want to report each chunk back to the client
+
+ In order to correctly report each chunk back to the client we will need to keep looping until the end of the file.
+ */
+ foundDataChunk = DRWAV_FALSE;
+
+ /* The next chunk we care about is the "data" chunk. This is not necessarily the next chunk so we'll need to loop. */
+ for (;;)
+ {
+ drwav_chunk_header header;
+ drwav_result result = drwav__read_chunk_header(pWav->onRead, pWav->pUserData, pWav->container, &cursor, &header);
+ if (result != DRWAV_SUCCESS) {
+ if (!foundDataChunk) {
+ return DRWAV_FALSE;
+ } else {
+ break; /* Probably at the end of the file. Get out of the loop. */
+ }
+ }
+
+ /* Tell the client about this chunk. */
+ if (!sequential && onChunk != NULL) {
+ drwav_uint64 callbackBytesRead = onChunk(pChunkUserData, pWav->onRead, pWav->onSeek, pWav->pUserData, &header, pWav->container, &fmt);
+
+ /*
+ dr_wav may need to read the contents of the chunk, so we now need to seek back to the position before
+ we called the callback.
+ */
+ if (callbackBytesRead > 0) {
+ if (!drwav__seek_from_start(pWav->onSeek, cursor, pWav->pUserData)) {
+ return DRWAV_FALSE;
+ }
+ }
+ }
+
+
+ if (!foundDataChunk) {
+ pWav->dataChunkDataPos = cursor;
+ }
+
+ chunkSize = header.sizeInBytes;
+ if (pWav->container == drwav_container_riff || pWav->container == drwav_container_rf64) {
+ if (drwav__fourcc_equal(header.id.fourcc, "data")) {
+ foundDataChunk = DRWAV_TRUE;
+ if (pWav->container != drwav_container_rf64) { /* The data chunk size for RF64 will always be set to 0xFFFFFFFF here. It was set to it's true value earlier. */
+ dataChunkSize = chunkSize;
+ }
+ }
+ } else {
+ if (drwav__guid_equal(header.id.guid, drwavGUID_W64_DATA)) {
+ foundDataChunk = DRWAV_TRUE;
+ dataChunkSize = chunkSize;
+ }
+ }
+
+ /*
+ If at this point we have found the data chunk and we're running in sequential mode, we need to break out of this loop. The reason for
+ this is that we would otherwise require a backwards seek which sequential mode forbids.
+ */
+ if (foundDataChunk && sequential) {
+ break;
+ }
+
+ /* Optional. Get the total sample count from the FACT chunk. This is useful for compressed formats. */
+ if (pWav->container == drwav_container_riff) {
+ if (drwav__fourcc_equal(header.id.fourcc, "fact")) {
+ drwav_uint32 sampleCount;
+ if (drwav__on_read(pWav->onRead, pWav->pUserData, &sampleCount, 4, &cursor) != 4) {
+ return DRWAV_FALSE;
+ }
+ chunkSize -= 4;
+
+ if (!foundDataChunk) {
+ pWav->dataChunkDataPos = cursor;
+ }
+
+ /*
+ The sample count in the "fact" chunk is either unreliable, or I'm not understanding it properly. For now I am only enabling this
+ for Microsoft ADPCM formats.
+ */
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
+ sampleCountFromFactChunk = sampleCount;
+ } else {
+ sampleCountFromFactChunk = 0;
+ }
+ }
+ } else if (pWav->container == drwav_container_w64) {
+ if (drwav__guid_equal(header.id.guid, drwavGUID_W64_FACT)) {
+ if (drwav__on_read(pWav->onRead, pWav->pUserData, &sampleCountFromFactChunk, 8, &cursor) != 8) {
+ return DRWAV_FALSE;
+ }
+ chunkSize -= 8;
+
+ if (!foundDataChunk) {
+ pWav->dataChunkDataPos = cursor;
+ }
+ }
+ } else if (pWav->container == drwav_container_rf64) {
+ /* We retrieved the sample count from the ds64 chunk earlier so no need to do that here. */
+ }
+
+ /* "smpl" chunk. */
+ if (pWav->container == drwav_container_riff || pWav->container == drwav_container_rf64) {
+ if (drwav__fourcc_equal(header.id.fourcc, "smpl")) {
+ drwav_uint8 smplHeaderData[36]; /* 36 = size of the smpl header section, not including the loop data. */
+ if (chunkSize >= sizeof(smplHeaderData)) {
+ drwav_uint64 bytesJustRead = drwav__on_read(pWav->onRead, pWav->pUserData, smplHeaderData, sizeof(smplHeaderData), &cursor);
+ chunkSize -= bytesJustRead;
+
+ if (bytesJustRead == sizeof(smplHeaderData)) {
+ drwav_uint32 iLoop;
+
+ pWav->smpl.manufacturer = drwav__bytes_to_u32(smplHeaderData+0);
+ pWav->smpl.product = drwav__bytes_to_u32(smplHeaderData+4);
+ pWav->smpl.samplePeriod = drwav__bytes_to_u32(smplHeaderData+8);
+ pWav->smpl.midiUnityNotes = drwav__bytes_to_u32(smplHeaderData+12);
+ pWav->smpl.midiPitchFraction = drwav__bytes_to_u32(smplHeaderData+16);
+ pWav->smpl.smpteFormat = drwav__bytes_to_u32(smplHeaderData+20);
+ pWav->smpl.smpteOffset = drwav__bytes_to_u32(smplHeaderData+24);
+ pWav->smpl.numSampleLoops = drwav__bytes_to_u32(smplHeaderData+28);
+ pWav->smpl.samplerData = drwav__bytes_to_u32(smplHeaderData+32);
+
+ for (iLoop = 0; iLoop < pWav->smpl.numSampleLoops && iLoop < drwav_countof(pWav->smpl.loops); ++iLoop) {
+ drwav_uint8 smplLoopData[24]; /* 24 = size of a loop section in the smpl chunk. */
+ bytesJustRead = drwav__on_read(pWav->onRead, pWav->pUserData, smplLoopData, sizeof(smplLoopData), &cursor);
+ chunkSize -= bytesJustRead;
+
+ if (bytesJustRead == sizeof(smplLoopData)) {
+ pWav->smpl.loops[iLoop].cuePointId = drwav__bytes_to_u32(smplLoopData+0);
+ pWav->smpl.loops[iLoop].type = drwav__bytes_to_u32(smplLoopData+4);
+ pWav->smpl.loops[iLoop].start = drwav__bytes_to_u32(smplLoopData+8);
+ pWav->smpl.loops[iLoop].end = drwav__bytes_to_u32(smplLoopData+12);
+ pWav->smpl.loops[iLoop].fraction = drwav__bytes_to_u32(smplLoopData+16);
+ pWav->smpl.loops[iLoop].playCount = drwav__bytes_to_u32(smplLoopData+20);
+ } else {
+ break; /* Break from the smpl loop for loop. */
+ }
+ }
+ }
+ } else {
+ /* Looks like invalid data. Ignore the chunk. */
+ }
+ }
+ } else {
+ if (drwav__guid_equal(header.id.guid, drwavGUID_W64_SMPL)) {
+ /*
+ This path will be hit when a W64 WAV file contains a smpl chunk. I don't have a sample file to test this path, so a contribution
+ is welcome to add support for this.
+ */
+ }
+ }
+
+ /* Make sure we seek past the padding. */
+ chunkSize += header.paddingSize;
+ if (!drwav__seek_forward(pWav->onSeek, chunkSize, pWav->pUserData)) {
+ break;
+ }
+ cursor += chunkSize;
+
+ if (!foundDataChunk) {
+ pWav->dataChunkDataPos = cursor;
+ }
+ }
+
+ /* If we haven't found a data chunk, return an error. */
+ if (!foundDataChunk) {
+ return DRWAV_FALSE;
+ }
+
+ /* We may have moved passed the data chunk. If so we need to move back. If running in sequential mode we can assume we are already sitting on the data chunk. */
+ if (!sequential) {
+ if (!drwav__seek_from_start(pWav->onSeek, pWav->dataChunkDataPos, pWav->pUserData)) {
+ return DRWAV_FALSE;
+ }
+ cursor = pWav->dataChunkDataPos;
+ }
+
+
+ /* At this point we should be sitting on the first byte of the raw audio data. */
+
+ pWav->fmt = fmt;
+ pWav->sampleRate = fmt.sampleRate;
+ pWav->channels = fmt.channels;
+ pWav->bitsPerSample = fmt.bitsPerSample;
+ pWav->bytesRemaining = dataChunkSize;
+ pWav->translatedFormatTag = translatedFormatTag;
+ pWav->dataChunkDataSize = dataChunkSize;
+
+ if (sampleCountFromFactChunk != 0) {
+ pWav->totalPCMFrameCount = sampleCountFromFactChunk;
+ } else {
+ pWav->totalPCMFrameCount = dataChunkSize / drwav_get_bytes_per_pcm_frame(pWav);
+
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
+ drwav_uint64 totalBlockHeaderSizeInBytes;
+ drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign;
+
+ /* Make sure any trailing partial block is accounted for. */
+ if ((blockCount * fmt.blockAlign) < dataChunkSize) {
+ blockCount += 1;
+ }
+
+ /* We decode two samples per byte. There will be blockCount headers in the data chunk. This is enough to know how to calculate the total PCM frame count. */
+ totalBlockHeaderSizeInBytes = blockCount * (6*fmt.channels);
+ pWav->totalPCMFrameCount = ((dataChunkSize - totalBlockHeaderSizeInBytes) * 2) / fmt.channels;
+ }
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
+ drwav_uint64 totalBlockHeaderSizeInBytes;
+ drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign;
+
+ /* Make sure any trailing partial block is accounted for. */
+ if ((blockCount * fmt.blockAlign) < dataChunkSize) {
+ blockCount += 1;
+ }
+
+ /* We decode two samples per byte. There will be blockCount headers in the data chunk. This is enough to know how to calculate the total PCM frame count. */
+ totalBlockHeaderSizeInBytes = blockCount * (4*fmt.channels);
+ pWav->totalPCMFrameCount = ((dataChunkSize - totalBlockHeaderSizeInBytes) * 2) / fmt.channels;
+
+ /* The header includes a decoded sample for each channel which acts as the initial predictor sample. */
+ pWav->totalPCMFrameCount += blockCount;
+ }
+ }
+
+ /* Some formats only support a certain number of channels. */
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM || pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
+ if (pWav->channels > 2) {
+ return DRWAV_FALSE;
+ }
+ }
+
+#ifdef DR_WAV_LIBSNDFILE_COMPAT
+ /*
+ I use libsndfile as a benchmark for testing, however in the version I'm using (from the Windows installer on the libsndfile website),
+ it appears the total sample count libsndfile uses for MS-ADPCM is incorrect. It would seem they are computing the total sample count
+ from the number of blocks, however this results in the inclusion of extra silent samples at the end of the last block. The correct
+ way to know the total sample count is to inspect the "fact" chunk, which should always be present for compressed formats, and should
+ always include the sample count. This little block of code below is only used to emulate the libsndfile logic so I can properly run my
+ correctness tests against libsndfile, and is disabled by default.
+ */
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
+ drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign;
+ pWav->totalPCMFrameCount = (((blockCount * (fmt.blockAlign - (6*pWav->channels))) * 2)) / fmt.channels; /* x2 because two samples per byte. */
+ }
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
+ drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign;
+ pWav->totalPCMFrameCount = (((blockCount * (fmt.blockAlign - (4*pWav->channels))) * 2) + (blockCount * pWav->channels)) / fmt.channels;
+ }
+#endif
+
+ return DRWAV_TRUE;
+}
+
+DRWAV_API drwav_bool32 drwav_init(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ return drwav_init_ex(pWav, onRead, onSeek, NULL, pUserData, NULL, 0, pAllocationCallbacks);
+}
+
+DRWAV_API drwav_bool32 drwav_init_ex(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, drwav_chunk_proc onChunk, void* pReadSeekUserData, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (!drwav_preinit(pWav, onRead, onSeek, pReadSeekUserData, pAllocationCallbacks)) {
+ return DRWAV_FALSE;
+ }
+
+ return drwav_init__internal(pWav, onChunk, pChunkUserData, flags);
+}
+
+
+static drwav_uint32 drwav__riff_chunk_size_riff(drwav_uint64 dataChunkSize)
+{
+ drwav_uint64 chunkSize = 4 + 24 + dataChunkSize + drwav__chunk_padding_size_riff(dataChunkSize); /* 4 = "WAVE". 24 = "fmt " chunk. */
+ if (chunkSize > 0xFFFFFFFFUL) {
+ chunkSize = 0xFFFFFFFFUL;
+ }
+
+ return (drwav_uint32)chunkSize; /* Safe cast due to the clamp above. */
+}
+
+static drwav_uint32 drwav__data_chunk_size_riff(drwav_uint64 dataChunkSize)
+{
+ if (dataChunkSize <= 0xFFFFFFFFUL) {
+ return (drwav_uint32)dataChunkSize;
+ } else {
+ return 0xFFFFFFFFUL;
+ }
+}
+
+static drwav_uint64 drwav__riff_chunk_size_w64(drwav_uint64 dataChunkSize)
+{
+ drwav_uint64 dataSubchunkPaddingSize = drwav__chunk_padding_size_w64(dataChunkSize);
+
+ return 80 + 24 + dataChunkSize + dataSubchunkPaddingSize; /* +24 because W64 includes the size of the GUID and size fields. */
+}
+
+static drwav_uint64 drwav__data_chunk_size_w64(drwav_uint64 dataChunkSize)
+{
+ return 24 + dataChunkSize; /* +24 because W64 includes the size of the GUID and size fields. */
+}
+
+static drwav_uint64 drwav__riff_chunk_size_rf64(drwav_uint64 dataChunkSize)
+{
+ drwav_uint64 chunkSize = 4 + 36 + 24 + dataChunkSize + drwav__chunk_padding_size_riff(dataChunkSize); /* 4 = "WAVE". 36 = "ds64" chunk. 24 = "fmt " chunk. */
+ if (chunkSize > 0xFFFFFFFFUL) {
+ chunkSize = 0xFFFFFFFFUL;
+ }
+
+ return chunkSize;
+}
+
+static drwav_uint64 drwav__data_chunk_size_rf64(drwav_uint64 dataChunkSize)
+{
+ return dataChunkSize;
+}
+
+
+static size_t drwav__write(drwav* pWav, const void* pData, size_t dataSize)
+{
+ DRWAV_ASSERT(pWav != NULL);
+ DRWAV_ASSERT(pWav->onWrite != NULL);
+
+ /* Generic write. Assumes no byte reordering required. */
+ return pWav->onWrite(pWav->pUserData, pData, dataSize);
+}
+
+static size_t drwav__write_u16ne_to_le(drwav* pWav, drwav_uint16 value)
+{
+ DRWAV_ASSERT(pWav != NULL);
+ DRWAV_ASSERT(pWav->onWrite != NULL);
+
+ if (!drwav__is_little_endian()) {
+ value = drwav__bswap16(value);
+ }
+
+ return drwav__write(pWav, &value, 2);
+}
+
+static size_t drwav__write_u32ne_to_le(drwav* pWav, drwav_uint32 value)
+{
+ DRWAV_ASSERT(pWav != NULL);
+ DRWAV_ASSERT(pWav->onWrite != NULL);
+
+ if (!drwav__is_little_endian()) {
+ value = drwav__bswap32(value);
+ }
+
+ return drwav__write(pWav, &value, 4);
+}
+
+static size_t drwav__write_u64ne_to_le(drwav* pWav, drwav_uint64 value)
+{
+ DRWAV_ASSERT(pWav != NULL);
+ DRWAV_ASSERT(pWav->onWrite != NULL);
+
+ if (!drwav__is_little_endian()) {
+ value = drwav__bswap64(value);
+ }
+
+ return drwav__write(pWav, &value, 8);
+}
+
+
+static drwav_bool32 drwav_preinit_write(drwav* pWav, const drwav_data_format* pFormat, drwav_bool32 isSequential, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pWav == NULL || onWrite == NULL) {
+ return DRWAV_FALSE;
+ }
+
+ if (!isSequential && onSeek == NULL) {
+ return DRWAV_FALSE; /* <-- onSeek is required when in non-sequential mode. */
+ }
+
+ /* Not currently supporting compressed formats. Will need to add support for the "fact" chunk before we enable this. */
+ if (pFormat->format == DR_WAVE_FORMAT_EXTENSIBLE) {
+ return DRWAV_FALSE;
+ }
+ if (pFormat->format == DR_WAVE_FORMAT_ADPCM || pFormat->format == DR_WAVE_FORMAT_DVI_ADPCM) {
+ return DRWAV_FALSE;
+ }
+
+ DRWAV_ZERO_MEMORY(pWav, sizeof(*pWav));
+ pWav->onWrite = onWrite;
+ pWav->onSeek = onSeek;
+ pWav->pUserData = pUserData;
+ pWav->allocationCallbacks = drwav_copy_allocation_callbacks_or_defaults(pAllocationCallbacks);
+
+ if (pWav->allocationCallbacks.onFree == NULL || (pWav->allocationCallbacks.onMalloc == NULL && pWav->allocationCallbacks.onRealloc == NULL)) {
+ return DRWAV_FALSE; /* Invalid allocation callbacks. */
+ }
+
+ pWav->fmt.formatTag = (drwav_uint16)pFormat->format;
+ pWav->fmt.channels = (drwav_uint16)pFormat->channels;
+ pWav->fmt.sampleRate = pFormat->sampleRate;
+ pWav->fmt.avgBytesPerSec = (drwav_uint32)((pFormat->bitsPerSample * pFormat->sampleRate * pFormat->channels) / 8);
+ pWav->fmt.blockAlign = (drwav_uint16)((pFormat->channels * pFormat->bitsPerSample) / 8);
+ pWav->fmt.bitsPerSample = (drwav_uint16)pFormat->bitsPerSample;
+ pWav->fmt.extendedSize = 0;
+ pWav->isSequentialWrite = isSequential;
+
+ return DRWAV_TRUE;
+}
+
+static drwav_bool32 drwav_init_write__internal(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount)
+{
+ /* The function assumes drwav_preinit_write() was called beforehand. */
+
+ size_t runningPos = 0;
+ drwav_uint64 initialDataChunkSize = 0;
+ drwav_uint64 chunkSizeFMT;
+
+ /*
+ The initial values for the "RIFF" and "data" chunks depends on whether or not we are initializing in sequential mode or not. In
+ sequential mode we set this to its final values straight away since they can be calculated from the total sample count. In non-
+ sequential mode we initialize it all to zero and fill it out in drwav_uninit() using a backwards seek.
+ */
+ if (pWav->isSequentialWrite) {
+ initialDataChunkSize = (totalSampleCount * pWav->fmt.bitsPerSample) / 8;
+
+ /*
+ The RIFF container has a limit on the number of samples. drwav is not allowing this. There's no practical limits for Wave64
+ so for the sake of simplicity I'm not doing any validation for that.
+ */
+ if (pFormat->container == drwav_container_riff) {
+ if (initialDataChunkSize > (0xFFFFFFFFUL - 36)) {
+ return DRWAV_FALSE; /* Not enough room to store every sample. */
+ }
+ }
+ }
+
+ pWav->dataChunkDataSizeTargetWrite = initialDataChunkSize;
+
+
+ /* "RIFF" chunk. */
+ if (pFormat->container == drwav_container_riff) {
+ drwav_uint32 chunkSizeRIFF = 28 + (drwav_uint32)initialDataChunkSize; /* +28 = "WAVE" + [sizeof "fmt " chunk] */
+ runningPos += drwav__write(pWav, "RIFF", 4);
+ runningPos += drwav__write_u32ne_to_le(pWav, chunkSizeRIFF);
+ runningPos += drwav__write(pWav, "WAVE", 4);
+ } else if (pFormat->container == drwav_container_w64) {
+ drwav_uint64 chunkSizeRIFF = 80 + 24 + initialDataChunkSize; /* +24 because W64 includes the size of the GUID and size fields. */
+ runningPos += drwav__write(pWav, drwavGUID_W64_RIFF, 16);
+ runningPos += drwav__write_u64ne_to_le(pWav, chunkSizeRIFF);
+ runningPos += drwav__write(pWav, drwavGUID_W64_WAVE, 16);
+ } else if (pFormat->container == drwav_container_rf64) {
+ runningPos += drwav__write(pWav, "RF64", 4);
+ runningPos += drwav__write_u32ne_to_le(pWav, 0xFFFFFFFF); /* Always 0xFFFFFFFF for RF64. Set to a proper value in the "ds64" chunk. */
+ runningPos += drwav__write(pWav, "WAVE", 4);
+ }
+
+
+ /* "ds64" chunk (RF64 only). */
+ if (pFormat->container == drwav_container_rf64) {
+ drwav_uint32 initialds64ChunkSize = 28; /* 28 = [Size of RIFF (8 bytes)] + [Size of DATA (8 bytes)] + [Sample Count (8 bytes)] + [Table Length (4 bytes)]. Table length always set to 0. */
+ drwav_uint64 initialRiffChunkSize = 8 + initialds64ChunkSize + initialDataChunkSize; /* +8 for the ds64 header. */
+
+ runningPos += drwav__write(pWav, "ds64", 4);
+ runningPos += drwav__write_u32ne_to_le(pWav, initialds64ChunkSize); /* Size of ds64. */
+ runningPos += drwav__write_u64ne_to_le(pWav, initialRiffChunkSize); /* Size of RIFF. Set to true value at the end. */
+ runningPos += drwav__write_u64ne_to_le(pWav, initialDataChunkSize); /* Size of DATA. Set to true value at the end. */
+ runningPos += drwav__write_u64ne_to_le(pWav, totalSampleCount); /* Sample count. */
+ runningPos += drwav__write_u32ne_to_le(pWav, 0); /* Table length. Always set to zero in our case since we're not doing any other chunks than "DATA". */
+ }
+
+
+ /* "fmt " chunk. */
+ if (pFormat->container == drwav_container_riff || pFormat->container == drwav_container_rf64) {
+ chunkSizeFMT = 16;
+ runningPos += drwav__write(pWav, "fmt ", 4);
+ runningPos += drwav__write_u32ne_to_le(pWav, (drwav_uint32)chunkSizeFMT);
+ } else if (pFormat->container == drwav_container_w64) {
+ chunkSizeFMT = 40;
+ runningPos += drwav__write(pWav, drwavGUID_W64_FMT, 16);
+ runningPos += drwav__write_u64ne_to_le(pWav, chunkSizeFMT);
+ }
+
+ runningPos += drwav__write_u16ne_to_le(pWav, pWav->fmt.formatTag);
+ runningPos += drwav__write_u16ne_to_le(pWav, pWav->fmt.channels);
+ runningPos += drwav__write_u32ne_to_le(pWav, pWav->fmt.sampleRate);
+ runningPos += drwav__write_u32ne_to_le(pWav, pWav->fmt.avgBytesPerSec);
+ runningPos += drwav__write_u16ne_to_le(pWav, pWav->fmt.blockAlign);
+ runningPos += drwav__write_u16ne_to_le(pWav, pWav->fmt.bitsPerSample);
+
+ pWav->dataChunkDataPos = runningPos;
+
+ /* "data" chunk. */
+ if (pFormat->container == drwav_container_riff) {
+ drwav_uint32 chunkSizeDATA = (drwav_uint32)initialDataChunkSize;
+ runningPos += drwav__write(pWav, "data", 4);
+ runningPos += drwav__write_u32ne_to_le(pWav, chunkSizeDATA);
+ } else if (pFormat->container == drwav_container_w64) {
+ drwav_uint64 chunkSizeDATA = 24 + initialDataChunkSize; /* +24 because W64 includes the size of the GUID and size fields. */
+ runningPos += drwav__write(pWav, drwavGUID_W64_DATA, 16);
+ runningPos += drwav__write_u64ne_to_le(pWav, chunkSizeDATA);
+ } else if (pFormat->container == drwav_container_rf64) {
+ runningPos += drwav__write(pWav, "data", 4);
+ runningPos += drwav__write_u32ne_to_le(pWav, 0xFFFFFFFF); /* Always set to 0xFFFFFFFF for RF64. The true size of the data chunk is specified in the ds64 chunk. */
+ }
+
+ /*
+ The runningPos variable is incremented in the section above but is left unused which is causing some static analysis tools to detect it
+ as a dead store. I'm leaving this as-is for safety just in case I want to expand this function later to include other tags and want to
+ keep track of the running position for whatever reason. The line below should silence the static analysis tools.
+ */
+ (void)runningPos;
+
+ /* Set some properties for the client's convenience. */
+ pWav->container = pFormat->container;
+ pWav->channels = (drwav_uint16)pFormat->channels;
+ pWav->sampleRate = pFormat->sampleRate;
+ pWav->bitsPerSample = (drwav_uint16)pFormat->bitsPerSample;
+ pWav->translatedFormatTag = (drwav_uint16)pFormat->format;
+
+ return DRWAV_TRUE;
+}
+
+
+DRWAV_API drwav_bool32 drwav_init_write(drwav* pWav, const drwav_data_format* pFormat, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (!drwav_preinit_write(pWav, pFormat, DRWAV_FALSE, onWrite, onSeek, pUserData, pAllocationCallbacks)) {
+ return DRWAV_FALSE;
+ }
+
+ return drwav_init_write__internal(pWav, pFormat, 0); /* DRWAV_FALSE = Not Sequential */
+}
+
+DRWAV_API drwav_bool32 drwav_init_write_sequential(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (!drwav_preinit_write(pWav, pFormat, DRWAV_TRUE, onWrite, NULL, pUserData, pAllocationCallbacks)) {
+ return DRWAV_FALSE;
+ }
+
+ return drwav_init_write__internal(pWav, pFormat, totalSampleCount); /* DRWAV_TRUE = Sequential */
+}
+
+DRWAV_API drwav_bool32 drwav_init_write_sequential_pcm_frames(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pFormat == NULL) {
+ return DRWAV_FALSE;
+ }
+
+ return drwav_init_write_sequential(pWav, pFormat, totalPCMFrameCount*pFormat->channels, onWrite, pUserData, pAllocationCallbacks);
+}
+
+DRWAV_API drwav_uint64 drwav_target_write_size_bytes(const drwav_data_format* pFormat, drwav_uint64 totalSampleCount)
+{
+ /* Casting totalSampleCount to drwav_int64 for VC6 compatibility. No issues in practice because nobody is going to exhaust the whole 63 bits. */
+ drwav_uint64 targetDataSizeBytes = (drwav_uint64)((drwav_int64)totalSampleCount * pFormat->channels * pFormat->bitsPerSample/8.0);
+ drwav_uint64 riffChunkSizeBytes;
+ drwav_uint64 fileSizeBytes = 0;
+
+ if (pFormat->container == drwav_container_riff) {
+ riffChunkSizeBytes = drwav__riff_chunk_size_riff(targetDataSizeBytes);
+ fileSizeBytes = (8 + riffChunkSizeBytes); /* +8 because WAV doesn't include the size of the ChunkID and ChunkSize fields. */
+ } else if (pFormat->container == drwav_container_w64) {
+ riffChunkSizeBytes = drwav__riff_chunk_size_w64(targetDataSizeBytes);
+ fileSizeBytes = riffChunkSizeBytes;
+ } else if (pFormat->container == drwav_container_rf64) {
+ riffChunkSizeBytes = drwav__riff_chunk_size_rf64(targetDataSizeBytes);
+ fileSizeBytes = (8 + riffChunkSizeBytes); /* +8 because WAV doesn't include the size of the ChunkID and ChunkSize fields. */
+ }
+
+ return fileSizeBytes;
+}
+
+
+#ifndef DR_WAV_NO_STDIO
+
+/* drwav_result_from_errno() is only used for fopen() and wfopen() so putting it inside DR_WAV_NO_STDIO for now. If something else needs this later we can move it out. */
+#include <errno.h>
+static drwav_result drwav_result_from_errno(int e)
+{
+ switch (e)
+ {
+ case 0: return DRWAV_SUCCESS;
+ #ifdef EPERM
+ case EPERM: return DRWAV_INVALID_OPERATION;
+ #endif
+ #ifdef ENOENT
+ case ENOENT: return DRWAV_DOES_NOT_EXIST;
+ #endif
+ #ifdef ESRCH
+ case ESRCH: return DRWAV_DOES_NOT_EXIST;
+ #endif
+ #ifdef EINTR
+ case EINTR: return DRWAV_INTERRUPT;
+ #endif
+ #ifdef EIO
+ case EIO: return DRWAV_IO_ERROR;
+ #endif
+ #ifdef ENXIO
+ case ENXIO: return DRWAV_DOES_NOT_EXIST;
+ #endif
+ #ifdef E2BIG
+ case E2BIG: return DRWAV_INVALID_ARGS;
+ #endif
+ #ifdef ENOEXEC
+ case ENOEXEC: return DRWAV_INVALID_FILE;
+ #endif
+ #ifdef EBADF
+ case EBADF: return DRWAV_INVALID_FILE;
+ #endif
+ #ifdef ECHILD
+ case ECHILD: return DRWAV_ERROR;
+ #endif
+ #ifdef EAGAIN
+ case EAGAIN: return DRWAV_UNAVAILABLE;
+ #endif
+ #ifdef ENOMEM
+ case ENOMEM: return DRWAV_OUT_OF_MEMORY;
+ #endif
+ #ifdef EACCES
+ case EACCES: return DRWAV_ACCESS_DENIED;
+ #endif
+ #ifdef EFAULT
+ case EFAULT: return DRWAV_BAD_ADDRESS;
+ #endif
+ #ifdef ENOTBLK
+ case ENOTBLK: return DRWAV_ERROR;
+ #endif
+ #ifdef EBUSY
+ case EBUSY: return DRWAV_BUSY;
+ #endif
+ #ifdef EEXIST
+ case EEXIST: return DRWAV_ALREADY_EXISTS;
+ #endif
+ #ifdef EXDEV
+ case EXDEV: return DRWAV_ERROR;
+ #endif
+ #ifdef ENODEV
+ case ENODEV: return DRWAV_DOES_NOT_EXIST;
+ #endif
+ #ifdef ENOTDIR
+ case ENOTDIR: return DRWAV_NOT_DIRECTORY;
+ #endif
+ #ifdef EISDIR
+ case EISDIR: return DRWAV_IS_DIRECTORY;
+ #endif
+ #ifdef EINVAL
+ case EINVAL: return DRWAV_INVALID_ARGS;
+ #endif
+ #ifdef ENFILE
+ case ENFILE: return DRWAV_TOO_MANY_OPEN_FILES;
+ #endif
+ #ifdef EMFILE
+ case EMFILE: return DRWAV_TOO_MANY_OPEN_FILES;
+ #endif
+ #ifdef ENOTTY
+ case ENOTTY: return DRWAV_INVALID_OPERATION;
+ #endif
+ #ifdef ETXTBSY
+ case ETXTBSY: return DRWAV_BUSY;
+ #endif
+ #ifdef EFBIG
+ case EFBIG: return DRWAV_TOO_BIG;
+ #endif
+ #ifdef ENOSPC
+ case ENOSPC: return DRWAV_NO_SPACE;
+ #endif
+ #ifdef ESPIPE
+ case ESPIPE: return DRWAV_BAD_SEEK;
+ #endif
+ #ifdef EROFS
+ case EROFS: return DRWAV_ACCESS_DENIED;
+ #endif
+ #ifdef EMLINK
+ case EMLINK: return DRWAV_TOO_MANY_LINKS;
+ #endif
+ #ifdef EPIPE
+ case EPIPE: return DRWAV_BAD_PIPE;
+ #endif
+ #ifdef EDOM
+ case EDOM: return DRWAV_OUT_OF_RANGE;
+ #endif
+ #ifdef ERANGE
+ case ERANGE: return DRWAV_OUT_OF_RANGE;
+ #endif
+ #ifdef EDEADLK
+ case EDEADLK: return DRWAV_DEADLOCK;
+ #endif
+ #ifdef ENAMETOOLONG
+ case ENAMETOOLONG: return DRWAV_PATH_TOO_LONG;
+ #endif
+ #ifdef ENOLCK
+ case ENOLCK: return DRWAV_ERROR;
+ #endif
+ #ifdef ENOSYS
+ case ENOSYS: return DRWAV_NOT_IMPLEMENTED;
+ #endif
+ #ifdef ENOTEMPTY
+ case ENOTEMPTY: return DRWAV_DIRECTORY_NOT_EMPTY;
+ #endif
+ #ifdef ELOOP
+ case ELOOP: return DRWAV_TOO_MANY_LINKS;
+ #endif
+ #ifdef ENOMSG
+ case ENOMSG: return DRWAV_NO_MESSAGE;
+ #endif
+ #ifdef EIDRM
+ case EIDRM: return DRWAV_ERROR;
+ #endif
+ #ifdef ECHRNG
+ case ECHRNG: return DRWAV_ERROR;
+ #endif
+ #ifdef EL2NSYNC
+ case EL2NSYNC: return DRWAV_ERROR;
+ #endif
+ #ifdef EL3HLT
+ case EL3HLT: return DRWAV_ERROR;
+ #endif
+ #ifdef EL3RST
+ case EL3RST: return DRWAV_ERROR;
+ #endif
+ #ifdef ELNRNG
+ case ELNRNG: return DRWAV_OUT_OF_RANGE;
+ #endif
+ #ifdef EUNATCH
+ case EUNATCH: return DRWAV_ERROR;
+ #endif
+ #ifdef ENOCSI
+ case ENOCSI: return DRWAV_ERROR;
+ #endif
+ #ifdef EL2HLT
+ case EL2HLT: return DRWAV_ERROR;
+ #endif
+ #ifdef EBADE
+ case EBADE: return DRWAV_ERROR;
+ #endif
+ #ifdef EBADR
+ case EBADR: return DRWAV_ERROR;
+ #endif
+ #ifdef EXFULL
+ case EXFULL: return DRWAV_ERROR;
+ #endif
+ #ifdef ENOANO
+ case ENOANO: return DRWAV_ERROR;
+ #endif
+ #ifdef EBADRQC
+ case EBADRQC: return DRWAV_ERROR;
+ #endif
+ #ifdef EBADSLT
+ case EBADSLT: return DRWAV_ERROR;
+ #endif
+ #ifdef EBFONT
+ case EBFONT: return DRWAV_INVALID_FILE;
+ #endif
+ #ifdef ENOSTR
+ case ENOSTR: return DRWAV_ERROR;
+ #endif
+ #ifdef ENODATA
+ case ENODATA: return DRWAV_NO_DATA_AVAILABLE;
+ #endif
+ #ifdef ETIME
+ case ETIME: return DRWAV_TIMEOUT;
+ #endif
+ #ifdef ENOSR
+ case ENOSR: return DRWAV_NO_DATA_AVAILABLE;
+ #endif
+ #ifdef ENONET
+ case ENONET: return DRWAV_NO_NETWORK;
+ #endif
+ #ifdef ENOPKG
+ case ENOPKG: return DRWAV_ERROR;
+ #endif
+ #ifdef EREMOTE
+ case EREMOTE: return DRWAV_ERROR;
+ #endif
+ #ifdef ENOLINK
+ case ENOLINK: return DRWAV_ERROR;
+ #endif
+ #ifdef EADV
+ case EADV: return DRWAV_ERROR;
+ #endif
+ #ifdef ESRMNT
+ case ESRMNT: return DRWAV_ERROR;
+ #endif
+ #ifdef ECOMM
+ case ECOMM: return DRWAV_ERROR;
+ #endif
+ #ifdef EPROTO
+ case EPROTO: return DRWAV_ERROR;
+ #endif
+ #ifdef EMULTIHOP
+ case EMULTIHOP: return DRWAV_ERROR;
+ #endif
+ #ifdef EDOTDOT
+ case EDOTDOT: return DRWAV_ERROR;
+ #endif
+ #ifdef EBADMSG
+ case EBADMSG: return DRWAV_BAD_MESSAGE;
+ #endif
+ #ifdef EOVERFLOW
+ case EOVERFLOW: return DRWAV_TOO_BIG;
+ #endif
+ #ifdef ENOTUNIQ
+ case ENOTUNIQ: return DRWAV_NOT_UNIQUE;
+ #endif
+ #ifdef EBADFD
+ case EBADFD: return DRWAV_ERROR;
+ #endif
+ #ifdef EREMCHG
+ case EREMCHG: return DRWAV_ERROR;
+ #endif
+ #ifdef ELIBACC
+ case ELIBACC: return DRWAV_ACCESS_DENIED;
+ #endif
+ #ifdef ELIBBAD
+ case ELIBBAD: return DRWAV_INVALID_FILE;
+ #endif
+ #ifdef ELIBSCN
+ case ELIBSCN: return DRWAV_INVALID_FILE;
+ #endif
+ #ifdef ELIBMAX
+ case ELIBMAX: return DRWAV_ERROR;
+ #endif
+ #ifdef ELIBEXEC
+ case ELIBEXEC: return DRWAV_ERROR;
+ #endif
+ #ifdef EILSEQ
+ case EILSEQ: return DRWAV_INVALID_DATA;
+ #endif
+ #ifdef ERESTART
+ case ERESTART: return DRWAV_ERROR;
+ #endif
+ #ifdef ESTRPIPE
+ case ESTRPIPE: return DRWAV_ERROR;
+ #endif
+ #ifdef EUSERS
+ case EUSERS: return DRWAV_ERROR;
+ #endif
+ #ifdef ENOTSOCK
+ case ENOTSOCK: return DRWAV_NOT_SOCKET;
+ #endif
+ #ifdef EDESTADDRREQ
+ case EDESTADDRREQ: return DRWAV_NO_ADDRESS;
+ #endif
+ #ifdef EMSGSIZE
+ case EMSGSIZE: return DRWAV_TOO_BIG;
+ #endif
+ #ifdef EPROTOTYPE
+ case EPROTOTYPE: return DRWAV_BAD_PROTOCOL;
+ #endif
+ #ifdef ENOPROTOOPT
+ case ENOPROTOOPT: return DRWAV_PROTOCOL_UNAVAILABLE;
+ #endif
+ #ifdef EPROTONOSUPPORT
+ case EPROTONOSUPPORT: return DRWAV_PROTOCOL_NOT_SUPPORTED;
+ #endif
+ #ifdef ESOCKTNOSUPPORT
+ case ESOCKTNOSUPPORT: return DRWAV_SOCKET_NOT_SUPPORTED;
+ #endif
+ #ifdef EOPNOTSUPP
+ case EOPNOTSUPP: return DRWAV_INVALID_OPERATION;
+ #endif
+ #ifdef EPFNOSUPPORT
+ case EPFNOSUPPORT: return DRWAV_PROTOCOL_FAMILY_NOT_SUPPORTED;
+ #endif
+ #ifdef EAFNOSUPPORT
+ case EAFNOSUPPORT: return DRWAV_ADDRESS_FAMILY_NOT_SUPPORTED;
+ #endif
+ #ifdef EADDRINUSE
+ case EADDRINUSE: return DRWAV_ALREADY_IN_USE;
+ #endif
+ #ifdef EADDRNOTAVAIL
+ case EADDRNOTAVAIL: return DRWAV_ERROR;
+ #endif
+ #ifdef ENETDOWN
+ case ENETDOWN: return DRWAV_NO_NETWORK;
+ #endif
+ #ifdef ENETUNREACH
+ case ENETUNREACH: return DRWAV_NO_NETWORK;
+ #endif
+ #ifdef ENETRESET
+ case ENETRESET: return DRWAV_NO_NETWORK;
+ #endif
+ #ifdef ECONNABORTED
+ case ECONNABORTED: return DRWAV_NO_NETWORK;
+ #endif
+ #ifdef ECONNRESET
+ case ECONNRESET: return DRWAV_CONNECTION_RESET;
+ #endif
+ #ifdef ENOBUFS
+ case ENOBUFS: return DRWAV_NO_SPACE;
+ #endif
+ #ifdef EISCONN
+ case EISCONN: return DRWAV_ALREADY_CONNECTED;
+ #endif
+ #ifdef ENOTCONN
+ case ENOTCONN: return DRWAV_NOT_CONNECTED;
+ #endif
+ #ifdef ESHUTDOWN
+ case ESHUTDOWN: return DRWAV_ERROR;
+ #endif
+ #ifdef ETOOMANYREFS
+ case ETOOMANYREFS: return DRWAV_ERROR;
+ #endif
+ #ifdef ETIMEDOUT
+ case ETIMEDOUT: return DRWAV_TIMEOUT;
+ #endif
+ #ifdef ECONNREFUSED
+ case ECONNREFUSED: return DRWAV_CONNECTION_REFUSED;
+ #endif
+ #ifdef EHOSTDOWN
+ case EHOSTDOWN: return DRWAV_NO_HOST;
+ #endif
+ #ifdef EHOSTUNREACH
+ case EHOSTUNREACH: return DRWAV_NO_HOST;
+ #endif
+ #ifdef EALREADY
+ case EALREADY: return DRWAV_IN_PROGRESS;
+ #endif
+ #ifdef EINPROGRESS
+ case EINPROGRESS: return DRWAV_IN_PROGRESS;
+ #endif
+ #ifdef ESTALE
+ case ESTALE: return DRWAV_INVALID_FILE;
+ #endif
+ #ifdef EUCLEAN
+ case EUCLEAN: return DRWAV_ERROR;
+ #endif
+ #ifdef ENOTNAM
+ case ENOTNAM: return DRWAV_ERROR;
+ #endif
+ #ifdef ENAVAIL
+ case ENAVAIL: return DRWAV_ERROR;
+ #endif
+ #ifdef EISNAM
+ case EISNAM: return DRWAV_ERROR;
+ #endif
+ #ifdef EREMOTEIO
+ case EREMOTEIO: return DRWAV_IO_ERROR;
+ #endif
+ #ifdef EDQUOT
+ case EDQUOT: return DRWAV_NO_SPACE;
+ #endif
+ #ifdef ENOMEDIUM
+ case ENOMEDIUM: return DRWAV_DOES_NOT_EXIST;
+ #endif
+ #ifdef EMEDIUMTYPE
+ case EMEDIUMTYPE: return DRWAV_ERROR;
+ #endif
+ #ifdef ECANCELED
+ case ECANCELED: return DRWAV_CANCELLED;
+ #endif
+ #ifdef ENOKEY
+ case ENOKEY: return DRWAV_ERROR;
+ #endif
+ #ifdef EKEYEXPIRED
+ case EKEYEXPIRED: return DRWAV_ERROR;
+ #endif
+ #ifdef EKEYREVOKED
+ case EKEYREVOKED: return DRWAV_ERROR;
+ #endif
+ #ifdef EKEYREJECTED
+ case EKEYREJECTED: return DRWAV_ERROR;
+ #endif
+ #ifdef EOWNERDEAD
+ case EOWNERDEAD: return DRWAV_ERROR;
+ #endif
+ #ifdef ENOTRECOVERABLE
+ case ENOTRECOVERABLE: return DRWAV_ERROR;
+ #endif
+ #ifdef ERFKILL
+ case ERFKILL: return DRWAV_ERROR;
+ #endif
+ #ifdef EHWPOISON
+ case EHWPOISON: return DRWAV_ERROR;
+ #endif
+ default: return DRWAV_ERROR;
+ }
+}
+
+static drwav_result drwav_fopen(FILE** ppFile, const char* pFilePath, const char* pOpenMode)
+{
+#if _MSC_VER && _MSC_VER >= 1400
+ errno_t err;
+#endif
+
+ if (ppFile != NULL) {
+ *ppFile = NULL; /* Safety. */
+ }
+
+ if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) {
+ return DRWAV_INVALID_ARGS;
+ }
+
+#if _MSC_VER && _MSC_VER >= 1400
+ err = fopen_s(ppFile, pFilePath, pOpenMode);
+ if (err != 0) {
+ return drwav_result_from_errno(err);
+ }
+#else
+#if defined(_WIN32) || defined(__APPLE__)
+ *ppFile = fopen(pFilePath, pOpenMode);
+#else
+ #if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS == 64 && defined(_LARGEFILE64_SOURCE)
+ *ppFile = fopen64(pFilePath, pOpenMode);
+ #else
+ *ppFile = fopen(pFilePath, pOpenMode);
+ #endif
+#endif
+ if (*ppFile == NULL) {
+ drwav_result result = drwav_result_from_errno(errno);
+ if (result == DRWAV_SUCCESS) {
+ result = DRWAV_ERROR; /* Just a safety check to make sure we never ever return success when pFile == NULL. */
+ }
+
+ return result;
+ }
+#endif
+
+ return DRWAV_SUCCESS;
+}
+
+/*
+_wfopen() isn't always available in all compilation environments.
+
+ * Windows only.
+ * MSVC seems to support it universally as far back as VC6 from what I can tell (haven't checked further back).
+ * MinGW-64 (both 32- and 64-bit) seems to support it.
+ * MinGW wraps it in !defined(__STRICT_ANSI__).
+ * OpenWatcom wraps it in !defined(_NO_EXT_KEYS).
+
+This can be reviewed as compatibility issues arise. The preference is to use _wfopen_s() and _wfopen() as opposed to the wcsrtombs()
+fallback, so if you notice your compiler not detecting this properly I'm happy to look at adding support.
+*/
+#if defined(_WIN32)
+ #if defined(_MSC_VER) || defined(__MINGW64__) || (!defined(__STRICT_ANSI__) && !defined(_NO_EXT_KEYS))
+ #define DRWAV_HAS_WFOPEN
+ #endif
+#endif
+
+static drwav_result drwav_wfopen(FILE** ppFile, const wchar_t* pFilePath, const wchar_t* pOpenMode, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (ppFile != NULL) {
+ *ppFile = NULL; /* Safety. */
+ }
+
+ if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) {
+ return DRWAV_INVALID_ARGS;
+ }
+
+#if defined(DRWAV_HAS_WFOPEN)
+ {
+ /* Use _wfopen() on Windows. */
+ #if defined(_MSC_VER) && _MSC_VER >= 1400
+ errno_t err = _wfopen_s(ppFile, pFilePath, pOpenMode);
+ if (err != 0) {
+ return drwav_result_from_errno(err);
+ }
+ #else
+ *ppFile = _wfopen(pFilePath, pOpenMode);
+ if (*ppFile == NULL) {
+ return drwav_result_from_errno(errno);
+ }
+ #endif
+ (void)pAllocationCallbacks;
+ }
+#else
+ /*
+ Use fopen() on anything other than Windows. Requires a conversion. This is annoying because fopen() is locale specific. The only real way I can
+ think of to do this is with wcsrtombs(). Note that wcstombs() is apparently not thread-safe because it uses a static global mbstate_t object for
+ maintaining state. I've checked this with -std=c89 and it works, but if somebody get's a compiler error I'll look into improving compatibility.
+ */
+ {
+ mbstate_t mbs;
+ size_t lenMB;
+ const wchar_t* pFilePathTemp = pFilePath;
+ char* pFilePathMB = NULL;
+ char pOpenModeMB[32] = {0};
+
+ /* Get the length first. */
+ DRWAV_ZERO_OBJECT(&mbs);
+ lenMB = wcsrtombs(NULL, &pFilePathTemp, 0, &mbs);
+ if (lenMB == (size_t)-1) {
+ return drwav_result_from_errno(errno);
+ }
+
+ pFilePathMB = (char*)drwav__malloc_from_callbacks(lenMB + 1, pAllocationCallbacks);
+ if (pFilePathMB == NULL) {
+ return DRWAV_OUT_OF_MEMORY;
+ }
+
+ pFilePathTemp = pFilePath;
+ DRWAV_ZERO_OBJECT(&mbs);
+ wcsrtombs(pFilePathMB, &pFilePathTemp, lenMB + 1, &mbs);
+
+ /* The open mode should always consist of ASCII characters so we should be able to do a trivial conversion. */
+ {
+ size_t i = 0;
+ for (;;) {
+ if (pOpenMode[i] == 0) {
+ pOpenModeMB[i] = '\0';
+ break;
+ }
+
+ pOpenModeMB[i] = (char)pOpenMode[i];
+ i += 1;
+ }
+ }
+
+ *ppFile = fopen(pFilePathMB, pOpenModeMB);
+
+ drwav__free_from_callbacks(pFilePathMB, pAllocationCallbacks);
+ }
+
+ if (*ppFile == NULL) {
+ return DRWAV_ERROR;
+ }
+#endif
+
+ return DRWAV_SUCCESS;
+}
+
+
+static size_t drwav__on_read_stdio(void* pUserData, void* pBufferOut, size_t bytesToRead)
+{
+ return fread(pBufferOut, 1, bytesToRead, (FILE*)pUserData);
+}
+
+static size_t drwav__on_write_stdio(void* pUserData, const void* pData, size_t bytesToWrite)
+{
+ return fwrite(pData, 1, bytesToWrite, (FILE*)pUserData);
+}
+
+static drwav_bool32 drwav__on_seek_stdio(void* pUserData, int offset, drwav_seek_origin origin)
+{
+ return fseek((FILE*)pUserData, offset, (origin == drwav_seek_origin_current) ? SEEK_CUR : SEEK_SET) == 0;
+}
+
+DRWAV_API drwav_bool32 drwav_init_file(drwav* pWav, const char* filename, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ return drwav_init_file_ex(pWav, filename, NULL, NULL, 0, pAllocationCallbacks);
+}
+
+
+static drwav_bool32 drwav_init_file__internal_FILE(drwav* pWav, FILE* pFile, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ drwav_bool32 result;
+
+ result = drwav_preinit(pWav, drwav__on_read_stdio, drwav__on_seek_stdio, (void*)pFile, pAllocationCallbacks);
+ if (result != DRWAV_TRUE) {
+ fclose(pFile);
+ return result;
+ }
+
+ result = drwav_init__internal(pWav, onChunk, pChunkUserData, flags);
+ if (result != DRWAV_TRUE) {
+ fclose(pFile);
+ return result;
+ }
+
+ return DRWAV_TRUE;
+}
+
+DRWAV_API drwav_bool32 drwav_init_file_ex(drwav* pWav, const char* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ FILE* pFile;
+ if (drwav_fopen(&pFile, filename, "rb") != DRWAV_SUCCESS) {
+ return DRWAV_FALSE;
+ }
+
+ /* This takes ownership of the FILE* object. */
+ return drwav_init_file__internal_FILE(pWav, pFile, onChunk, pChunkUserData, flags, pAllocationCallbacks);
+}
+
+DRWAV_API drwav_bool32 drwav_init_file_w(drwav* pWav, const wchar_t* filename, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ return drwav_init_file_ex_w(pWav, filename, NULL, NULL, 0, pAllocationCallbacks);
+}
+
+DRWAV_API drwav_bool32 drwav_init_file_ex_w(drwav* pWav, const wchar_t* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ FILE* pFile;
+ if (drwav_wfopen(&pFile, filename, L"rb", pAllocationCallbacks) != DRWAV_SUCCESS) {
+ return DRWAV_FALSE;
+ }
+
+ /* This takes ownership of the FILE* object. */
+ return drwav_init_file__internal_FILE(pWav, pFile, onChunk, pChunkUserData, flags, pAllocationCallbacks);
+}
+
+
+static drwav_bool32 drwav_init_file_write__internal_FILE(drwav* pWav, FILE* pFile, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ drwav_bool32 result;
+
+ result = drwav_preinit_write(pWav, pFormat, isSequential, drwav__on_write_stdio, drwav__on_seek_stdio, (void*)pFile, pAllocationCallbacks);
+ if (result != DRWAV_TRUE) {
+ fclose(pFile);
+ return result;
+ }
+
+ result = drwav_init_write__internal(pWav, pFormat, totalSampleCount);
+ if (result != DRWAV_TRUE) {
+ fclose(pFile);
+ return result;
+ }
+
+ return DRWAV_TRUE;
+}
+
+static drwav_bool32 drwav_init_file_write__internal(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ FILE* pFile;
+ if (drwav_fopen(&pFile, filename, "wb") != DRWAV_SUCCESS) {
+ return DRWAV_FALSE;
+ }
+
+ /* This takes ownership of the FILE* object. */
+ return drwav_init_file_write__internal_FILE(pWav, pFile, pFormat, totalSampleCount, isSequential, pAllocationCallbacks);
+}
+
+static drwav_bool32 drwav_init_file_write_w__internal(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ FILE* pFile;
+ if (drwav_wfopen(&pFile, filename, L"wb", pAllocationCallbacks) != DRWAV_SUCCESS) {
+ return DRWAV_FALSE;
+ }
+
+ /* This takes ownership of the FILE* object. */
+ return drwav_init_file_write__internal_FILE(pWav, pFile, pFormat, totalSampleCount, isSequential, pAllocationCallbacks);
+}
+
+DRWAV_API drwav_bool32 drwav_init_file_write(drwav* pWav, const char* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ return drwav_init_file_write__internal(pWav, filename, pFormat, 0, DRWAV_FALSE, pAllocationCallbacks);
+}
+
+DRWAV_API drwav_bool32 drwav_init_file_write_sequential(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ return drwav_init_file_write__internal(pWav, filename, pFormat, totalSampleCount, DRWAV_TRUE, pAllocationCallbacks);
+}
+
+DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pFormat == NULL) {
+ return DRWAV_FALSE;
+ }
+
+ return drwav_init_file_write_sequential(pWav, filename, pFormat, totalPCMFrameCount*pFormat->channels, pAllocationCallbacks);
+}
+
+DRWAV_API drwav_bool32 drwav_init_file_write_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ return drwav_init_file_write_w__internal(pWav, filename, pFormat, 0, DRWAV_FALSE, pAllocationCallbacks);
+}
+
+DRWAV_API drwav_bool32 drwav_init_file_write_sequential_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ return drwav_init_file_write_w__internal(pWav, filename, pFormat, totalSampleCount, DRWAV_TRUE, pAllocationCallbacks);
+}
+
+DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pFormat == NULL) {
+ return DRWAV_FALSE;
+ }
+
+ return drwav_init_file_write_sequential_w(pWav, filename, pFormat, totalPCMFrameCount*pFormat->channels, pAllocationCallbacks);
+}
+#endif /* DR_WAV_NO_STDIO */
+
+
+static size_t drwav__on_read_memory(void* pUserData, void* pBufferOut, size_t bytesToRead)
+{
+ drwav* pWav = (drwav*)pUserData;
+ size_t bytesRemaining;
+
+ DRWAV_ASSERT(pWav != NULL);
+ DRWAV_ASSERT(pWav->memoryStream.dataSize >= pWav->memoryStream.currentReadPos);
+
+ bytesRemaining = pWav->memoryStream.dataSize - pWav->memoryStream.currentReadPos;
+ if (bytesToRead > bytesRemaining) {
+ bytesToRead = bytesRemaining;
+ }
+
+ if (bytesToRead > 0) {
+ DRWAV_COPY_MEMORY(pBufferOut, pWav->memoryStream.data + pWav->memoryStream.currentReadPos, bytesToRead);
+ pWav->memoryStream.currentReadPos += bytesToRead;
+ }
+
+ return bytesToRead;
+}
+
+static drwav_bool32 drwav__on_seek_memory(void* pUserData, int offset, drwav_seek_origin origin)
+{
+ drwav* pWav = (drwav*)pUserData;
+ DRWAV_ASSERT(pWav != NULL);
+
+ if (origin == drwav_seek_origin_current) {
+ if (offset > 0) {
+ if (pWav->memoryStream.currentReadPos + offset > pWav->memoryStream.dataSize) {
+ return DRWAV_FALSE; /* Trying to seek too far forward. */
+ }
+ } else {
+ if (pWav->memoryStream.currentReadPos < (size_t)-offset) {
+ return DRWAV_FALSE; /* Trying to seek too far backwards. */
+ }
+ }
+
+ /* This will never underflow thanks to the clamps above. */
+ pWav->memoryStream.currentReadPos += offset;
+ } else {
+ if ((drwav_uint32)offset <= pWav->memoryStream.dataSize) {
+ pWav->memoryStream.currentReadPos = offset;
+ } else {
+ return DRWAV_FALSE; /* Trying to seek too far forward. */
+ }
+ }
+
+ return DRWAV_TRUE;
+}
+
+static size_t drwav__on_write_memory(void* pUserData, const void* pDataIn, size_t bytesToWrite)
+{
+ drwav* pWav = (drwav*)pUserData;
+ size_t bytesRemaining;
+
+ DRWAV_ASSERT(pWav != NULL);
+ DRWAV_ASSERT(pWav->memoryStreamWrite.dataCapacity >= pWav->memoryStreamWrite.currentWritePos);
+
+ bytesRemaining = pWav->memoryStreamWrite.dataCapacity - pWav->memoryStreamWrite.currentWritePos;
+ if (bytesRemaining < bytesToWrite) {
+ /* Need to reallocate. */
+ void* pNewData;
+ size_t newDataCapacity = (pWav->memoryStreamWrite.dataCapacity == 0) ? 256 : pWav->memoryStreamWrite.dataCapacity * 2;
+
+ /* If doubling wasn't enough, just make it the minimum required size to write the data. */
+ if ((newDataCapacity - pWav->memoryStreamWrite.currentWritePos) < bytesToWrite) {
+ newDataCapacity = pWav->memoryStreamWrite.currentWritePos + bytesToWrite;
+ }
+
+ pNewData = drwav__realloc_from_callbacks(*pWav->memoryStreamWrite.ppData, newDataCapacity, pWav->memoryStreamWrite.dataCapacity, &pWav->allocationCallbacks);
+ if (pNewData == NULL) {
+ return 0;
+ }
+
+ *pWav->memoryStreamWrite.ppData = pNewData;
+ pWav->memoryStreamWrite.dataCapacity = newDataCapacity;
+ }
+
+ DRWAV_COPY_MEMORY(((drwav_uint8*)(*pWav->memoryStreamWrite.ppData)) + pWav->memoryStreamWrite.currentWritePos, pDataIn, bytesToWrite);
+
+ pWav->memoryStreamWrite.currentWritePos += bytesToWrite;
+ if (pWav->memoryStreamWrite.dataSize < pWav->memoryStreamWrite.currentWritePos) {
+ pWav->memoryStreamWrite.dataSize = pWav->memoryStreamWrite.currentWritePos;
+ }
+
+ *pWav->memoryStreamWrite.pDataSize = pWav->memoryStreamWrite.dataSize;
+
+ return bytesToWrite;
+}
+
+static drwav_bool32 drwav__on_seek_memory_write(void* pUserData, int offset, drwav_seek_origin origin)
+{
+ drwav* pWav = (drwav*)pUserData;
+ DRWAV_ASSERT(pWav != NULL);
+
+ if (origin == drwav_seek_origin_current) {
+ if (offset > 0) {
+ if (pWav->memoryStreamWrite.currentWritePos + offset > pWav->memoryStreamWrite.dataSize) {
+ offset = (int)(pWav->memoryStreamWrite.dataSize - pWav->memoryStreamWrite.currentWritePos); /* Trying to seek too far forward. */
+ }
+ } else {
+ if (pWav->memoryStreamWrite.currentWritePos < (size_t)-offset) {
+ offset = -(int)pWav->memoryStreamWrite.currentWritePos; /* Trying to seek too far backwards. */
+ }
+ }
+
+ /* This will never underflow thanks to the clamps above. */
+ pWav->memoryStreamWrite.currentWritePos += offset;
+ } else {
+ if ((drwav_uint32)offset <= pWav->memoryStreamWrite.dataSize) {
+ pWav->memoryStreamWrite.currentWritePos = offset;
+ } else {
+ pWav->memoryStreamWrite.currentWritePos = pWav->memoryStreamWrite.dataSize; /* Trying to seek too far forward. */
+ }
+ }
+
+ return DRWAV_TRUE;
+}
+
+DRWAV_API drwav_bool32 drwav_init_memory(drwav* pWav, const void* data, size_t dataSize, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ return drwav_init_memory_ex(pWav, data, dataSize, NULL, NULL, 0, pAllocationCallbacks);
+}
+
+DRWAV_API drwav_bool32 drwav_init_memory_ex(drwav* pWav, const void* data, size_t dataSize, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (data == NULL || dataSize == 0) {
+ return DRWAV_FALSE;
+ }
+
+ if (!drwav_preinit(pWav, drwav__on_read_memory, drwav__on_seek_memory, pWav, pAllocationCallbacks)) {
+ return DRWAV_FALSE;
+ }
+
+ pWav->memoryStream.data = (const drwav_uint8*)data;
+ pWav->memoryStream.dataSize = dataSize;
+ pWav->memoryStream.currentReadPos = 0;
+
+ return drwav_init__internal(pWav, onChunk, pChunkUserData, flags);
+}
+
+
+static drwav_bool32 drwav_init_memory_write__internal(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (ppData == NULL || pDataSize == NULL) {
+ return DRWAV_FALSE;
+ }
+
+ *ppData = NULL; /* Important because we're using realloc()! */
+ *pDataSize = 0;
+
+ if (!drwav_preinit_write(pWav, pFormat, isSequential, drwav__on_write_memory, drwav__on_seek_memory_write, pWav, pAllocationCallbacks)) {
+ return DRWAV_FALSE;
+ }
+
+ pWav->memoryStreamWrite.ppData = ppData;
+ pWav->memoryStreamWrite.pDataSize = pDataSize;
+ pWav->memoryStreamWrite.dataSize = 0;
+ pWav->memoryStreamWrite.dataCapacity = 0;
+ pWav->memoryStreamWrite.currentWritePos = 0;
+
+ return drwav_init_write__internal(pWav, pFormat, totalSampleCount);
+}
+
+DRWAV_API drwav_bool32 drwav_init_memory_write(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ return drwav_init_memory_write__internal(pWav, ppData, pDataSize, pFormat, 0, DRWAV_FALSE, pAllocationCallbacks);
+}
+
+DRWAV_API drwav_bool32 drwav_init_memory_write_sequential(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ return drwav_init_memory_write__internal(pWav, ppData, pDataSize, pFormat, totalSampleCount, DRWAV_TRUE, pAllocationCallbacks);
+}
+
+DRWAV_API drwav_bool32 drwav_init_memory_write_sequential_pcm_frames(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pFormat == NULL) {
+ return DRWAV_FALSE;
+ }
+
+ return drwav_init_memory_write_sequential(pWav, ppData, pDataSize, pFormat, totalPCMFrameCount*pFormat->channels, pAllocationCallbacks);
+}
+
+
+
+DRWAV_API drwav_result drwav_uninit(drwav* pWav)
+{
+ drwav_result result = DRWAV_SUCCESS;
+
+ if (pWav == NULL) {
+ return DRWAV_INVALID_ARGS;
+ }
+
+ /*
+ If the drwav object was opened in write mode we'll need to finalize a few things:
+ - Make sure the "data" chunk is aligned to 16-bits for RIFF containers, or 64 bits for W64 containers.
+ - Set the size of the "data" chunk.
+ */
+ if (pWav->onWrite != NULL) {
+ drwav_uint32 paddingSize = 0;
+
+ /* Padding. Do not adjust pWav->dataChunkDataSize - this should not include the padding. */
+ if (pWav->container == drwav_container_riff || pWav->container == drwav_container_rf64) {
+ paddingSize = drwav__chunk_padding_size_riff(pWav->dataChunkDataSize);
+ } else {
+ paddingSize = drwav__chunk_padding_size_w64(pWav->dataChunkDataSize);
+ }
+
+ if (paddingSize > 0) {
+ drwav_uint64 paddingData = 0;
+ drwav__write(pWav, &paddingData, paddingSize); /* Byte order does not matter for this. */
+ }
+
+ /*
+ Chunk sizes. When using sequential mode, these will have been filled in at initialization time. We only need
+ to do this when using non-sequential mode.
+ */
+ if (pWav->onSeek && !pWav->isSequentialWrite) {
+ if (pWav->container == drwav_container_riff) {
+ /* The "RIFF" chunk size. */
+ if (pWav->onSeek(pWav->pUserData, 4, drwav_seek_origin_start)) {
+ drwav_uint32 riffChunkSize = drwav__riff_chunk_size_riff(pWav->dataChunkDataSize);
+ drwav__write_u32ne_to_le(pWav, riffChunkSize);
+ }
+
+ /* the "data" chunk size. */
+ if (pWav->onSeek(pWav->pUserData, (int)pWav->dataChunkDataPos + 4, drwav_seek_origin_start)) {
+ drwav_uint32 dataChunkSize = drwav__data_chunk_size_riff(pWav->dataChunkDataSize);
+ drwav__write_u32ne_to_le(pWav, dataChunkSize);
+ }
+ } else if (pWav->container == drwav_container_w64) {
+ /* The "RIFF" chunk size. */
+ if (pWav->onSeek(pWav->pUserData, 16, drwav_seek_origin_start)) {
+ drwav_uint64 riffChunkSize = drwav__riff_chunk_size_w64(pWav->dataChunkDataSize);
+ drwav__write_u64ne_to_le(pWav, riffChunkSize);
+ }
+
+ /* The "data" chunk size. */
+ if (pWav->onSeek(pWav->pUserData, (int)pWav->dataChunkDataPos + 16, drwav_seek_origin_start)) {
+ drwav_uint64 dataChunkSize = drwav__data_chunk_size_w64(pWav->dataChunkDataSize);
+ drwav__write_u64ne_to_le(pWav, dataChunkSize);
+ }
+ } else if (pWav->container == drwav_container_rf64) {
+ /* We only need to update the ds64 chunk. The "RIFF" and "data" chunks always have their sizes set to 0xFFFFFFFF for RF64. */
+ int ds64BodyPos = 12 + 8;
+
+ /* The "RIFF" chunk size. */
+ if (pWav->onSeek(pWav->pUserData, ds64BodyPos + 0, drwav_seek_origin_start)) {
+ drwav_uint64 riffChunkSize = drwav__riff_chunk_size_rf64(pWav->dataChunkDataSize);
+ drwav__write_u64ne_to_le(pWav, riffChunkSize);
+ }
+
+ /* The "data" chunk size. */
+ if (pWav->onSeek(pWav->pUserData, ds64BodyPos + 8, drwav_seek_origin_start)) {
+ drwav_uint64 dataChunkSize = drwav__data_chunk_size_rf64(pWav->dataChunkDataSize);
+ drwav__write_u64ne_to_le(pWav, dataChunkSize);
+ }
+ }
+ }
+
+ /* Validation for sequential mode. */
+ if (pWav->isSequentialWrite) {
+ if (pWav->dataChunkDataSize != pWav->dataChunkDataSizeTargetWrite) {
+ result = DRWAV_INVALID_FILE;
+ }
+ }
+ }
+
+#ifndef DR_WAV_NO_STDIO
+ /*
+ If we opened the file with drwav_open_file() we will want to close the file handle. We can know whether or not drwav_open_file()
+ was used by looking at the onRead and onSeek callbacks.
+ */
+ if (pWav->onRead == drwav__on_read_stdio || pWav->onWrite == drwav__on_write_stdio) {
+ fclose((FILE*)pWav->pUserData);
+ }
+#endif
+
+ return result;
+}
+
+
+
+DRWAV_API size_t drwav_read_raw(drwav* pWav, size_t bytesToRead, void* pBufferOut)
+{
+ size_t bytesRead;
+
+ if (pWav == NULL || bytesToRead == 0) {
+ return 0;
+ }
+
+ if (bytesToRead > pWav->bytesRemaining) {
+ bytesToRead = (size_t)pWav->bytesRemaining;
+ }
+
+ if (pBufferOut != NULL) {
+ bytesRead = pWav->onRead(pWav->pUserData, pBufferOut, bytesToRead);
+ } else {
+ /* We need to seek. If we fail, we need to read-and-discard to make sure we get a good byte count. */
+ bytesRead = 0;
+ while (bytesRead < bytesToRead) {
+ size_t bytesToSeek = (bytesToRead - bytesRead);
+ if (bytesToSeek > 0x7FFFFFFF) {
+ bytesToSeek = 0x7FFFFFFF;
+ }
+
+ if (pWav->onSeek(pWav->pUserData, (int)bytesToSeek, drwav_seek_origin_current) == DRWAV_FALSE) {
+ break;
+ }
+
+ bytesRead += bytesToSeek;
+ }
+
+ /* When we get here we may need to read-and-discard some data. */
+ while (bytesRead < bytesToRead) {
+ drwav_uint8 buffer[4096];
+ size_t bytesSeeked;
+ size_t bytesToSeek = (bytesToRead - bytesRead);
+ if (bytesToSeek > sizeof(buffer)) {
+ bytesToSeek = sizeof(buffer);
+ }
+
+ bytesSeeked = pWav->onRead(pWav->pUserData, buffer, bytesToSeek);
+ bytesRead += bytesSeeked;
+
+ if (bytesSeeked < bytesToSeek) {
+ break; /* Reached the end. */
+ }
+ }
+ }
+
+ pWav->bytesRemaining -= bytesRead;
+ return bytesRead;
+}
+
+
+
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_le(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut)
+{
+ drwav_uint32 bytesPerFrame;
+ drwav_uint64 bytesToRead; /* Intentionally uint64 instead of size_t so we can do a check that we're not reading too much on 32-bit builds. */
+
+ if (pWav == NULL || framesToRead == 0) {
+ return 0;
+ }
+
+ /* Cannot use this function for compressed formats. */
+ if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) {
+ return 0;
+ }
+
+ bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+ if (bytesPerFrame == 0) {
+ return 0;
+ }
+
+ /* Don't try to read more samples than can potentially fit in the output buffer. */
+ bytesToRead = framesToRead * bytesPerFrame;
+ if (bytesToRead > DRWAV_SIZE_MAX) {
+ bytesToRead = (DRWAV_SIZE_MAX / bytesPerFrame) * bytesPerFrame; /* Round the number of bytes to read to a clean frame boundary. */
+ }
+
+ /*
+ Doing an explicit check here just to make it clear that we don't want to be attempt to read anything if there's no bytes to read. There
+ *could* be a time where it evaluates to 0 due to overflowing.
+ */
+ if (bytesToRead == 0) {
+ return 0;
+ }
+
+ return drwav_read_raw(pWav, (size_t)bytesToRead, pBufferOut) / bytesPerFrame;
+}
+
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_be(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut)
+{
+ drwav_uint64 framesRead = drwav_read_pcm_frames_le(pWav, framesToRead, pBufferOut);
+
+ if (pBufferOut != NULL) {
+ drwav__bswap_samples(pBufferOut, framesRead*pWav->channels, drwav_get_bytes_per_pcm_frame(pWav)/pWav->channels, pWav->translatedFormatTag);
+ }
+
+ return framesRead;
+}
+
+DRWAV_API drwav_uint64 drwav_read_pcm_frames(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut)
+{
+ if (drwav__is_little_endian()) {
+ return drwav_read_pcm_frames_le(pWav, framesToRead, pBufferOut);
+ } else {
+ return drwav_read_pcm_frames_be(pWav, framesToRead, pBufferOut);
+ }
+}
+
+
+
+DRWAV_API drwav_bool32 drwav_seek_to_first_pcm_frame(drwav* pWav)
+{
+ if (pWav->onWrite != NULL) {
+ return DRWAV_FALSE; /* No seeking in write mode. */
+ }
+
+ if (!pWav->onSeek(pWav->pUserData, (int)pWav->dataChunkDataPos, drwav_seek_origin_start)) {
+ return DRWAV_FALSE;
+ }
+
+ if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) {
+ pWav->compressed.iCurrentPCMFrame = 0;
+
+ /* Cached data needs to be cleared for compressed formats. */
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
+ DRWAV_ZERO_OBJECT(&pWav->msadpcm);
+ } else if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
+ DRWAV_ZERO_OBJECT(&pWav->ima);
+ } else {
+ DRWAV_ASSERT(DRWAV_FALSE); /* If this assertion is triggered it means I've implemented a new compressed format but forgot to add a branch for it here. */
+ }
+ }
+
+ pWav->bytesRemaining = pWav->dataChunkDataSize;
+ return DRWAV_TRUE;
+}
+
+DRWAV_API drwav_bool32 drwav_seek_to_pcm_frame(drwav* pWav, drwav_uint64 targetFrameIndex)
+{
+ /* Seeking should be compatible with wave files > 2GB. */
+
+ if (pWav == NULL || pWav->onSeek == NULL) {
+ return DRWAV_FALSE;
+ }
+
+ /* No seeking in write mode. */
+ if (pWav->onWrite != NULL) {
+ return DRWAV_FALSE;
+ }
+
+ /* If there are no samples, just return DRWAV_TRUE without doing anything. */
+ if (pWav->totalPCMFrameCount == 0) {
+ return DRWAV_TRUE;
+ }
+
+ /* Make sure the sample is clamped. */
+ if (targetFrameIndex >= pWav->totalPCMFrameCount) {
+ targetFrameIndex = pWav->totalPCMFrameCount - 1;
+ }
+
+ /*
+ For compressed formats we just use a slow generic seek. If we are seeking forward we just seek forward. If we are going backwards we need
+ to seek back to the start.
+ */
+ if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) {
+ /* TODO: This can be optimized. */
+
+ /*
+ If we're seeking forward it's simple - just keep reading samples until we hit the sample we're requesting. If we're seeking backwards,
+ we first need to seek back to the start and then just do the same thing as a forward seek.
+ */
+ if (targetFrameIndex < pWav->compressed.iCurrentPCMFrame) {
+ if (!drwav_seek_to_first_pcm_frame(pWav)) {
+ return DRWAV_FALSE;
+ }
+ }
+
+ if (targetFrameIndex > pWav->compressed.iCurrentPCMFrame) {
+ drwav_uint64 offsetInFrames = targetFrameIndex - pWav->compressed.iCurrentPCMFrame;
+
+ drwav_int16 devnull[2048];
+ while (offsetInFrames > 0) {
+ drwav_uint64 framesRead = 0;
+ drwav_uint64 framesToRead = offsetInFrames;
+ if (framesToRead > drwav_countof(devnull)/pWav->channels) {
+ framesToRead = drwav_countof(devnull)/pWav->channels;
+ }
+
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
+ framesRead = drwav_read_pcm_frames_s16__msadpcm(pWav, framesToRead, devnull);
+ } else if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
+ framesRead = drwav_read_pcm_frames_s16__ima(pWav, framesToRead, devnull);
+ } else {
+ DRWAV_ASSERT(DRWAV_FALSE); /* If this assertion is triggered it means I've implemented a new compressed format but forgot to add a branch for it here. */
+ }
+
+ if (framesRead != framesToRead) {
+ return DRWAV_FALSE;
+ }
+
+ offsetInFrames -= framesRead;
+ }
+ }
+ } else {
+ drwav_uint64 totalSizeInBytes;
+ drwav_uint64 currentBytePos;
+ drwav_uint64 targetBytePos;
+ drwav_uint64 offset;
+
+ totalSizeInBytes = pWav->totalPCMFrameCount * drwav_get_bytes_per_pcm_frame(pWav);
+ DRWAV_ASSERT(totalSizeInBytes >= pWav->bytesRemaining);
+
+ currentBytePos = totalSizeInBytes - pWav->bytesRemaining;
+ targetBytePos = targetFrameIndex * drwav_get_bytes_per_pcm_frame(pWav);
+
+ if (currentBytePos < targetBytePos) {
+ /* Offset forwards. */
+ offset = (targetBytePos - currentBytePos);
+ } else {
+ /* Offset backwards. */
+ if (!drwav_seek_to_first_pcm_frame(pWav)) {
+ return DRWAV_FALSE;
+ }
+ offset = targetBytePos;
+ }
+
+ while (offset > 0) {
+ int offset32 = ((offset > INT_MAX) ? INT_MAX : (int)offset);
+ if (!pWav->onSeek(pWav->pUserData, offset32, drwav_seek_origin_current)) {
+ return DRWAV_FALSE;
+ }
+
+ pWav->bytesRemaining -= offset32;
+ offset -= offset32;
+ }
+ }
+
+ return DRWAV_TRUE;
+}
+
+
+DRWAV_API size_t drwav_write_raw(drwav* pWav, size_t bytesToWrite, const void* pData)
+{
+ size_t bytesWritten;
+
+ if (pWav == NULL || bytesToWrite == 0 || pData == NULL) {
+ return 0;
+ }
+
+ bytesWritten = pWav->onWrite(pWav->pUserData, pData, bytesToWrite);
+ pWav->dataChunkDataSize += bytesWritten;
+
+ return bytesWritten;
+}
+
+
+DRWAV_API drwav_uint64 drwav_write_pcm_frames_le(drwav* pWav, drwav_uint64 framesToWrite, const void* pData)
+{
+ drwav_uint64 bytesToWrite;
+ drwav_uint64 bytesWritten;
+ const drwav_uint8* pRunningData;
+
+ if (pWav == NULL || framesToWrite == 0 || pData == NULL) {
+ return 0;
+ }
+
+ bytesToWrite = ((framesToWrite * pWav->channels * pWav->bitsPerSample) / 8);
+ if (bytesToWrite > DRWAV_SIZE_MAX) {
+ return 0;
+ }
+
+ bytesWritten = 0;
+ pRunningData = (const drwav_uint8*)pData;
+
+ while (bytesToWrite > 0) {
+ size_t bytesJustWritten;
+ drwav_uint64 bytesToWriteThisIteration;
+
+ bytesToWriteThisIteration = bytesToWrite;
+ DRWAV_ASSERT(bytesToWriteThisIteration <= DRWAV_SIZE_MAX); /* <-- This is checked above. */
+
+ bytesJustWritten = drwav_write_raw(pWav, (size_t)bytesToWriteThisIteration, pRunningData);
+ if (bytesJustWritten == 0) {
+ break;
+ }
+
+ bytesToWrite -= bytesJustWritten;
+ bytesWritten += bytesJustWritten;
+ pRunningData += bytesJustWritten;
+ }
+
+ return (bytesWritten * 8) / pWav->bitsPerSample / pWav->channels;
+}
+
+DRWAV_API drwav_uint64 drwav_write_pcm_frames_be(drwav* pWav, drwav_uint64 framesToWrite, const void* pData)
+{
+ drwav_uint64 bytesToWrite;
+ drwav_uint64 bytesWritten;
+ drwav_uint32 bytesPerSample;
+ const drwav_uint8* pRunningData;
+
+ if (pWav == NULL || framesToWrite == 0 || pData == NULL) {
+ return 0;
+ }
+
+ bytesToWrite = ((framesToWrite * pWav->channels * pWav->bitsPerSample) / 8);
+ if (bytesToWrite > DRWAV_SIZE_MAX) {
+ return 0;
+ }
+
+ bytesWritten = 0;
+ pRunningData = (const drwav_uint8*)pData;
+
+ bytesPerSample = drwav_get_bytes_per_pcm_frame(pWav) / pWav->channels;
+
+ while (bytesToWrite > 0) {
+ drwav_uint8 temp[4096];
+ drwav_uint32 sampleCount;
+ size_t bytesJustWritten;
+ drwav_uint64 bytesToWriteThisIteration;
+
+ bytesToWriteThisIteration = bytesToWrite;
+ DRWAV_ASSERT(bytesToWriteThisIteration <= DRWAV_SIZE_MAX); /* <-- This is checked above. */
+
+ /*
+ WAV files are always little-endian. We need to byte swap on big-endian architectures. Since our input buffer is read-only we need
+ to use an intermediary buffer for the conversion.
+ */
+ sampleCount = sizeof(temp)/bytesPerSample;
+
+ if (bytesToWriteThisIteration > ((drwav_uint64)sampleCount)*bytesPerSample) {
+ bytesToWriteThisIteration = ((drwav_uint64)sampleCount)*bytesPerSample;
+ }
+
+ DRWAV_COPY_MEMORY(temp, pRunningData, (size_t)bytesToWriteThisIteration);
+ drwav__bswap_samples(temp, sampleCount, bytesPerSample, pWav->translatedFormatTag);
+
+ bytesJustWritten = drwav_write_raw(pWav, (size_t)bytesToWriteThisIteration, temp);
+ if (bytesJustWritten == 0) {
+ break;
+ }
+
+ bytesToWrite -= bytesJustWritten;
+ bytesWritten += bytesJustWritten;
+ pRunningData += bytesJustWritten;
+ }
+
+ return (bytesWritten * 8) / pWav->bitsPerSample / pWav->channels;
+}
+
+DRWAV_API drwav_uint64 drwav_write_pcm_frames(drwav* pWav, drwav_uint64 framesToWrite, const void* pData)
+{
+ if (drwav__is_little_endian()) {
+ return drwav_write_pcm_frames_le(pWav, framesToWrite, pData);
+ } else {
+ return drwav_write_pcm_frames_be(pWav, framesToWrite, pData);
+ }
+}
+
+
+static drwav_uint64 drwav_read_pcm_frames_s16__msadpcm(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
+{
+ drwav_uint64 totalFramesRead = 0;
+
+ DRWAV_ASSERT(pWav != NULL);
+ DRWAV_ASSERT(framesToRead > 0);
+
+ /* TODO: Lots of room for optimization here. */
+
+ while (framesToRead > 0 && pWav->compressed.iCurrentPCMFrame < pWav->totalPCMFrameCount) {
+ /* If there are no cached frames we need to load a new block. */
+ if (pWav->msadpcm.cachedFrameCount == 0 && pWav->msadpcm.bytesRemainingInBlock == 0) {
+ if (pWav->channels == 1) {
+ /* Mono. */
+ drwav_uint8 header[7];
+ if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) {
+ return totalFramesRead;
+ }
+ pWav->msadpcm.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header);
+
+ pWav->msadpcm.predictor[0] = header[0];
+ pWav->msadpcm.delta[0] = drwav__bytes_to_s16(header + 1);
+ pWav->msadpcm.prevFrames[0][1] = (drwav_int32)drwav__bytes_to_s16(header + 3);
+ pWav->msadpcm.prevFrames[0][0] = (drwav_int32)drwav__bytes_to_s16(header + 5);
+ pWav->msadpcm.cachedFrames[2] = pWav->msadpcm.prevFrames[0][0];
+ pWav->msadpcm.cachedFrames[3] = pWav->msadpcm.prevFrames[0][1];
+ pWav->msadpcm.cachedFrameCount = 2;
+ } else {
+ /* Stereo. */
+ drwav_uint8 header[14];
+ if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) {
+ return totalFramesRead;
+ }
+ pWav->msadpcm.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header);
+
+ pWav->msadpcm.predictor[0] = header[0];
+ pWav->msadpcm.predictor[1] = header[1];
+ pWav->msadpcm.delta[0] = drwav__bytes_to_s16(header + 2);
+ pWav->msadpcm.delta[1] = drwav__bytes_to_s16(header + 4);
+ pWav->msadpcm.prevFrames[0][1] = (drwav_int32)drwav__bytes_to_s16(header + 6);
+ pWav->msadpcm.prevFrames[1][1] = (drwav_int32)drwav__bytes_to_s16(header + 8);
+ pWav->msadpcm.prevFrames[0][0] = (drwav_int32)drwav__bytes_to_s16(header + 10);
+ pWav->msadpcm.prevFrames[1][0] = (drwav_int32)drwav__bytes_to_s16(header + 12);
+
+ pWav->msadpcm.cachedFrames[0] = pWav->msadpcm.prevFrames[0][0];
+ pWav->msadpcm.cachedFrames[1] = pWav->msadpcm.prevFrames[1][0];
+ pWav->msadpcm.cachedFrames[2] = pWav->msadpcm.prevFrames[0][1];
+ pWav->msadpcm.cachedFrames[3] = pWav->msadpcm.prevFrames[1][1];
+ pWav->msadpcm.cachedFrameCount = 2;
+ }
+ }
+
+ /* Output anything that's cached. */
+ while (framesToRead > 0 && pWav->msadpcm.cachedFrameCount > 0 && pWav->compressed.iCurrentPCMFrame < pWav->totalPCMFrameCount) {
+ if (pBufferOut != NULL) {
+ drwav_uint32 iSample = 0;
+ for (iSample = 0; iSample < pWav->channels; iSample += 1) {
+ pBufferOut[iSample] = (drwav_int16)pWav->msadpcm.cachedFrames[(drwav_countof(pWav->msadpcm.cachedFrames) - (pWav->msadpcm.cachedFrameCount*pWav->channels)) + iSample];
+ }
+
+ pBufferOut += pWav->channels;
+ }
+
+ framesToRead -= 1;
+ totalFramesRead += 1;
+ pWav->compressed.iCurrentPCMFrame += 1;
+ pWav->msadpcm.cachedFrameCount -= 1;
+ }
+
+ if (framesToRead == 0) {
+ return totalFramesRead;
+ }
+
+
+ /*
+ If there's nothing left in the cache, just go ahead and load more. If there's nothing left to load in the current block we just continue to the next
+ loop iteration which will trigger the loading of a new block.
+ */
+ if (pWav->msadpcm.cachedFrameCount == 0) {
+ if (pWav->msadpcm.bytesRemainingInBlock == 0) {
+ continue;
+ } else {
+ static drwav_int32 adaptationTable[] = {
+ 230, 230, 230, 230, 307, 409, 512, 614,
+ 768, 614, 512, 409, 307, 230, 230, 230
+ };
+ static drwav_int32 coeff1Table[] = { 256, 512, 0, 192, 240, 460, 392 };
+ static drwav_int32 coeff2Table[] = { 0, -256, 0, 64, 0, -208, -232 };
+
+ drwav_uint8 nibbles;
+ drwav_int32 nibble0;
+ drwav_int32 nibble1;
+
+ if (pWav->onRead(pWav->pUserData, &nibbles, 1) != 1) {
+ return totalFramesRead;
+ }
+ pWav->msadpcm.bytesRemainingInBlock -= 1;
+
+ /* TODO: Optimize away these if statements. */
+ nibble0 = ((nibbles & 0xF0) >> 4); if ((nibbles & 0x80)) { nibble0 |= 0xFFFFFFF0UL; }
+ nibble1 = ((nibbles & 0x0F) >> 0); if ((nibbles & 0x08)) { nibble1 |= 0xFFFFFFF0UL; }
+
+ if (pWav->channels == 1) {
+ /* Mono. */
+ drwav_int32 newSample0;
+ drwav_int32 newSample1;
+
+ newSample0 = ((pWav->msadpcm.prevFrames[0][1] * coeff1Table[pWav->msadpcm.predictor[0]]) + (pWav->msadpcm.prevFrames[0][0] * coeff2Table[pWav->msadpcm.predictor[0]])) >> 8;
+ newSample0 += nibble0 * pWav->msadpcm.delta[0];
+ newSample0 = drwav_clamp(newSample0, -32768, 32767);
+
+ pWav->msadpcm.delta[0] = (adaptationTable[((nibbles & 0xF0) >> 4)] * pWav->msadpcm.delta[0]) >> 8;
+ if (pWav->msadpcm.delta[0] < 16) {
+ pWav->msadpcm.delta[0] = 16;
+ }
+
+ pWav->msadpcm.prevFrames[0][0] = pWav->msadpcm.prevFrames[0][1];
+ pWav->msadpcm.prevFrames[0][1] = newSample0;
+
+
+ newSample1 = ((pWav->msadpcm.prevFrames[0][1] * coeff1Table[pWav->msadpcm.predictor[0]]) + (pWav->msadpcm.prevFrames[0][0] * coeff2Table[pWav->msadpcm.predictor[0]])) >> 8;
+ newSample1 += nibble1 * pWav->msadpcm.delta[0];
+ newSample1 = drwav_clamp(newSample1, -32768, 32767);
+
+ pWav->msadpcm.delta[0] = (adaptationTable[((nibbles & 0x0F) >> 0)] * pWav->msadpcm.delta[0]) >> 8;
+ if (pWav->msadpcm.delta[0] < 16) {
+ pWav->msadpcm.delta[0] = 16;
+ }
+
+ pWav->msadpcm.prevFrames[0][0] = pWav->msadpcm.prevFrames[0][1];
+ pWav->msadpcm.prevFrames[0][1] = newSample1;
+
+
+ pWav->msadpcm.cachedFrames[2] = newSample0;
+ pWav->msadpcm.cachedFrames[3] = newSample1;
+ pWav->msadpcm.cachedFrameCount = 2;
+ } else {
+ /* Stereo. */
+ drwav_int32 newSample0;
+ drwav_int32 newSample1;
+
+ /* Left. */
+ newSample0 = ((pWav->msadpcm.prevFrames[0][1] * coeff1Table[pWav->msadpcm.predictor[0]]) + (pWav->msadpcm.prevFrames[0][0] * coeff2Table[pWav->msadpcm.predictor[0]])) >> 8;
+ newSample0 += nibble0 * pWav->msadpcm.delta[0];
+ newSample0 = drwav_clamp(newSample0, -32768, 32767);
+
+ pWav->msadpcm.delta[0] = (adaptationTable[((nibbles & 0xF0) >> 4)] * pWav->msadpcm.delta[0]) >> 8;
+ if (pWav->msadpcm.delta[0] < 16) {
+ pWav->msadpcm.delta[0] = 16;
+ }
+
+ pWav->msadpcm.prevFrames[0][0] = pWav->msadpcm.prevFrames[0][1];
+ pWav->msadpcm.prevFrames[0][1] = newSample0;
+
+
+ /* Right. */
+ newSample1 = ((pWav->msadpcm.prevFrames[1][1] * coeff1Table[pWav->msadpcm.predictor[1]]) + (pWav->msadpcm.prevFrames[1][0] * coeff2Table[pWav->msadpcm.predictor[1]])) >> 8;
+ newSample1 += nibble1 * pWav->msadpcm.delta[1];
+ newSample1 = drwav_clamp(newSample1, -32768, 32767);
+
+ pWav->msadpcm.delta[1] = (adaptationTable[((nibbles & 0x0F) >> 0)] * pWav->msadpcm.delta[1]) >> 8;
+ if (pWav->msadpcm.delta[1] < 16) {
+ pWav->msadpcm.delta[1] = 16;
+ }
+
+ pWav->msadpcm.prevFrames[1][0] = pWav->msadpcm.prevFrames[1][1];
+ pWav->msadpcm.prevFrames[1][1] = newSample1;
+
+ pWav->msadpcm.cachedFrames[2] = newSample0;
+ pWav->msadpcm.cachedFrames[3] = newSample1;
+ pWav->msadpcm.cachedFrameCount = 1;
+ }
+ }
+ }
+ }
+
+ return totalFramesRead;
+}
+
+
+static drwav_uint64 drwav_read_pcm_frames_s16__ima(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
+{
+ drwav_uint64 totalFramesRead = 0;
+ drwav_uint32 iChannel;
+
+ static drwav_int32 indexTable[16] = {
+ -1, -1, -1, -1, 2, 4, 6, 8,
+ -1, -1, -1, -1, 2, 4, 6, 8
+ };
+
+ static drwav_int32 stepTable[89] = {
+ 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
+ 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
+ 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
+ 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
+ 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
+ 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
+ 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
+ 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
+ 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
+ };
+
+ DRWAV_ASSERT(pWav != NULL);
+ DRWAV_ASSERT(framesToRead > 0);
+
+ /* TODO: Lots of room for optimization here. */
+
+ while (framesToRead > 0 && pWav->compressed.iCurrentPCMFrame < pWav->totalPCMFrameCount) {
+ /* If there are no cached samples we need to load a new block. */
+ if (pWav->ima.cachedFrameCount == 0 && pWav->ima.bytesRemainingInBlock == 0) {
+ if (pWav->channels == 1) {
+ /* Mono. */
+ drwav_uint8 header[4];
+ if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) {
+ return totalFramesRead;
+ }
+ pWav->ima.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header);
+
+ if (header[2] >= drwav_countof(stepTable)) {
+ pWav->onSeek(pWav->pUserData, pWav->ima.bytesRemainingInBlock, drwav_seek_origin_current);
+ pWav->ima.bytesRemainingInBlock = 0;
+ return totalFramesRead; /* Invalid data. */
+ }
+
+ pWav->ima.predictor[0] = drwav__bytes_to_s16(header + 0);
+ pWav->ima.stepIndex[0] = header[2];
+ pWav->ima.cachedFrames[drwav_countof(pWav->ima.cachedFrames) - 1] = pWav->ima.predictor[0];
+ pWav->ima.cachedFrameCount = 1;
+ } else {
+ /* Stereo. */
+ drwav_uint8 header[8];
+ if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) {
+ return totalFramesRead;
+ }
+ pWav->ima.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header);
+
+ if (header[2] >= drwav_countof(stepTable) || header[6] >= drwav_countof(stepTable)) {
+ pWav->onSeek(pWav->pUserData, pWav->ima.bytesRemainingInBlock, drwav_seek_origin_current);
+ pWav->ima.bytesRemainingInBlock = 0;
+ return totalFramesRead; /* Invalid data. */
+ }
+
+ pWav->ima.predictor[0] = drwav__bytes_to_s16(header + 0);
+ pWav->ima.stepIndex[0] = header[2];
+ pWav->ima.predictor[1] = drwav__bytes_to_s16(header + 4);
+ pWav->ima.stepIndex[1] = header[6];
+
+ pWav->ima.cachedFrames[drwav_countof(pWav->ima.cachedFrames) - 2] = pWav->ima.predictor[0];
+ pWav->ima.cachedFrames[drwav_countof(pWav->ima.cachedFrames) - 1] = pWav->ima.predictor[1];
+ pWav->ima.cachedFrameCount = 1;
+ }
+ }
+
+ /* Output anything that's cached. */
+ while (framesToRead > 0 && pWav->ima.cachedFrameCount > 0 && pWav->compressed.iCurrentPCMFrame < pWav->totalPCMFrameCount) {
+ if (pBufferOut != NULL) {
+ drwav_uint32 iSample;
+ for (iSample = 0; iSample < pWav->channels; iSample += 1) {
+ pBufferOut[iSample] = (drwav_int16)pWav->ima.cachedFrames[(drwav_countof(pWav->ima.cachedFrames) - (pWav->ima.cachedFrameCount*pWav->channels)) + iSample];
+ }
+ pBufferOut += pWav->channels;
+ }
+
+ framesToRead -= 1;
+ totalFramesRead += 1;
+ pWav->compressed.iCurrentPCMFrame += 1;
+ pWav->ima.cachedFrameCount -= 1;
+ }
+
+ if (framesToRead == 0) {
+ return totalFramesRead;
+ }
+
+ /*
+ If there's nothing left in the cache, just go ahead and load more. If there's nothing left to load in the current block we just continue to the next
+ loop iteration which will trigger the loading of a new block.
+ */
+ if (pWav->ima.cachedFrameCount == 0) {
+ if (pWav->ima.bytesRemainingInBlock == 0) {
+ continue;
+ } else {
+ /*
+ From what I can tell with stereo streams, it looks like every 4 bytes (8 samples) is for one channel. So it goes 4 bytes for the
+ left channel, 4 bytes for the right channel.
+ */
+ pWav->ima.cachedFrameCount = 8;
+ for (iChannel = 0; iChannel < pWav->channels; ++iChannel) {
+ drwav_uint32 iByte;
+ drwav_uint8 nibbles[4];
+ if (pWav->onRead(pWav->pUserData, &nibbles, 4) != 4) {
+ pWav->ima.cachedFrameCount = 0;
+ return totalFramesRead;
+ }
+ pWav->ima.bytesRemainingInBlock -= 4;
+
+ for (iByte = 0; iByte < 4; ++iByte) {
+ drwav_uint8 nibble0 = ((nibbles[iByte] & 0x0F) >> 0);
+ drwav_uint8 nibble1 = ((nibbles[iByte] & 0xF0) >> 4);
+
+ drwav_int32 step = stepTable[pWav->ima.stepIndex[iChannel]];
+ drwav_int32 predictor = pWav->ima.predictor[iChannel];
+
+ drwav_int32 diff = step >> 3;
+ if (nibble0 & 1) diff += step >> 2;
+ if (nibble0 & 2) diff += step >> 1;
+ if (nibble0 & 4) diff += step;
+ if (nibble0 & 8) diff = -diff;
+
+ predictor = drwav_clamp(predictor + diff, -32768, 32767);
+ pWav->ima.predictor[iChannel] = predictor;
+ pWav->ima.stepIndex[iChannel] = drwav_clamp(pWav->ima.stepIndex[iChannel] + indexTable[nibble0], 0, (drwav_int32)drwav_countof(stepTable)-1);
+ pWav->ima.cachedFrames[(drwav_countof(pWav->ima.cachedFrames) - (pWav->ima.cachedFrameCount*pWav->channels)) + (iByte*2+0)*pWav->channels + iChannel] = predictor;
+
+
+ step = stepTable[pWav->ima.stepIndex[iChannel]];
+ predictor = pWav->ima.predictor[iChannel];
+
+ diff = step >> 3;
+ if (nibble1 & 1) diff += step >> 2;
+ if (nibble1 & 2) diff += step >> 1;
+ if (nibble1 & 4) diff += step;
+ if (nibble1 & 8) diff = -diff;
+
+ predictor = drwav_clamp(predictor + diff, -32768, 32767);
+ pWav->ima.predictor[iChannel] = predictor;
+ pWav->ima.stepIndex[iChannel] = drwav_clamp(pWav->ima.stepIndex[iChannel] + indexTable[nibble1], 0, (drwav_int32)drwav_countof(stepTable)-1);
+ pWav->ima.cachedFrames[(drwav_countof(pWav->ima.cachedFrames) - (pWav->ima.cachedFrameCount*pWav->channels)) + (iByte*2+1)*pWav->channels + iChannel] = predictor;
+ }
+ }
+ }
+ }
+ }
+
+ return totalFramesRead;
+}
+
+
+#ifndef DR_WAV_NO_CONVERSION_API
+static unsigned short g_drwavAlawTable[256] = {
+ 0xEA80, 0xEB80, 0xE880, 0xE980, 0xEE80, 0xEF80, 0xEC80, 0xED80, 0xE280, 0xE380, 0xE080, 0xE180, 0xE680, 0xE780, 0xE480, 0xE580,
+ 0xF540, 0xF5C0, 0xF440, 0xF4C0, 0xF740, 0xF7C0, 0xF640, 0xF6C0, 0xF140, 0xF1C0, 0xF040, 0xF0C0, 0xF340, 0xF3C0, 0xF240, 0xF2C0,
+ 0xAA00, 0xAE00, 0xA200, 0xA600, 0xBA00, 0xBE00, 0xB200, 0xB600, 0x8A00, 0x8E00, 0x8200, 0x8600, 0x9A00, 0x9E00, 0x9200, 0x9600,
+ 0xD500, 0xD700, 0xD100, 0xD300, 0xDD00, 0xDF00, 0xD900, 0xDB00, 0xC500, 0xC700, 0xC100, 0xC300, 0xCD00, 0xCF00, 0xC900, 0xCB00,
+ 0xFEA8, 0xFEB8, 0xFE88, 0xFE98, 0xFEE8, 0xFEF8, 0xFEC8, 0xFED8, 0xFE28, 0xFE38, 0xFE08, 0xFE18, 0xFE68, 0xFE78, 0xFE48, 0xFE58,
+ 0xFFA8, 0xFFB8, 0xFF88, 0xFF98, 0xFFE8, 0xFFF8, 0xFFC8, 0xFFD8, 0xFF28, 0xFF38, 0xFF08, 0xFF18, 0xFF68, 0xFF78, 0xFF48, 0xFF58,
+ 0xFAA0, 0xFAE0, 0xFA20, 0xFA60, 0xFBA0, 0xFBE0, 0xFB20, 0xFB60, 0xF8A0, 0xF8E0, 0xF820, 0xF860, 0xF9A0, 0xF9E0, 0xF920, 0xF960,
+ 0xFD50, 0xFD70, 0xFD10, 0xFD30, 0xFDD0, 0xFDF0, 0xFD90, 0xFDB0, 0xFC50, 0xFC70, 0xFC10, 0xFC30, 0xFCD0, 0xFCF0, 0xFC90, 0xFCB0,
+ 0x1580, 0x1480, 0x1780, 0x1680, 0x1180, 0x1080, 0x1380, 0x1280, 0x1D80, 0x1C80, 0x1F80, 0x1E80, 0x1980, 0x1880, 0x1B80, 0x1A80,
+ 0x0AC0, 0x0A40, 0x0BC0, 0x0B40, 0x08C0, 0x0840, 0x09C0, 0x0940, 0x0EC0, 0x0E40, 0x0FC0, 0x0F40, 0x0CC0, 0x0C40, 0x0DC0, 0x0D40,
+ 0x5600, 0x5200, 0x5E00, 0x5A00, 0x4600, 0x4200, 0x4E00, 0x4A00, 0x7600, 0x7200, 0x7E00, 0x7A00, 0x6600, 0x6200, 0x6E00, 0x6A00,
+ 0x2B00, 0x2900, 0x2F00, 0x2D00, 0x2300, 0x2100, 0x2700, 0x2500, 0x3B00, 0x3900, 0x3F00, 0x3D00, 0x3300, 0x3100, 0x3700, 0x3500,
+ 0x0158, 0x0148, 0x0178, 0x0168, 0x0118, 0x0108, 0x0138, 0x0128, 0x01D8, 0x01C8, 0x01F8, 0x01E8, 0x0198, 0x0188, 0x01B8, 0x01A8,
+ 0x0058, 0x0048, 0x0078, 0x0068, 0x0018, 0x0008, 0x0038, 0x0028, 0x00D8, 0x00C8, 0x00F8, 0x00E8, 0x0098, 0x0088, 0x00B8, 0x00A8,
+ 0x0560, 0x0520, 0x05E0, 0x05A0, 0x0460, 0x0420, 0x04E0, 0x04A0, 0x0760, 0x0720, 0x07E0, 0x07A0, 0x0660, 0x0620, 0x06E0, 0x06A0,
+ 0x02B0, 0x0290, 0x02F0, 0x02D0, 0x0230, 0x0210, 0x0270, 0x0250, 0x03B0, 0x0390, 0x03F0, 0x03D0, 0x0330, 0x0310, 0x0370, 0x0350
+};
+
+static unsigned short g_drwavMulawTable[256] = {
+ 0x8284, 0x8684, 0x8A84, 0x8E84, 0x9284, 0x9684, 0x9A84, 0x9E84, 0xA284, 0xA684, 0xAA84, 0xAE84, 0xB284, 0xB684, 0xBA84, 0xBE84,
+ 0xC184, 0xC384, 0xC584, 0xC784, 0xC984, 0xCB84, 0xCD84, 0xCF84, 0xD184, 0xD384, 0xD584, 0xD784, 0xD984, 0xDB84, 0xDD84, 0xDF84,
+ 0xE104, 0xE204, 0xE304, 0xE404, 0xE504, 0xE604, 0xE704, 0xE804, 0xE904, 0xEA04, 0xEB04, 0xEC04, 0xED04, 0xEE04, 0xEF04, 0xF004,
+ 0xF0C4, 0xF144, 0xF1C4, 0xF244, 0xF2C4, 0xF344, 0xF3C4, 0xF444, 0xF4C4, 0xF544, 0xF5C4, 0xF644, 0xF6C4, 0xF744, 0xF7C4, 0xF844,
+ 0xF8A4, 0xF8E4, 0xF924, 0xF964, 0xF9A4, 0xF9E4, 0xFA24, 0xFA64, 0xFAA4, 0xFAE4, 0xFB24, 0xFB64, 0xFBA4, 0xFBE4, 0xFC24, 0xFC64,
+ 0xFC94, 0xFCB4, 0xFCD4, 0xFCF4, 0xFD14, 0xFD34, 0xFD54, 0xFD74, 0xFD94, 0xFDB4, 0xFDD4, 0xFDF4, 0xFE14, 0xFE34, 0xFE54, 0xFE74,
+ 0xFE8C, 0xFE9C, 0xFEAC, 0xFEBC, 0xFECC, 0xFEDC, 0xFEEC, 0xFEFC, 0xFF0C, 0xFF1C, 0xFF2C, 0xFF3C, 0xFF4C, 0xFF5C, 0xFF6C, 0xFF7C,
+ 0xFF88, 0xFF90, 0xFF98, 0xFFA0, 0xFFA8, 0xFFB0, 0xFFB8, 0xFFC0, 0xFFC8, 0xFFD0, 0xFFD8, 0xFFE0, 0xFFE8, 0xFFF0, 0xFFF8, 0x0000,
+ 0x7D7C, 0x797C, 0x757C, 0x717C, 0x6D7C, 0x697C, 0x657C, 0x617C, 0x5D7C, 0x597C, 0x557C, 0x517C, 0x4D7C, 0x497C, 0x457C, 0x417C,
+ 0x3E7C, 0x3C7C, 0x3A7C, 0x387C, 0x367C, 0x347C, 0x327C, 0x307C, 0x2E7C, 0x2C7C, 0x2A7C, 0x287C, 0x267C, 0x247C, 0x227C, 0x207C,
+ 0x1EFC, 0x1DFC, 0x1CFC, 0x1BFC, 0x1AFC, 0x19FC, 0x18FC, 0x17FC, 0x16FC, 0x15FC, 0x14FC, 0x13FC, 0x12FC, 0x11FC, 0x10FC, 0x0FFC,
+ 0x0F3C, 0x0EBC, 0x0E3C, 0x0DBC, 0x0D3C, 0x0CBC, 0x0C3C, 0x0BBC, 0x0B3C, 0x0ABC, 0x0A3C, 0x09BC, 0x093C, 0x08BC, 0x083C, 0x07BC,
+ 0x075C, 0x071C, 0x06DC, 0x069C, 0x065C, 0x061C, 0x05DC, 0x059C, 0x055C, 0x051C, 0x04DC, 0x049C, 0x045C, 0x041C, 0x03DC, 0x039C,
+ 0x036C, 0x034C, 0x032C, 0x030C, 0x02EC, 0x02CC, 0x02AC, 0x028C, 0x026C, 0x024C, 0x022C, 0x020C, 0x01EC, 0x01CC, 0x01AC, 0x018C,
+ 0x0174, 0x0164, 0x0154, 0x0144, 0x0134, 0x0124, 0x0114, 0x0104, 0x00F4, 0x00E4, 0x00D4, 0x00C4, 0x00B4, 0x00A4, 0x0094, 0x0084,
+ 0x0078, 0x0070, 0x0068, 0x0060, 0x0058, 0x0050, 0x0048, 0x0040, 0x0038, 0x0030, 0x0028, 0x0020, 0x0018, 0x0010, 0x0008, 0x0000
+};
+
+static DRWAV_INLINE drwav_int16 drwav__alaw_to_s16(drwav_uint8 sampleIn)
+{
+ return (short)g_drwavAlawTable[sampleIn];
+}
+
+static DRWAV_INLINE drwav_int16 drwav__mulaw_to_s16(drwav_uint8 sampleIn)
+{
+ return (short)g_drwavMulawTable[sampleIn];
+}
+
+
+
+static void drwav__pcm_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample)
+{
+ unsigned int i;
+
+ /* Special case for 8-bit sample data because it's treated as unsigned. */
+ if (bytesPerSample == 1) {
+ drwav_u8_to_s16(pOut, pIn, totalSampleCount);
+ return;
+ }
+
+
+ /* Slightly more optimal implementation for common formats. */
+ if (bytesPerSample == 2) {
+ for (i = 0; i < totalSampleCount; ++i) {
+ *pOut++ = ((const drwav_int16*)pIn)[i];
+ }
+ return;
+ }
+ if (bytesPerSample == 3) {
+ drwav_s24_to_s16(pOut, pIn, totalSampleCount);
+ return;
+ }
+ if (bytesPerSample == 4) {
+ drwav_s32_to_s16(pOut, (const drwav_int32*)pIn, totalSampleCount);
+ return;
+ }
+
+
+ /* Anything more than 64 bits per sample is not supported. */
+ if (bytesPerSample > 8) {
+ DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut));
+ return;
+ }
+
+
+ /* Generic, slow converter. */
+ for (i = 0; i < totalSampleCount; ++i) {
+ drwav_uint64 sample = 0;
+ unsigned int shift = (8 - bytesPerSample) * 8;
+
+ unsigned int j;
+ for (j = 0; j < bytesPerSample; j += 1) {
+ DRWAV_ASSERT(j < 8);
+ sample |= (drwav_uint64)(pIn[j]) << shift;
+ shift += 8;
+ }
+
+ pIn += j;
+ *pOut++ = (drwav_int16)((drwav_int64)sample >> 48);
+ }
+}
+
+static void drwav__ieee_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample)
+{
+ if (bytesPerSample == 4) {
+ drwav_f32_to_s16(pOut, (const float*)pIn, totalSampleCount);
+ return;
+ } else if (bytesPerSample == 8) {
+ drwav_f64_to_s16(pOut, (const double*)pIn, totalSampleCount);
+ return;
+ } else {
+ /* Only supporting 32- and 64-bit float. Output silence in all other cases. Contributions welcome for 16-bit float. */
+ DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut));
+ return;
+ }
+}
+
+static drwav_uint64 drwav_read_pcm_frames_s16__pcm(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
+{
+ drwav_uint32 bytesPerFrame;
+ drwav_uint64 totalFramesRead;
+ drwav_uint8 sampleData[4096];
+
+ /* Fast path. */
+ if ((pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM && pWav->bitsPerSample == 16) || pBufferOut == NULL) {
+ return drwav_read_pcm_frames(pWav, framesToRead, pBufferOut);
+ }
+
+ bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+ if (bytesPerFrame == 0) {
+ return 0;
+ }
+
+ totalFramesRead = 0;
+
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+ if (framesRead == 0) {
+ break;
+ }
+
+ drwav__pcm_to_s16(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels), bytesPerFrame/pWav->channels);
+
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+
+ return totalFramesRead;
+}
+
+static drwav_uint64 drwav_read_pcm_frames_s16__ieee(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
+{
+ drwav_uint64 totalFramesRead;
+ drwav_uint8 sampleData[4096];
+ drwav_uint32 bytesPerFrame;
+
+ if (pBufferOut == NULL) {
+ return drwav_read_pcm_frames(pWav, framesToRead, NULL);
+ }
+
+ bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+ if (bytesPerFrame == 0) {
+ return 0;
+ }
+
+ totalFramesRead = 0;
+
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+ if (framesRead == 0) {
+ break;
+ }
+
+ drwav__ieee_to_s16(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels), bytesPerFrame/pWav->channels);
+
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+
+ return totalFramesRead;
+}
+
+static drwav_uint64 drwav_read_pcm_frames_s16__alaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
+{
+ drwav_uint64 totalFramesRead;
+ drwav_uint8 sampleData[4096];
+ drwav_uint32 bytesPerFrame;
+
+ if (pBufferOut == NULL) {
+ return drwav_read_pcm_frames(pWav, framesToRead, NULL);
+ }
+
+ bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+ if (bytesPerFrame == 0) {
+ return 0;
+ }
+
+ totalFramesRead = 0;
+
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+ if (framesRead == 0) {
+ break;
+ }
+
+ drwav_alaw_to_s16(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels));
+
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+
+ return totalFramesRead;
+}
+
+static drwav_uint64 drwav_read_pcm_frames_s16__mulaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
+{
+ drwav_uint64 totalFramesRead;
+ drwav_uint8 sampleData[4096];
+ drwav_uint32 bytesPerFrame;
+
+ if (pBufferOut == NULL) {
+ return drwav_read_pcm_frames(pWav, framesToRead, NULL);
+ }
+
+ bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+ if (bytesPerFrame == 0) {
+ return 0;
+ }
+
+ totalFramesRead = 0;
+
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+ if (framesRead == 0) {
+ break;
+ }
+
+ drwav_mulaw_to_s16(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels));
+
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+
+ return totalFramesRead;
+}
+
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
+{
+ if (pWav == NULL || framesToRead == 0) {
+ return 0;
+ }
+
+ if (pBufferOut == NULL) {
+ return drwav_read_pcm_frames(pWav, framesToRead, NULL);
+ }
+
+ /* Don't try to read more samples than can potentially fit in the output buffer. */
+ if (framesToRead * pWav->channels * sizeof(drwav_int16) > DRWAV_SIZE_MAX) {
+ framesToRead = DRWAV_SIZE_MAX / sizeof(drwav_int16) / pWav->channels;
+ }
+
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM) {
+ return drwav_read_pcm_frames_s16__pcm(pWav, framesToRead, pBufferOut);
+ }
+
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT) {
+ return drwav_read_pcm_frames_s16__ieee(pWav, framesToRead, pBufferOut);
+ }
+
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW) {
+ return drwav_read_pcm_frames_s16__alaw(pWav, framesToRead, pBufferOut);
+ }
+
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) {
+ return drwav_read_pcm_frames_s16__mulaw(pWav, framesToRead, pBufferOut);
+ }
+
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
+ return drwav_read_pcm_frames_s16__msadpcm(pWav, framesToRead, pBufferOut);
+ }
+
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
+ return drwav_read_pcm_frames_s16__ima(pWav, framesToRead, pBufferOut);
+ }
+
+ return 0;
+}
+
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16le(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
+{
+ drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, framesToRead, pBufferOut);
+ if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_FALSE) {
+ drwav__bswap_samples_s16(pBufferOut, framesRead*pWav->channels);
+ }
+
+ return framesRead;
+}
+
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16be(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
+{
+ drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, framesToRead, pBufferOut);
+ if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_TRUE) {
+ drwav__bswap_samples_s16(pBufferOut, framesRead*pWav->channels);
+ }
+
+ return framesRead;
+}
+
+
+DRWAV_API void drwav_u8_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+ int r;
+ size_t i;
+ for (i = 0; i < sampleCount; ++i) {
+ int x = pIn[i];
+ r = x << 8;
+ r = r - 32768;
+ pOut[i] = (short)r;
+ }
+}
+
+DRWAV_API void drwav_s24_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+ int r;
+ size_t i;
+ for (i = 0; i < sampleCount; ++i) {
+ int x = ((int)(((unsigned int)(((const drwav_uint8*)pIn)[i*3+0]) << 8) | ((unsigned int)(((const drwav_uint8*)pIn)[i*3+1]) << 16) | ((unsigned int)(((const drwav_uint8*)pIn)[i*3+2])) << 24)) >> 8;
+ r = x >> 8;
+ pOut[i] = (short)r;
+ }
+}
+
+DRWAV_API void drwav_s32_to_s16(drwav_int16* pOut, const drwav_int32* pIn, size_t sampleCount)
+{
+ int r;
+ size_t i;
+ for (i = 0; i < sampleCount; ++i) {
+ int x = pIn[i];
+ r = x >> 16;
+ pOut[i] = (short)r;
+ }
+}
+
+DRWAV_API void drwav_f32_to_s16(drwav_int16* pOut, const float* pIn, size_t sampleCount)
+{
+ int r;
+ size_t i;
+ for (i = 0; i < sampleCount; ++i) {
+ float x = pIn[i];
+ float c;
+ c = ((x < -1) ? -1 : ((x > 1) ? 1 : x));
+ c = c + 1;
+ r = (int)(c * 32767.5f);
+ r = r - 32768;
+ pOut[i] = (short)r;
+ }
+}
+
+DRWAV_API void drwav_f64_to_s16(drwav_int16* pOut, const double* pIn, size_t sampleCount)
+{
+ int r;
+ size_t i;
+ for (i = 0; i < sampleCount; ++i) {
+ double x = pIn[i];
+ double c;
+ c = ((x < -1) ? -1 : ((x > 1) ? 1 : x));
+ c = c + 1;
+ r = (int)(c * 32767.5);
+ r = r - 32768;
+ pOut[i] = (short)r;
+ }
+}
+
+DRWAV_API void drwav_alaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+ size_t i;
+ for (i = 0; i < sampleCount; ++i) {
+ pOut[i] = drwav__alaw_to_s16(pIn[i]);
+ }
+}
+
+DRWAV_API void drwav_mulaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+ size_t i;
+ for (i = 0; i < sampleCount; ++i) {
+ pOut[i] = drwav__mulaw_to_s16(pIn[i]);
+ }
+}
+
+
+
+static void drwav__pcm_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount, unsigned int bytesPerSample)
+{
+ unsigned int i;
+
+ /* Special case for 8-bit sample data because it's treated as unsigned. */
+ if (bytesPerSample == 1) {
+ drwav_u8_to_f32(pOut, pIn, sampleCount);
+ return;
+ }
+
+ /* Slightly more optimal implementation for common formats. */
+ if (bytesPerSample == 2) {
+ drwav_s16_to_f32(pOut, (const drwav_int16*)pIn, sampleCount);
+ return;
+ }
+ if (bytesPerSample == 3) {
+ drwav_s24_to_f32(pOut, pIn, sampleCount);
+ return;
+ }
+ if (bytesPerSample == 4) {
+ drwav_s32_to_f32(pOut, (const drwav_int32*)pIn, sampleCount);
+ return;
+ }
+
+
+ /* Anything more than 64 bits per sample is not supported. */
+ if (bytesPerSample > 8) {
+ DRWAV_ZERO_MEMORY(pOut, sampleCount * sizeof(*pOut));
+ return;
+ }
+
+
+ /* Generic, slow converter. */
+ for (i = 0; i < sampleCount; ++i) {
+ drwav_uint64 sample = 0;
+ unsigned int shift = (8 - bytesPerSample) * 8;
+
+ unsigned int j;
+ for (j = 0; j < bytesPerSample; j += 1) {
+ DRWAV_ASSERT(j < 8);
+ sample |= (drwav_uint64)(pIn[j]) << shift;
+ shift += 8;
+ }
+
+ pIn += j;
+ *pOut++ = (float)((drwav_int64)sample / 9223372036854775807.0);
+ }
+}
+
+static void drwav__ieee_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount, unsigned int bytesPerSample)
+{
+ if (bytesPerSample == 4) {
+ unsigned int i;
+ for (i = 0; i < sampleCount; ++i) {
+ *pOut++ = ((const float*)pIn)[i];
+ }
+ return;
+ } else if (bytesPerSample == 8) {
+ drwav_f64_to_f32(pOut, (const double*)pIn, sampleCount);
+ return;
+ } else {
+ /* Only supporting 32- and 64-bit float. Output silence in all other cases. Contributions welcome for 16-bit float. */
+ DRWAV_ZERO_MEMORY(pOut, sampleCount * sizeof(*pOut));
+ return;
+ }
+}
+
+
+static drwav_uint64 drwav_read_pcm_frames_f32__pcm(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
+{
+ drwav_uint64 totalFramesRead;
+ drwav_uint8 sampleData[4096];
+
+ drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+ if (bytesPerFrame == 0) {
+ return 0;
+ }
+
+ totalFramesRead = 0;
+
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+ if (framesRead == 0) {
+ break;
+ }
+
+ drwav__pcm_to_f32(pBufferOut, sampleData, (size_t)framesRead*pWav->channels, bytesPerFrame/pWav->channels);
+
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+
+ return totalFramesRead;
+}
+
+static drwav_uint64 drwav_read_pcm_frames_f32__msadpcm(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
+{
+ /*
+ We're just going to borrow the implementation from the drwav_read_s16() since ADPCM is a little bit more complicated than other formats and I don't
+ want to duplicate that code.
+ */
+ drwav_uint64 totalFramesRead = 0;
+ drwav_int16 samples16[2048];
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, drwav_min(framesToRead, drwav_countof(samples16)/pWav->channels), samples16);
+ if (framesRead == 0) {
+ break;
+ }
+
+ drwav_s16_to_f32(pBufferOut, samples16, (size_t)(framesRead*pWav->channels)); /* <-- Safe cast because we're clamping to 2048. */
+
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+
+ return totalFramesRead;
+}
+
+static drwav_uint64 drwav_read_pcm_frames_f32__ima(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
+{
+ /*
+ We're just going to borrow the implementation from the drwav_read_s16() since IMA-ADPCM is a little bit more complicated than other formats and I don't
+ want to duplicate that code.
+ */
+ drwav_uint64 totalFramesRead = 0;
+ drwav_int16 samples16[2048];
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, drwav_min(framesToRead, drwav_countof(samples16)/pWav->channels), samples16);
+ if (framesRead == 0) {
+ break;
+ }
+
+ drwav_s16_to_f32(pBufferOut, samples16, (size_t)(framesRead*pWav->channels)); /* <-- Safe cast because we're clamping to 2048. */
+
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+
+ return totalFramesRead;
+}
+
+static drwav_uint64 drwav_read_pcm_frames_f32__ieee(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
+{
+ drwav_uint64 totalFramesRead;
+ drwav_uint8 sampleData[4096];
+ drwav_uint32 bytesPerFrame;
+
+ /* Fast path. */
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT && pWav->bitsPerSample == 32) {
+ return drwav_read_pcm_frames(pWav, framesToRead, pBufferOut);
+ }
+
+ bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+ if (bytesPerFrame == 0) {
+ return 0;
+ }
+
+ totalFramesRead = 0;
+
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+ if (framesRead == 0) {
+ break;
+ }
+
+ drwav__ieee_to_f32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels), bytesPerFrame/pWav->channels);
+
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+
+ return totalFramesRead;
+}
+
+static drwav_uint64 drwav_read_pcm_frames_f32__alaw(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
+{
+ drwav_uint64 totalFramesRead;
+ drwav_uint8 sampleData[4096];
+ drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+ if (bytesPerFrame == 0) {
+ return 0;
+ }
+
+ totalFramesRead = 0;
+
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+ if (framesRead == 0) {
+ break;
+ }
+
+ drwav_alaw_to_f32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels));
+
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+
+ return totalFramesRead;
+}
+
+static drwav_uint64 drwav_read_pcm_frames_f32__mulaw(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
+{
+ drwav_uint64 totalFramesRead;
+ drwav_uint8 sampleData[4096];
+
+ drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+ if (bytesPerFrame == 0) {
+ return 0;
+ }
+
+ totalFramesRead = 0;
+
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+ if (framesRead == 0) {
+ break;
+ }
+
+ drwav_mulaw_to_f32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels));
+
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+
+ return totalFramesRead;
+}
+
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
+{
+ if (pWav == NULL || framesToRead == 0) {
+ return 0;
+ }
+
+ if (pBufferOut == NULL) {
+ return drwav_read_pcm_frames(pWav, framesToRead, NULL);
+ }
+
+ /* Don't try to read more samples than can potentially fit in the output buffer. */
+ if (framesToRead * pWav->channels * sizeof(float) > DRWAV_SIZE_MAX) {
+ framesToRead = DRWAV_SIZE_MAX / sizeof(float) / pWav->channels;
+ }
+
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM) {
+ return drwav_read_pcm_frames_f32__pcm(pWav, framesToRead, pBufferOut);
+ }
+
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
+ return drwav_read_pcm_frames_f32__msadpcm(pWav, framesToRead, pBufferOut);
+ }
+
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT) {
+ return drwav_read_pcm_frames_f32__ieee(pWav, framesToRead, pBufferOut);
+ }
+
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW) {
+ return drwav_read_pcm_frames_f32__alaw(pWav, framesToRead, pBufferOut);
+ }
+
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) {
+ return drwav_read_pcm_frames_f32__mulaw(pWav, framesToRead, pBufferOut);
+ }
+
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
+ return drwav_read_pcm_frames_f32__ima(pWav, framesToRead, pBufferOut);
+ }
+
+ return 0;
+}
+
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32le(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
+{
+ drwav_uint64 framesRead = drwav_read_pcm_frames_f32(pWav, framesToRead, pBufferOut);
+ if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_FALSE) {
+ drwav__bswap_samples_f32(pBufferOut, framesRead*pWav->channels);
+ }
+
+ return framesRead;
+}
+
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32be(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
+{
+ drwav_uint64 framesRead = drwav_read_pcm_frames_f32(pWav, framesToRead, pBufferOut);
+ if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_TRUE) {
+ drwav__bswap_samples_f32(pBufferOut, framesRead*pWav->channels);
+ }
+
+ return framesRead;
+}
+
+
+DRWAV_API void drwav_u8_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+ size_t i;
+
+ if (pOut == NULL || pIn == NULL) {
+ return;
+ }
+
+#ifdef DR_WAV_LIBSNDFILE_COMPAT
+ /*
+ It appears libsndfile uses slightly different logic for the u8 -> f32 conversion to dr_wav, which in my opinion is incorrect. It appears
+ libsndfile performs the conversion something like "f32 = (u8 / 256) * 2 - 1", however I think it should be "f32 = (u8 / 255) * 2 - 1" (note
+ the divisor of 256 vs 255). I use libsndfile as a benchmark for testing, so I'm therefore leaving this block here just for my automated
+ correctness testing. This is disabled by default.
+ */
+ for (i = 0; i < sampleCount; ++i) {
+ *pOut++ = (pIn[i] / 256.0f) * 2 - 1;
+ }
+#else
+ for (i = 0; i < sampleCount; ++i) {
+ float x = pIn[i];
+ x = x * 0.00784313725490196078f; /* 0..255 to 0..2 */
+ x = x - 1; /* 0..2 to -1..1 */
+
+ *pOut++ = x;
+ }
+#endif
+}
+
+DRWAV_API void drwav_s16_to_f32(float* pOut, const drwav_int16* pIn, size_t sampleCount)
+{
+ size_t i;
+
+ if (pOut == NULL || pIn == NULL) {
+ return;
+ }
+
+ for (i = 0; i < sampleCount; ++i) {
+ *pOut++ = pIn[i] * 0.000030517578125f;
+ }
+}
+
+DRWAV_API void drwav_s24_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+ size_t i;
+
+ if (pOut == NULL || pIn == NULL) {
+ return;
+ }
+
+ for (i = 0; i < sampleCount; ++i) {
+ double x;
+ drwav_uint32 a = ((drwav_uint32)(pIn[i*3+0]) << 8);
+ drwav_uint32 b = ((drwav_uint32)(pIn[i*3+1]) << 16);
+ drwav_uint32 c = ((drwav_uint32)(pIn[i*3+2]) << 24);
+
+ x = (double)((drwav_int32)(a | b | c) >> 8);
+ *pOut++ = (float)(x * 0.00000011920928955078125);
+ }
+}
+
+DRWAV_API void drwav_s32_to_f32(float* pOut, const drwav_int32* pIn, size_t sampleCount)
+{
+ size_t i;
+ if (pOut == NULL || pIn == NULL) {
+ return;
+ }
+
+ for (i = 0; i < sampleCount; ++i) {
+ *pOut++ = (float)(pIn[i] / 2147483648.0);
+ }
+}
+
+DRWAV_API void drwav_f64_to_f32(float* pOut, const double* pIn, size_t sampleCount)
+{
+ size_t i;
+
+ if (pOut == NULL || pIn == NULL) {
+ return;
+ }
+
+ for (i = 0; i < sampleCount; ++i) {
+ *pOut++ = (float)pIn[i];
+ }
+}
+
+DRWAV_API void drwav_alaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+ size_t i;
+
+ if (pOut == NULL || pIn == NULL) {
+ return;
+ }
+
+ for (i = 0; i < sampleCount; ++i) {
+ *pOut++ = drwav__alaw_to_s16(pIn[i]) / 32768.0f;
+ }
+}
+
+DRWAV_API void drwav_mulaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+ size_t i;
+
+ if (pOut == NULL || pIn == NULL) {
+ return;
+ }
+
+ for (i = 0; i < sampleCount; ++i) {
+ *pOut++ = drwav__mulaw_to_s16(pIn[i]) / 32768.0f;
+ }
+}
+
+
+
+static void drwav__pcm_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample)
+{
+ unsigned int i;
+
+ /* Special case for 8-bit sample data because it's treated as unsigned. */
+ if (bytesPerSample == 1) {
+ drwav_u8_to_s32(pOut, pIn, totalSampleCount);
+ return;
+ }
+
+ /* Slightly more optimal implementation for common formats. */
+ if (bytesPerSample == 2) {
+ drwav_s16_to_s32(pOut, (const drwav_int16*)pIn, totalSampleCount);
+ return;
+ }
+ if (bytesPerSample == 3) {
+ drwav_s24_to_s32(pOut, pIn, totalSampleCount);
+ return;
+ }
+ if (bytesPerSample == 4) {
+ for (i = 0; i < totalSampleCount; ++i) {
+ *pOut++ = ((const drwav_int32*)pIn)[i];
+ }
+ return;
+ }
+
+
+ /* Anything more than 64 bits per sample is not supported. */
+ if (bytesPerSample > 8) {
+ DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut));
+ return;
+ }
+
+
+ /* Generic, slow converter. */
+ for (i = 0; i < totalSampleCount; ++i) {
+ drwav_uint64 sample = 0;
+ unsigned int shift = (8 - bytesPerSample) * 8;
+
+ unsigned int j;
+ for (j = 0; j < bytesPerSample; j += 1) {
+ DRWAV_ASSERT(j < 8);
+ sample |= (drwav_uint64)(pIn[j]) << shift;
+ shift += 8;
+ }
+
+ pIn += j;
+ *pOut++ = (drwav_int32)((drwav_int64)sample >> 32);
+ }
+}
+
+static void drwav__ieee_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample)
+{
+ if (bytesPerSample == 4) {
+ drwav_f32_to_s32(pOut, (const float*)pIn, totalSampleCount);
+ return;
+ } else if (bytesPerSample == 8) {
+ drwav_f64_to_s32(pOut, (const double*)pIn, totalSampleCount);
+ return;
+ } else {
+ /* Only supporting 32- and 64-bit float. Output silence in all other cases. Contributions welcome for 16-bit float. */
+ DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut));
+ return;
+ }
+}
+
+
+static drwav_uint64 drwav_read_pcm_frames_s32__pcm(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
+{
+ drwav_uint64 totalFramesRead;
+ drwav_uint8 sampleData[4096];
+ drwav_uint32 bytesPerFrame;
+
+ /* Fast path. */
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM && pWav->bitsPerSample == 32) {
+ return drwav_read_pcm_frames(pWav, framesToRead, pBufferOut);
+ }
+
+ bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+ if (bytesPerFrame == 0) {
+ return 0;
+ }
+
+ totalFramesRead = 0;
+
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+ if (framesRead == 0) {
+ break;
+ }
+
+ drwav__pcm_to_s32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels), bytesPerFrame/pWav->channels);
+
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+
+ return totalFramesRead;
+}
+
+static drwav_uint64 drwav_read_pcm_frames_s32__msadpcm(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
+{
+ /*
+ We're just going to borrow the implementation from the drwav_read_s16() since ADPCM is a little bit more complicated than other formats and I don't
+ want to duplicate that code.
+ */
+ drwav_uint64 totalFramesRead = 0;
+ drwav_int16 samples16[2048];
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, drwav_min(framesToRead, drwav_countof(samples16)/pWav->channels), samples16);
+ if (framesRead == 0) {
+ break;
+ }
+
+ drwav_s16_to_s32(pBufferOut, samples16, (size_t)(framesRead*pWav->channels)); /* <-- Safe cast because we're clamping to 2048. */
+
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+
+ return totalFramesRead;
+}
+
+static drwav_uint64 drwav_read_pcm_frames_s32__ima(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
+{
+ /*
+ We're just going to borrow the implementation from the drwav_read_s16() since IMA-ADPCM is a little bit more complicated than other formats and I don't
+ want to duplicate that code.
+ */
+ drwav_uint64 totalFramesRead = 0;
+ drwav_int16 samples16[2048];
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, drwav_min(framesToRead, drwav_countof(samples16)/pWav->channels), samples16);
+ if (framesRead == 0) {
+ break;
+ }
+
+ drwav_s16_to_s32(pBufferOut, samples16, (size_t)(framesRead*pWav->channels)); /* <-- Safe cast because we're clamping to 2048. */
+
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+
+ return totalFramesRead;
+}
+
+static drwav_uint64 drwav_read_pcm_frames_s32__ieee(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
+{
+ drwav_uint64 totalFramesRead;
+ drwav_uint8 sampleData[4096];
+
+ drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+ if (bytesPerFrame == 0) {
+ return 0;
+ }
+
+ totalFramesRead = 0;
+
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+ if (framesRead == 0) {
+ break;
+ }
+
+ drwav__ieee_to_s32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels), bytesPerFrame/pWav->channels);
+
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+
+ return totalFramesRead;
+}
+
+static drwav_uint64 drwav_read_pcm_frames_s32__alaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
+{
+ drwav_uint64 totalFramesRead;
+ drwav_uint8 sampleData[4096];
+
+ drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+ if (bytesPerFrame == 0) {
+ return 0;
+ }
+
+ totalFramesRead = 0;
+
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+ if (framesRead == 0) {
+ break;
+ }
+
+ drwav_alaw_to_s32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels));
+
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+
+ return totalFramesRead;
+}
+
+static drwav_uint64 drwav_read_pcm_frames_s32__mulaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
+{
+ drwav_uint64 totalFramesRead;
+ drwav_uint8 sampleData[4096];
+
+ drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+ if (bytesPerFrame == 0) {
+ return 0;
+ }
+
+ totalFramesRead = 0;
+
+ while (framesToRead > 0) {
+ drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+ if (framesRead == 0) {
+ break;
+ }
+
+ drwav_mulaw_to_s32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels));
+
+ pBufferOut += framesRead*pWav->channels;
+ framesToRead -= framesRead;
+ totalFramesRead += framesRead;
+ }
+
+ return totalFramesRead;
+}
+
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
+{
+ if (pWav == NULL || framesToRead == 0) {
+ return 0;
+ }
+
+ if (pBufferOut == NULL) {
+ return drwav_read_pcm_frames(pWav, framesToRead, NULL);
+ }
+
+ /* Don't try to read more samples than can potentially fit in the output buffer. */
+ if (framesToRead * pWav->channels * sizeof(drwav_int32) > DRWAV_SIZE_MAX) {
+ framesToRead = DRWAV_SIZE_MAX / sizeof(drwav_int32) / pWav->channels;
+ }
+
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM) {
+ return drwav_read_pcm_frames_s32__pcm(pWav, framesToRead, pBufferOut);
+ }
+
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
+ return drwav_read_pcm_frames_s32__msadpcm(pWav, framesToRead, pBufferOut);
+ }
+
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT) {
+ return drwav_read_pcm_frames_s32__ieee(pWav, framesToRead, pBufferOut);
+ }
+
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW) {
+ return drwav_read_pcm_frames_s32__alaw(pWav, framesToRead, pBufferOut);
+ }
+
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) {
+ return drwav_read_pcm_frames_s32__mulaw(pWav, framesToRead, pBufferOut);
+ }
+
+ if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
+ return drwav_read_pcm_frames_s32__ima(pWav, framesToRead, pBufferOut);
+ }
+
+ return 0;
+}
+
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32le(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
+{
+ drwav_uint64 framesRead = drwav_read_pcm_frames_s32(pWav, framesToRead, pBufferOut);
+ if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_FALSE) {
+ drwav__bswap_samples_s32(pBufferOut, framesRead*pWav->channels);
+ }
+
+ return framesRead;
+}
+
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32be(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
+{
+ drwav_uint64 framesRead = drwav_read_pcm_frames_s32(pWav, framesToRead, pBufferOut);
+ if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_TRUE) {
+ drwav__bswap_samples_s32(pBufferOut, framesRead*pWav->channels);
+ }
+
+ return framesRead;
+}
+
+
+DRWAV_API void drwav_u8_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+ size_t i;
+
+ if (pOut == NULL || pIn == NULL) {
+ return;
+ }
+
+ for (i = 0; i < sampleCount; ++i) {
+ *pOut++ = ((int)pIn[i] - 128) << 24;
+ }
+}
+
+DRWAV_API void drwav_s16_to_s32(drwav_int32* pOut, const drwav_int16* pIn, size_t sampleCount)
+{
+ size_t i;
+
+ if (pOut == NULL || pIn == NULL) {
+ return;
+ }
+
+ for (i = 0; i < sampleCount; ++i) {
+ *pOut++ = pIn[i] << 16;
+ }
+}
+
+DRWAV_API void drwav_s24_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+ size_t i;
+
+ if (pOut == NULL || pIn == NULL) {
+ return;
+ }
+
+ for (i = 0; i < sampleCount; ++i) {
+ unsigned int s0 = pIn[i*3 + 0];
+ unsigned int s1 = pIn[i*3 + 1];
+ unsigned int s2 = pIn[i*3 + 2];
+
+ drwav_int32 sample32 = (drwav_int32)((s0 << 8) | (s1 << 16) | (s2 << 24));
+ *pOut++ = sample32;
+ }
+}
+
+DRWAV_API void drwav_f32_to_s32(drwav_int32* pOut, const float* pIn, size_t sampleCount)
+{
+ size_t i;
+
+ if (pOut == NULL || pIn == NULL) {
+ return;
+ }
+
+ for (i = 0; i < sampleCount; ++i) {
+ *pOut++ = (drwav_int32)(2147483648.0 * pIn[i]);
+ }
+}
+
+DRWAV_API void drwav_f64_to_s32(drwav_int32* pOut, const double* pIn, size_t sampleCount)
+{
+ size_t i;
+
+ if (pOut == NULL || pIn == NULL) {
+ return;
+ }
+
+ for (i = 0; i < sampleCount; ++i) {
+ *pOut++ = (drwav_int32)(2147483648.0 * pIn[i]);
+ }
+}
+
+DRWAV_API void drwav_alaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+ size_t i;
+
+ if (pOut == NULL || pIn == NULL) {
+ return;
+ }
+
+ for (i = 0; i < sampleCount; ++i) {
+ *pOut++ = ((drwav_int32)drwav__alaw_to_s16(pIn[i])) << 16;
+ }
+}
+
+DRWAV_API void drwav_mulaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+ size_t i;
+
+ if (pOut == NULL || pIn == NULL) {
+ return;
+ }
+
+ for (i= 0; i < sampleCount; ++i) {
+ *pOut++ = ((drwav_int32)drwav__mulaw_to_s16(pIn[i])) << 16;
+ }
+}
+
+
+
+static drwav_int16* drwav__read_pcm_frames_and_close_s16(drwav* pWav, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalFrameCount)
+{
+ drwav_uint64 sampleDataSize;
+ drwav_int16* pSampleData;
+ drwav_uint64 framesRead;
+
+ DRWAV_ASSERT(pWav != NULL);
+
+ sampleDataSize = pWav->totalPCMFrameCount * pWav->channels * sizeof(drwav_int16);
+ if (sampleDataSize > DRWAV_SIZE_MAX) {
+ drwav_uninit(pWav);
+ return NULL; /* File's too big. */
+ }
+
+ pSampleData = (drwav_int16*)drwav__malloc_from_callbacks((size_t)sampleDataSize, &pWav->allocationCallbacks); /* <-- Safe cast due to the check above. */
+ if (pSampleData == NULL) {
+ drwav_uninit(pWav);
+ return NULL; /* Failed to allocate memory. */
+ }
+
+ framesRead = drwav_read_pcm_frames_s16(pWav, (size_t)pWav->totalPCMFrameCount, pSampleData);
+ if (framesRead != pWav->totalPCMFrameCount) {
+ drwav__free_from_callbacks(pSampleData, &pWav->allocationCallbacks);
+ drwav_uninit(pWav);
+ return NULL; /* There was an error reading the samples. */
+ }
+
+ drwav_uninit(pWav);
+
+ if (sampleRate) {
+ *sampleRate = pWav->sampleRate;
+ }
+ if (channels) {
+ *channels = pWav->channels;
+ }
+ if (totalFrameCount) {
+ *totalFrameCount = pWav->totalPCMFrameCount;
+ }
+
+ return pSampleData;
+}
+
+static float* drwav__read_pcm_frames_and_close_f32(drwav* pWav, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalFrameCount)
+{
+ drwav_uint64 sampleDataSize;
+ float* pSampleData;
+ drwav_uint64 framesRead;
+
+ DRWAV_ASSERT(pWav != NULL);
+
+ sampleDataSize = pWav->totalPCMFrameCount * pWav->channels * sizeof(float);
+ if (sampleDataSize > DRWAV_SIZE_MAX) {
+ drwav_uninit(pWav);
+ return NULL; /* File's too big. */
+ }
+
+ pSampleData = (float*)drwav__malloc_from_callbacks((size_t)sampleDataSize, &pWav->allocationCallbacks); /* <-- Safe cast due to the check above. */
+ if (pSampleData == NULL) {
+ drwav_uninit(pWav);
+ return NULL; /* Failed to allocate memory. */
+ }
+
+ framesRead = drwav_read_pcm_frames_f32(pWav, (size_t)pWav->totalPCMFrameCount, pSampleData);
+ if (framesRead != pWav->totalPCMFrameCount) {
+ drwav__free_from_callbacks(pSampleData, &pWav->allocationCallbacks);
+ drwav_uninit(pWav);
+ return NULL; /* There was an error reading the samples. */
+ }
+
+ drwav_uninit(pWav);
+
+ if (sampleRate) {
+ *sampleRate = pWav->sampleRate;
+ }
+ if (channels) {
+ *channels = pWav->channels;
+ }
+ if (totalFrameCount) {
+ *totalFrameCount = pWav->totalPCMFrameCount;
+ }
+
+ return pSampleData;
+}
+
+static drwav_int32* drwav__read_pcm_frames_and_close_s32(drwav* pWav, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalFrameCount)
+{
+ drwav_uint64 sampleDataSize;
+ drwav_int32* pSampleData;
+ drwav_uint64 framesRead;
+
+ DRWAV_ASSERT(pWav != NULL);
+
+ sampleDataSize = pWav->totalPCMFrameCount * pWav->channels * sizeof(drwav_int32);
+ if (sampleDataSize > DRWAV_SIZE_MAX) {
+ drwav_uninit(pWav);
+ return NULL; /* File's too big. */
+ }
+
+ pSampleData = (drwav_int32*)drwav__malloc_from_callbacks((size_t)sampleDataSize, &pWav->allocationCallbacks); /* <-- Safe cast due to the check above. */
+ if (pSampleData == NULL) {
+ drwav_uninit(pWav);
+ return NULL; /* Failed to allocate memory. */
+ }
+
+ framesRead = drwav_read_pcm_frames_s32(pWav, (size_t)pWav->totalPCMFrameCount, pSampleData);
+ if (framesRead != pWav->totalPCMFrameCount) {
+ drwav__free_from_callbacks(pSampleData, &pWav->allocationCallbacks);
+ drwav_uninit(pWav);
+ return NULL; /* There was an error reading the samples. */
+ }
+
+ drwav_uninit(pWav);
+
+ if (sampleRate) {
+ *sampleRate = pWav->sampleRate;
+ }
+ if (channels) {
+ *channels = pWav->channels;
+ }
+ if (totalFrameCount) {
+ *totalFrameCount = pWav->totalPCMFrameCount;
+ }
+
+ return pSampleData;
+}
+
+
+
+DRWAV_API drwav_int16* drwav_open_and_read_pcm_frames_s16(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ drwav wav;
+
+ if (channelsOut) {
+ *channelsOut = 0;
+ }
+ if (sampleRateOut) {
+ *sampleRateOut = 0;
+ }
+ if (totalFrameCountOut) {
+ *totalFrameCountOut = 0;
+ }
+
+ if (!drwav_init(&wav, onRead, onSeek, pUserData, pAllocationCallbacks)) {
+ return NULL;
+ }
+
+ return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+
+DRWAV_API float* drwav_open_and_read_pcm_frames_f32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ drwav wav;
+
+ if (channelsOut) {
+ *channelsOut = 0;
+ }
+ if (sampleRateOut) {
+ *sampleRateOut = 0;
+ }
+ if (totalFrameCountOut) {
+ *totalFrameCountOut = 0;
+ }
+
+ if (!drwav_init(&wav, onRead, onSeek, pUserData, pAllocationCallbacks)) {
+ return NULL;
+ }
+
+ return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+
+DRWAV_API drwav_int32* drwav_open_and_read_pcm_frames_s32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ drwav wav;
+
+ if (channelsOut) {
+ *channelsOut = 0;
+ }
+ if (sampleRateOut) {
+ *sampleRateOut = 0;
+ }
+ if (totalFrameCountOut) {
+ *totalFrameCountOut = 0;
+ }
+
+ if (!drwav_init(&wav, onRead, onSeek, pUserData, pAllocationCallbacks)) {
+ return NULL;
+ }
+
+ return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+
+#ifndef DR_WAV_NO_STDIO
+DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ drwav wav;
+
+ if (channelsOut) {
+ *channelsOut = 0;
+ }
+ if (sampleRateOut) {
+ *sampleRateOut = 0;
+ }
+ if (totalFrameCountOut) {
+ *totalFrameCountOut = 0;
+ }
+
+ if (!drwav_init_file(&wav, filename, pAllocationCallbacks)) {
+ return NULL;
+ }
+
+ return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+
+DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ drwav wav;
+
+ if (channelsOut) {
+ *channelsOut = 0;
+ }
+ if (sampleRateOut) {
+ *sampleRateOut = 0;
+ }
+ if (totalFrameCountOut) {
+ *totalFrameCountOut = 0;
+ }
+
+ if (!drwav_init_file(&wav, filename, pAllocationCallbacks)) {
+ return NULL;
+ }
+
+ return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+
+DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ drwav wav;
+
+ if (channelsOut) {
+ *channelsOut = 0;
+ }
+ if (sampleRateOut) {
+ *sampleRateOut = 0;
+ }
+ if (totalFrameCountOut) {
+ *totalFrameCountOut = 0;
+ }
+
+ if (!drwav_init_file(&wav, filename, pAllocationCallbacks)) {
+ return NULL;
+ }
+
+ return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+
+
+DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ drwav wav;
+
+ if (sampleRateOut) {
+ *sampleRateOut = 0;
+ }
+ if (channelsOut) {
+ *channelsOut = 0;
+ }
+ if (totalFrameCountOut) {
+ *totalFrameCountOut = 0;
+ }
+
+ if (!drwav_init_file_w(&wav, filename, pAllocationCallbacks)) {
+ return NULL;
+ }
+
+ return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+
+DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ drwav wav;
+
+ if (sampleRateOut) {
+ *sampleRateOut = 0;
+ }
+ if (channelsOut) {
+ *channelsOut = 0;
+ }
+ if (totalFrameCountOut) {
+ *totalFrameCountOut = 0;
+ }
+
+ if (!drwav_init_file_w(&wav, filename, pAllocationCallbacks)) {
+ return NULL;
+ }
+
+ return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+
+DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ drwav wav;
+
+ if (sampleRateOut) {
+ *sampleRateOut = 0;
+ }
+ if (channelsOut) {
+ *channelsOut = 0;
+ }
+ if (totalFrameCountOut) {
+ *totalFrameCountOut = 0;
+ }
+
+ if (!drwav_init_file_w(&wav, filename, pAllocationCallbacks)) {
+ return NULL;
+ }
+
+ return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+#endif
+
+DRWAV_API drwav_int16* drwav_open_memory_and_read_pcm_frames_s16(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ drwav wav;
+
+ if (channelsOut) {
+ *channelsOut = 0;
+ }
+ if (sampleRateOut) {
+ *sampleRateOut = 0;
+ }
+ if (totalFrameCountOut) {
+ *totalFrameCountOut = 0;
+ }
+
+ if (!drwav_init_memory(&wav, data, dataSize, pAllocationCallbacks)) {
+ return NULL;
+ }
+
+ return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+
+DRWAV_API float* drwav_open_memory_and_read_pcm_frames_f32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ drwav wav;
+
+ if (channelsOut) {
+ *channelsOut = 0;
+ }
+ if (sampleRateOut) {
+ *sampleRateOut = 0;
+ }
+ if (totalFrameCountOut) {
+ *totalFrameCountOut = 0;
+ }
+
+ if (!drwav_init_memory(&wav, data, dataSize, pAllocationCallbacks)) {
+ return NULL;
+ }
+
+ return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+
+DRWAV_API drwav_int32* drwav_open_memory_and_read_pcm_frames_s32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ drwav wav;
+
+ if (channelsOut) {
+ *channelsOut = 0;
+ }
+ if (sampleRateOut) {
+ *sampleRateOut = 0;
+ }
+ if (totalFrameCountOut) {
+ *totalFrameCountOut = 0;
+ }
+
+ if (!drwav_init_memory(&wav, data, dataSize, pAllocationCallbacks)) {
+ return NULL;
+ }
+
+ return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+#endif /* DR_WAV_NO_CONVERSION_API */
+
+
+DRWAV_API void drwav_free(void* p, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pAllocationCallbacks != NULL) {
+ drwav__free_from_callbacks(p, pAllocationCallbacks);
+ } else {
+ drwav__free_default(p, NULL);
+ }
+}
+
+DRWAV_API drwav_uint16 drwav_bytes_to_u16(const drwav_uint8* data)
+{
+ return drwav__bytes_to_u16(data);
+}
+
+DRWAV_API drwav_int16 drwav_bytes_to_s16(const drwav_uint8* data)
+{
+ return drwav__bytes_to_s16(data);
+}
+
+DRWAV_API drwav_uint32 drwav_bytes_to_u32(const drwav_uint8* data)
+{
+ return drwav__bytes_to_u32(data);
+}
+
+DRWAV_API drwav_int32 drwav_bytes_to_s32(const drwav_uint8* data)
+{
+ return drwav__bytes_to_s32(data);
+}
+
+DRWAV_API drwav_uint64 drwav_bytes_to_u64(const drwav_uint8* data)
+{
+ return drwav__bytes_to_u64(data);
+}
+
+DRWAV_API drwav_int64 drwav_bytes_to_s64(const drwav_uint8* data)
+{
+ return drwav__bytes_to_s64(data);
+}
+
+
+DRWAV_API drwav_bool32 drwav_guid_equal(const drwav_uint8 a[16], const drwav_uint8 b[16])
+{
+ return drwav__guid_equal(a, b);
+}
+
+DRWAV_API drwav_bool32 drwav_fourcc_equal(const drwav_uint8* a, const char* b)
+{
+ return drwav__fourcc_equal(a, b);
+}
+
+#endif /* dr_wav_c */
+#endif /* DR_WAV_IMPLEMENTATION */
+
+/*
+RELEASE NOTES - v0.11.0
+=======================
+Version 0.11.0 has breaking API changes.
+
+Improved Client-Defined Memory Allocation
+-----------------------------------------
+The main change with this release is the addition of a more flexible way of implementing custom memory allocation routines. The
+existing system of DRWAV_MALLOC, DRWAV_REALLOC and DRWAV_FREE are still in place and will be used by default when no custom
+allocation callbacks are specified.
+
+To use the new system, you pass in a pointer to a drwav_allocation_callbacks object to drwav_init() and family, like this:
+
+ void* my_malloc(size_t sz, void* pUserData)
+ {
+ return malloc(sz);
+ }
+ void* my_realloc(void* p, size_t sz, void* pUserData)
+ {
+ return realloc(p, sz);
+ }
+ void my_free(void* p, void* pUserData)
+ {
+ free(p);
+ }
+
+ ...
+
+ drwav_allocation_callbacks allocationCallbacks;
+ allocationCallbacks.pUserData = &myData;
+ allocationCallbacks.onMalloc = my_malloc;
+ allocationCallbacks.onRealloc = my_realloc;
+ allocationCallbacks.onFree = my_free;
+ drwav_init_file(&wav, "my_file.wav", &allocationCallbacks);
+
+The advantage of this new system is that it allows you to specify user data which will be passed in to the allocation routines.
+
+Passing in null for the allocation callbacks object will cause dr_wav to use defaults which is the same as DRWAV_MALLOC,
+DRWAV_REALLOC and DRWAV_FREE and the equivalent of how it worked in previous versions.
+
+Every API that opens a drwav object now takes this extra parameter. These include the following:
+
+ drwav_init()
+ drwav_init_ex()
+ drwav_init_file()
+ drwav_init_file_ex()
+ drwav_init_file_w()
+ drwav_init_file_w_ex()
+ drwav_init_memory()
+ drwav_init_memory_ex()
+ drwav_init_write()
+ drwav_init_write_sequential()
+ drwav_init_write_sequential_pcm_frames()
+ drwav_init_file_write()
+ drwav_init_file_write_sequential()
+ drwav_init_file_write_sequential_pcm_frames()
+ drwav_init_file_write_w()
+ drwav_init_file_write_sequential_w()
+ drwav_init_file_write_sequential_pcm_frames_w()
+ drwav_init_memory_write()
+ drwav_init_memory_write_sequential()
+ drwav_init_memory_write_sequential_pcm_frames()
+ drwav_open_and_read_pcm_frames_s16()
+ drwav_open_and_read_pcm_frames_f32()
+ drwav_open_and_read_pcm_frames_s32()
+ drwav_open_file_and_read_pcm_frames_s16()
+ drwav_open_file_and_read_pcm_frames_f32()
+ drwav_open_file_and_read_pcm_frames_s32()
+ drwav_open_file_and_read_pcm_frames_s16_w()
+ drwav_open_file_and_read_pcm_frames_f32_w()
+ drwav_open_file_and_read_pcm_frames_s32_w()
+ drwav_open_memory_and_read_pcm_frames_s16()
+ drwav_open_memory_and_read_pcm_frames_f32()
+ drwav_open_memory_and_read_pcm_frames_s32()
+
+Endian Improvements
+-------------------
+Previously, the following APIs returned little-endian audio data. These now return native-endian data. This improves compatibility
+on big-endian architectures.
+
+ drwav_read_pcm_frames()
+ drwav_read_pcm_frames_s16()
+ drwav_read_pcm_frames_s32()
+ drwav_read_pcm_frames_f32()
+ drwav_open_and_read_pcm_frames_s16()
+ drwav_open_and_read_pcm_frames_s32()
+ drwav_open_and_read_pcm_frames_f32()
+ drwav_open_file_and_read_pcm_frames_s16()
+ drwav_open_file_and_read_pcm_frames_s32()
+ drwav_open_file_and_read_pcm_frames_f32()
+ drwav_open_file_and_read_pcm_frames_s16_w()
+ drwav_open_file_and_read_pcm_frames_s32_w()
+ drwav_open_file_and_read_pcm_frames_f32_w()
+ drwav_open_memory_and_read_pcm_frames_s16()
+ drwav_open_memory_and_read_pcm_frames_s32()
+ drwav_open_memory_and_read_pcm_frames_f32()
+
+APIs have been added to give you explicit control over whether or not audio data is read or written in big- or little-endian byte
+order:
+
+ drwav_read_pcm_frames_le()
+ drwav_read_pcm_frames_be()
+ drwav_read_pcm_frames_s16le()
+ drwav_read_pcm_frames_s16be()
+ drwav_read_pcm_frames_f32le()
+ drwav_read_pcm_frames_f32be()
+ drwav_read_pcm_frames_s32le()
+ drwav_read_pcm_frames_s32be()
+ drwav_write_pcm_frames_le()
+ drwav_write_pcm_frames_be()
+
+Removed APIs
+------------
+The following APIs were deprecated in version 0.10.0 and have now been removed:
+
+ drwav_open()
+ drwav_open_ex()
+ drwav_open_write()
+ drwav_open_write_sequential()
+ drwav_open_file()
+ drwav_open_file_ex()
+ drwav_open_file_write()
+ drwav_open_file_write_sequential()
+ drwav_open_memory()
+ drwav_open_memory_ex()
+ drwav_open_memory_write()
+ drwav_open_memory_write_sequential()
+ drwav_close()
+
+
+
+RELEASE NOTES - v0.10.0
+=======================
+Version 0.10.0 has breaking API changes. There are no significant bug fixes in this release, so if you are affected you do
+not need to upgrade.
+
+Removed APIs
+------------
+The following APIs were deprecated in version 0.9.0 and have been completely removed in version 0.10.0:
+
+ drwav_read()
+ drwav_read_s16()
+ drwav_read_f32()
+ drwav_read_s32()
+ drwav_seek_to_sample()
+ drwav_write()
+ drwav_open_and_read_s16()
+ drwav_open_and_read_f32()
+ drwav_open_and_read_s32()
+ drwav_open_file_and_read_s16()
+ drwav_open_file_and_read_f32()
+ drwav_open_file_and_read_s32()
+ drwav_open_memory_and_read_s16()
+ drwav_open_memory_and_read_f32()
+ drwav_open_memory_and_read_s32()
+ drwav::totalSampleCount
+
+See release notes for version 0.9.0 at the bottom of this file for replacement APIs.
+
+Deprecated APIs
+---------------
+The following APIs have been deprecated. There is a confusing and completely arbitrary difference between drwav_init*() and
+drwav_open*(), where drwav_init*() initializes a pre-allocated drwav object, whereas drwav_open*() will first allocated a
+drwav object on the heap and then initialize it. drwav_open*() has been deprecated which means you must now use a pre-
+allocated drwav object with drwav_init*(). If you need the previous functionality, you can just do a malloc() followed by
+a called to one of the drwav_init*() APIs.
+
+ drwav_open()
+ drwav_open_ex()
+ drwav_open_write()
+ drwav_open_write_sequential()
+ drwav_open_file()
+ drwav_open_file_ex()
+ drwav_open_file_write()
+ drwav_open_file_write_sequential()
+ drwav_open_memory()
+ drwav_open_memory_ex()
+ drwav_open_memory_write()
+ drwav_open_memory_write_sequential()
+ drwav_close()
+
+These APIs will be removed completely in a future version. The rationale for this change is to remove confusion between the
+two different ways to initialize a drwav object.
+*/
+
+/*
+REVISION HISTORY
+================
+v0.12.16 - 2020-12-02
+ - Fix a bug when trying to read more bytes than can fit in a size_t.
+
+v0.12.15 - 2020-11-21
+ - Fix compilation with OpenWatcom.
+
+v0.12.14 - 2020-11-13
+ - Minor code clean up.
+
+v0.12.13 - 2020-11-01
+ - Improve compiler support for older versions of GCC.
+
+v0.12.12 - 2020-09-28
+ - Add support for RF64.
+ - Fix a bug in writing mode where the size of the RIFF chunk incorrectly includes the header section.
+
+v0.12.11 - 2020-09-08
+ - Fix a compilation error on older compilers.
+
+v0.12.10 - 2020-08-24
+ - Fix a bug when seeking with ADPCM formats.
+
+v0.12.9 - 2020-08-02
+ - Simplify sized types.
+
+v0.12.8 - 2020-07-25
+ - Fix a compilation warning.
+
+v0.12.7 - 2020-07-15
+ - Fix some bugs on big-endian architectures.
+ - Fix an error in s24 to f32 conversion.
+
+v0.12.6 - 2020-06-23
+ - Change drwav_read_*() to allow NULL to be passed in as the output buffer which is equivalent to a forward seek.
+ - Fix a buffer overflow when trying to decode invalid IMA-ADPCM files.
+ - Add include guard for the implementation section.
+
+v0.12.5 - 2020-05-27
+ - Minor documentation fix.
+
+v0.12.4 - 2020-05-16
+ - Replace assert() with DRWAV_ASSERT().
+ - Add compile-time and run-time version querying.
+ - DRWAV_VERSION_MINOR
+ - DRWAV_VERSION_MAJOR
+ - DRWAV_VERSION_REVISION
+ - DRWAV_VERSION_STRING
+ - drwav_version()
+ - drwav_version_string()
+
+v0.12.3 - 2020-04-30
+ - Fix compilation errors with VC6.
+
+v0.12.2 - 2020-04-21
+ - Fix a bug where drwav_init_file() does not close the file handle after attempting to load an erroneous file.
+
+v0.12.1 - 2020-04-13
+ - Fix some pedantic warnings.
+
+v0.12.0 - 2020-04-04
+ - API CHANGE: Add container and format parameters to the chunk callback.
+ - Minor documentation updates.
+
+v0.11.5 - 2020-03-07
+ - Fix compilation error with Visual Studio .NET 2003.
+
+v0.11.4 - 2020-01-29
+ - Fix some static analysis warnings.
+ - Fix a bug when reading f32 samples from an A-law encoded stream.
+
+v0.11.3 - 2020-01-12
+ - Minor changes to some f32 format conversion routines.
+ - Minor bug fix for ADPCM conversion when end of file is reached.
+
+v0.11.2 - 2019-12-02
+ - Fix a possible crash when using custom memory allocators without a custom realloc() implementation.
+ - Fix an integer overflow bug.
+ - Fix a null pointer dereference bug.
+ - Add limits to sample rate, channels and bits per sample to tighten up some validation.
+
+v0.11.1 - 2019-10-07
+ - Internal code clean up.
+
+v0.11.0 - 2019-10-06
+ - API CHANGE: Add support for user defined memory allocation routines. This system allows the program to specify their own memory allocation
+ routines with a user data pointer for client-specific contextual data. This adds an extra parameter to the end of the following APIs:
+ - drwav_init()
+ - drwav_init_ex()
+ - drwav_init_file()
+ - drwav_init_file_ex()
+ - drwav_init_file_w()
+ - drwav_init_file_w_ex()
+ - drwav_init_memory()
+ - drwav_init_memory_ex()
+ - drwav_init_write()
+ - drwav_init_write_sequential()
+ - drwav_init_write_sequential_pcm_frames()
+ - drwav_init_file_write()
+ - drwav_init_file_write_sequential()
+ - drwav_init_file_write_sequential_pcm_frames()
+ - drwav_init_file_write_w()
+ - drwav_init_file_write_sequential_w()
+ - drwav_init_file_write_sequential_pcm_frames_w()
+ - drwav_init_memory_write()
+ - drwav_init_memory_write_sequential()
+ - drwav_init_memory_write_sequential_pcm_frames()
+ - drwav_open_and_read_pcm_frames_s16()
+ - drwav_open_and_read_pcm_frames_f32()
+ - drwav_open_and_read_pcm_frames_s32()
+ - drwav_open_file_and_read_pcm_frames_s16()
+ - drwav_open_file_and_read_pcm_frames_f32()
+ - drwav_open_file_and_read_pcm_frames_s32()
+ - drwav_open_file_and_read_pcm_frames_s16_w()
+ - drwav_open_file_and_read_pcm_frames_f32_w()
+ - drwav_open_file_and_read_pcm_frames_s32_w()
+ - drwav_open_memory_and_read_pcm_frames_s16()
+ - drwav_open_memory_and_read_pcm_frames_f32()
+ - drwav_open_memory_and_read_pcm_frames_s32()
+ Set this extra parameter to NULL to use defaults which is the same as the previous behaviour. Setting this NULL will use
+ DRWAV_MALLOC, DRWAV_REALLOC and DRWAV_FREE.
+ - Add support for reading and writing PCM frames in an explicit endianness. New APIs:
+ - drwav_read_pcm_frames_le()
+ - drwav_read_pcm_frames_be()
+ - drwav_read_pcm_frames_s16le()
+ - drwav_read_pcm_frames_s16be()
+ - drwav_read_pcm_frames_f32le()
+ - drwav_read_pcm_frames_f32be()
+ - drwav_read_pcm_frames_s32le()
+ - drwav_read_pcm_frames_s32be()
+ - drwav_write_pcm_frames_le()
+ - drwav_write_pcm_frames_be()
+ - Remove deprecated APIs.
+ - API CHANGE: The following APIs now return native-endian data. Previously they returned little-endian data.
+ - drwav_read_pcm_frames()
+ - drwav_read_pcm_frames_s16()
+ - drwav_read_pcm_frames_s32()
+ - drwav_read_pcm_frames_f32()
+ - drwav_open_and_read_pcm_frames_s16()
+ - drwav_open_and_read_pcm_frames_s32()
+ - drwav_open_and_read_pcm_frames_f32()
+ - drwav_open_file_and_read_pcm_frames_s16()
+ - drwav_open_file_and_read_pcm_frames_s32()
+ - drwav_open_file_and_read_pcm_frames_f32()
+ - drwav_open_file_and_read_pcm_frames_s16_w()
+ - drwav_open_file_and_read_pcm_frames_s32_w()
+ - drwav_open_file_and_read_pcm_frames_f32_w()
+ - drwav_open_memory_and_read_pcm_frames_s16()
+ - drwav_open_memory_and_read_pcm_frames_s32()
+ - drwav_open_memory_and_read_pcm_frames_f32()
+
+v0.10.1 - 2019-08-31
+ - Correctly handle partial trailing ADPCM blocks.
+
+v0.10.0 - 2019-08-04
+ - Remove deprecated APIs.
+ - Add wchar_t variants for file loading APIs:
+ drwav_init_file_w()
+ drwav_init_file_ex_w()
+ drwav_init_file_write_w()
+ drwav_init_file_write_sequential_w()
+ - Add drwav_target_write_size_bytes() which calculates the total size in bytes of a WAV file given a format and sample count.
+ - Add APIs for specifying the PCM frame count instead of the sample count when opening in sequential write mode:
+ drwav_init_write_sequential_pcm_frames()
+ drwav_init_file_write_sequential_pcm_frames()
+ drwav_init_file_write_sequential_pcm_frames_w()
+ drwav_init_memory_write_sequential_pcm_frames()
+ - Deprecate drwav_open*() and drwav_close():
+ drwav_open()
+ drwav_open_ex()
+ drwav_open_write()
+ drwav_open_write_sequential()
+ drwav_open_file()
+ drwav_open_file_ex()
+ drwav_open_file_write()
+ drwav_open_file_write_sequential()
+ drwav_open_memory()
+ drwav_open_memory_ex()
+ drwav_open_memory_write()
+ drwav_open_memory_write_sequential()
+ drwav_close()
+ - Minor documentation updates.
+
+v0.9.2 - 2019-05-21
+ - Fix warnings.
+
+v0.9.1 - 2019-05-05
+ - Add support for C89.
+ - Change license to choice of public domain or MIT-0.
+
+v0.9.0 - 2018-12-16
+ - API CHANGE: Add new reading APIs for reading by PCM frames instead of samples. Old APIs have been deprecated and
+ will be removed in v0.10.0. Deprecated APIs and their replacements:
+ drwav_read() -> drwav_read_pcm_frames()
+ drwav_read_s16() -> drwav_read_pcm_frames_s16()
+ drwav_read_f32() -> drwav_read_pcm_frames_f32()
+ drwav_read_s32() -> drwav_read_pcm_frames_s32()
+ drwav_seek_to_sample() -> drwav_seek_to_pcm_frame()
+ drwav_write() -> drwav_write_pcm_frames()
+ drwav_open_and_read_s16() -> drwav_open_and_read_pcm_frames_s16()
+ drwav_open_and_read_f32() -> drwav_open_and_read_pcm_frames_f32()
+ drwav_open_and_read_s32() -> drwav_open_and_read_pcm_frames_s32()
+ drwav_open_file_and_read_s16() -> drwav_open_file_and_read_pcm_frames_s16()
+ drwav_open_file_and_read_f32() -> drwav_open_file_and_read_pcm_frames_f32()
+ drwav_open_file_and_read_s32() -> drwav_open_file_and_read_pcm_frames_s32()
+ drwav_open_memory_and_read_s16() -> drwav_open_memory_and_read_pcm_frames_s16()
+ drwav_open_memory_and_read_f32() -> drwav_open_memory_and_read_pcm_frames_f32()
+ drwav_open_memory_and_read_s32() -> drwav_open_memory_and_read_pcm_frames_s32()
+ drwav::totalSampleCount -> drwav::totalPCMFrameCount
+ - API CHANGE: Rename drwav_open_and_read_file_*() to drwav_open_file_and_read_*().
+ - API CHANGE: Rename drwav_open_and_read_memory_*() to drwav_open_memory_and_read_*().
+ - Add built-in support for smpl chunks.
+ - Add support for firing a callback for each chunk in the file at initialization time.
+ - This is enabled through the drwav_init_ex(), etc. family of APIs.
+ - Handle invalid FMT chunks more robustly.
+
+v0.8.5 - 2018-09-11
+ - Const correctness.
+ - Fix a potential stack overflow.
+
+v0.8.4 - 2018-08-07
+ - Improve 64-bit detection.
+
+v0.8.3 - 2018-08-05
+ - Fix C++ build on older versions of GCC.
+
+v0.8.2 - 2018-08-02
+ - Fix some big-endian bugs.
+
+v0.8.1 - 2018-06-29
+ - Add support for sequential writing APIs.
+ - Disable seeking in write mode.
+ - Fix bugs with Wave64.
+ - Fix typos.
+
+v0.8 - 2018-04-27
+ - Bug fix.
+ - Start using major.minor.revision versioning.
+
+v0.7f - 2018-02-05
+ - Restrict ADPCM formats to a maximum of 2 channels.
+
+v0.7e - 2018-02-02
+ - Fix a crash.
+
+v0.7d - 2018-02-01
+ - Fix a crash.
+
+v0.7c - 2018-02-01
+ - Set drwav.bytesPerSample to 0 for all compressed formats.
+ - Fix a crash when reading 16-bit floating point WAV files. In this case dr_wav will output silence for
+ all format conversion reading APIs (*_s16, *_s32, *_f32 APIs).
+ - Fix some divide-by-zero errors.
+
+v0.7b - 2018-01-22
+ - Fix errors with seeking of compressed formats.
+ - Fix compilation error when DR_WAV_NO_CONVERSION_API
+
+v0.7a - 2017-11-17
+ - Fix some GCC warnings.
+
+v0.7 - 2017-11-04
+ - Add writing APIs.
+
+v0.6 - 2017-08-16
+ - API CHANGE: Rename dr_* types to drwav_*.
+ - Add support for custom implementations of malloc(), realloc(), etc.
+ - Add support for Microsoft ADPCM.
+ - Add support for IMA ADPCM (DVI, format code 0x11).
+ - Optimizations to drwav_read_s16().
+ - Bug fixes.
+
+v0.5g - 2017-07-16
+ - Change underlying type for booleans to unsigned.
+
+v0.5f - 2017-04-04
+ - Fix a minor bug with drwav_open_and_read_s16() and family.
+
+v0.5e - 2016-12-29
+ - Added support for reading samples as signed 16-bit integers. Use the _s16() family of APIs for this.
+ - Minor fixes to documentation.
+
+v0.5d - 2016-12-28
+ - Use drwav_int* and drwav_uint* sized types to improve compiler support.
+
+v0.5c - 2016-11-11
+ - Properly handle JUNK chunks that come before the FMT chunk.
+
+v0.5b - 2016-10-23
+ - A minor change to drwav_bool8 and drwav_bool32 types.
+
+v0.5a - 2016-10-11
+ - Fixed a bug with drwav_open_and_read() and family due to incorrect argument ordering.
+ - Improve A-law and mu-law efficiency.
+
+v0.5 - 2016-09-29
+ - API CHANGE. Swap the order of "channels" and "sampleRate" parameters in drwav_open_and_read*(). Rationale for this is to
+ keep it consistent with dr_audio and dr_flac.
+
+v0.4b - 2016-09-18
+ - Fixed a typo in documentation.
+
+v0.4a - 2016-09-18
+ - Fixed a typo.
+ - Change date format to ISO 8601 (YYYY-MM-DD)
+
+v0.4 - 2016-07-13
+ - API CHANGE. Make onSeek consistent with dr_flac.
+ - API CHANGE. Rename drwav_seek() to drwav_seek_to_sample() for clarity and consistency with dr_flac.
+ - Added support for Sony Wave64.
+
+v0.3a - 2016-05-28
+ - API CHANGE. Return drwav_bool32 instead of int in onSeek callback.
+ - Fixed a memory leak.
+
+v0.3 - 2016-05-22
+ - Lots of API changes for consistency.
+
+v0.2a - 2016-05-16
+ - Fixed Linux/GCC build.
+
+v0.2 - 2016-05-11
+ - Added support for reading data as signed 32-bit PCM for consistency with dr_flac.
+
+v0.1a - 2016-05-07
+ - Fixed a bug in drwav_open_file() where the file handle would not be closed if the loader failed to initialize.
+
+v0.1 - 2016-05-04
+ - Initial versioned release.
+*/
+
+/*
+This software is available as a choice of the following licenses. Choose
+whichever you prefer.
+
+===============================================================================
+ALTERNATIVE 1 - Public Domain (www.unlicense.org)
+===============================================================================
+This is free and unencumbered software released into the public domain.
+
+Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
+software, either in source code form or as a compiled binary, for any purpose,
+commercial or non-commercial, and by any means.
+
+In jurisdictions that recognize copyright laws, the author or authors of this
+software dedicate any and all copyright interest in the software to the public
+domain. We make this dedication for the benefit of the public at large and to
+the detriment of our heirs and successors. We intend this dedication to be an
+overt act of relinquishment in perpetuity of all present and future rights to
+this software under copyright law.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+For more information, please refer to <http://unlicense.org/>
+
+===============================================================================
+ALTERNATIVE 2 - MIT No Attribution
+===============================================================================
+Copyright 2020 David Reid
+
+Permission is hereby granted, free of charge, to any person obtaining a copy of
+this software and associated documentation files (the "Software"), to deal in
+the Software without restriction, including without limitation the rights to
+use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
+of the Software, and to permit persons to whom the Software is furnished to do
+so.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
+*/
--- /dev/null
+#include "ggml.h"
+
+#define USE_FLASH_ATTN
+#define USE_FLASH_FF
+
+// third-party utilities
+// use your favorite implementations
+#define DR_WAV_IMPLEMENTATION
+#include "dr_wav.h"
+
+#include <algorithm>
+#include <cassert>
+#include <cmath>
+#include <cstdio>
+#include <cstring>
+#include <fstream>
+#include <map>
+#include <string>
+#include <thread>
+#include <vector>
+
+// available whisper models
+enum e_model {
+ MODEL_UNKNOWN,
+ MODEL_TINY,
+ MODEL_BASE,
+ MODEL_SMALL,
+ MODEL_MEDIUM,
+ MODEL_LARGE,
+};
+
+const std::map<std::string, std::pair<int, std::string>> g_lang = {
+ { "en", { 0, "english", } },
+ { "zh", { 1, "chinese", } },
+ { "de", { 2, "german", } },
+ { "es", { 3, "spanish", } },
+ { "ru", { 4, "russian", } },
+ { "ko", { 5, "korean", } },
+ { "fr", { 6, "french", } },
+ { "ja", { 7, "japanese", } },
+ { "pt", { 8, "portuguese", } },
+ { "tr", { 9, "turkish", } },
+ { "pl", { 10, "polish", } },
+ { "ca", { 11, "catalan", } },
+ { "nl", { 12, "dutch", } },
+ { "ar", { 13, "arabic", } },
+ { "sv", { 14, "swedish", } },
+ { "it", { 15, "italian", } },
+ { "id", { 16, "indonesian", } },
+ { "hi", { 17, "hindi", } },
+ { "fi", { 18, "finnish", } },
+ { "vi", { 19, "vietnamese", } },
+ { "iw", { 20, "hebrew", } },
+ { "uk", { 21, "ukrainian", } },
+ { "el", { 22, "greek", } },
+ { "ms", { 23, "malay", } },
+ { "cs", { 24, "czech", } },
+ { "ro", { 25, "romanian", } },
+ { "da", { 26, "danish", } },
+ { "hu", { 27, "hungarian", } },
+ { "ta", { 28, "tamil", } },
+ { "no", { 29, "norwegian", } },
+ { "th", { 30, "thai", } },
+ { "ur", { 31, "urdu", } },
+ { "hr", { 32, "croatian", } },
+ { "bg", { 33, "bulgarian", } },
+ { "lt", { 34, "lithuanian", } },
+ { "la", { 35, "latin", } },
+ { "mi", { 36, "maori", } },
+ { "ml", { 37, "malayalam", } },
+ { "cy", { 38, "welsh", } },
+ { "sk", { 39, "slovak", } },
+ { "te", { 40, "telugu", } },
+ { "fa", { 41, "persian", } },
+ { "lv", { 42, "latvian", } },
+ { "bn", { 43, "bengali", } },
+ { "sr", { 44, "serbian", } },
+ { "az", { 45, "azerbaijani", } },
+ { "sl", { 46, "slovenian", } },
+ { "kn", { 47, "kannada", } },
+ { "et", { 48, "estonian", } },
+ { "mk", { 49, "macedonian", } },
+ { "br", { 50, "breton", } },
+ { "eu", { 51, "basque", } },
+ { "is", { 52, "icelandic", } },
+ { "hy", { 53, "armenian", } },
+ { "ne", { 54, "nepali", } },
+ { "mn", { 55, "mongolian", } },
+ { "bs", { 56, "bosnian", } },
+ { "kk", { 57, "kazakh", } },
+ { "sq", { 58, "albanian", } },
+ { "sw", { 59, "swahili", } },
+ { "gl", { 60, "galician", } },
+ { "mr", { 61, "marathi", } },
+ { "pa", { 62, "punjabi", } },
+ { "si", { 63, "sinhala", } },
+ { "km", { 64, "khmer", } },
+ { "sn", { 65, "shona", } },
+ { "yo", { 66, "yoruba", } },
+ { "so", { 67, "somali", } },
+ { "af", { 68, "afrikaans", } },
+ { "oc", { 69, "occitan", } },
+ { "ka", { 70, "georgian", } },
+ { "be", { 71, "belarusian", } },
+ { "tg", { 72, "tajik", } },
+ { "sd", { 73, "sindhi", } },
+ { "gu", { 74, "gujarati", } },
+ { "am", { 75, "amharic", } },
+ { "yi", { 76, "yiddish", } },
+ { "lo", { 77, "lao", } },
+ { "uz", { 78, "uzbek", } },
+ { "fo", { 79, "faroese", } },
+ { "ht", { 80, "haitian creole", } },
+ { "ps", { 81, "pashto", } },
+ { "tk", { 82, "turkmen", } },
+ { "nn", { 83, "nynorsk", } },
+ { "mt", { 84, "maltese", } },
+ { "sa", { 85, "sanskrit", } },
+ { "lb", { 86, "luxembourgish", } },
+ { "my", { 87, "myanmar", } },
+ { "bo", { 88, "tibetan", } },
+ { "tl", { 89, "tagalog", } },
+ { "mg", { 90, "malagasy", } },
+ { "as", { 91, "assamese", } },
+ { "tt", { 92, "tatar", } },
+ { "haw", { 93, "hawaiian", } },
+ { "ln", { 94, "lingala", } },
+ { "ha", { 95, "hausa", } },
+ { "ba", { 96, "bashkir", } },
+ { "jw", { 97, "javanese", } },
+ { "su", { 98, "sundanese", } },
+};
+
+const size_t MB = 1024*1024;
+
+const std::map<e_model, size_t> MEM_REQ_MODEL = {
+ { MODEL_TINY, 86ull*MB },
+ { MODEL_BASE, 165ull*MB },
+ { MODEL_SMALL, 540ull*MB },
+ { MODEL_MEDIUM, 1650ull*MB },
+ { MODEL_LARGE, 3260ull*MB },
+};
+
+const std::map<e_model, size_t> MEM_REQ_ENCODE = {
+ { MODEL_TINY, 80ull*MB },
+ { MODEL_BASE, 128ull*MB },
+ { MODEL_SMALL, 300ull*MB },
+ { MODEL_MEDIUM, 680ull*MB },
+ { MODEL_LARGE, 1100ull*MB },
+};
+
+const std::map<e_model, size_t> MEM_REQ_ENCODE_LAYER = {
+ { MODEL_TINY, 64ull*MB },
+ { MODEL_BASE, 84ull*MB },
+ { MODEL_SMALL, 128ull*MB },
+ { MODEL_MEDIUM, 172ull*MB },
+ { MODEL_LARGE, 216ull*MB },
+};
+
+const std::map<e_model, size_t> MEM_REQ_DECODE = {
+ { MODEL_TINY, 190ull*MB },
+ { MODEL_BASE, 190ull*MB },
+ { MODEL_SMALL, 190ull*MB },
+ { MODEL_MEDIUM, 200ull*MB },
+ { MODEL_LARGE, 200ull*MB },
+};
+
+const std::map<e_model, size_t> MEM_REQ_DECODE_LAYER = {
+ { MODEL_TINY, 32ull*MB },
+ { MODEL_BASE, 44ull*MB },
+ { MODEL_SMALL, 64ull*MB },
+ { MODEL_MEDIUM, 84ull*MB },
+ { MODEL_LARGE, 110ull*MB },
+};
+
+const int SAMPLE_RATE = 16000;
+const int N_FFT = 400;
+const int N_MEL = 80;
+const int HOP_LENGTH = 160;
+const int CHUNK_SIZE = 30; // seconds
+
+struct whisper_mel {
+ int n_len;
+ int n_mel;
+
+ std::vector<float> data;
+};
+
+struct whisper_filters {
+ int32_t n_mel;
+ int32_t n_fft;
+
+ std::vector<float> data;
+};
+
+struct whisper_vocab {
+ using id = int32_t;
+ using token = std::string;
+
+ int n_vocab = 51864;
+
+ std::map<token, id> token_to_id;
+ std::map<id, token> id_to_token;
+
+ id token_eot = 50256;
+ id token_sot = 50257;
+ id token_prev = 50360;
+ id token_solm = 50361; // ??
+ id token_beg = 50363;
+
+ // available tasks
+ const id token_translate = 50358;
+ const id token_transcribe = 50359;
+
+ bool is_multilingual() const {
+ return n_vocab == 51865;
+ }
+};
+
+// command-line parameters
+struct whisper_params {
+ int32_t seed = -1; // RNG seed, not used currently
+ int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
+
+ // sampling parameter - used for the greedy strategy
+ int32_t max_tokens_per_iter = 64;
+
+ bool verbose = false;
+ bool translate = false;
+ bool print_special_tokens = false;
+
+ std::string language = "en";
+ std::string model = "models/ggml-base.en.bin";
+ std::string fname_inp = "samples/jfk.wav";
+};
+
+void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
+
+bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
+ for (int i = 1; i < argc; i++) {
+ std::string arg = argv[i];
+
+ if (arg == "-s" || arg == "--seed") {
+ params.seed = std::stoi(argv[++i]);
+ } else if (arg == "-t" || arg == "--threads") {
+ params.n_threads = std::stoi(argv[++i]);
+ } else if (arg == "-T" || arg == "--tokens") {
+ params.max_tokens_per_iter = std::stoi(argv[++i]);
+ } else if (arg == "-v" || arg == "--verbose") {
+ params.verbose = true;
+ } else if (arg == "--translate") {
+ params.translate = true;
+ } else if (arg == "-l" || arg == "--language") {
+ params.language = argv[++i];
+ if (g_lang.find(params.language) == g_lang.end()) {
+ fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
+ whisper_print_usage(argc, argv, params);
+ exit(0);
+ }
+ } else if (arg == "-ps" || arg == "--print_special") {
+ params.print_special_tokens = true;
+ } else if (arg == "-m" || arg == "--model") {
+ params.model = argv[++i];
+ } else if (arg == "-f" || arg == "--file") {
+ params.fname_inp = argv[++i];
+ } else if (arg == "-h" || arg == "--help") {
+ whisper_print_usage(argc, argv, params);
+ exit(0);
+ } else {
+ fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
+ whisper_print_usage(argc, argv, params);
+ exit(0);
+ }
+ }
+
+ return true;
+}
+
+void whisper_print_usage(int argc, char ** argv, const whisper_params & params) {
+ fprintf(stderr, "\n");
+ fprintf(stderr, "usage: %s [options]\n", argv[0]);
+ fprintf(stderr, "\n");
+ fprintf(stderr, "options:\n");
+ fprintf(stderr, " -h, --help show this help message and exit\n");
+ fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
+ fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
+ fprintf(stderr, " -T N, --tokens N maximum number of tokens to generate per iteration (default: %d)\n", params.max_tokens_per_iter);
+ fprintf(stderr, " -v, --verbose verbose output\n");
+ fprintf(stderr, " --translate translate from source language to english\n");
+ fprintf(stderr, " -ps, --print_special print special tokens\n");
+ fprintf(stderr, " -l LANG, --language LANG spoken language (default: %s)\n", params.language.c_str());
+ fprintf(stderr, " -m FNAME, --model FNAME model path (default: %s)\n", params.model.c_str());
+ fprintf(stderr, " -f FNAME, --file FNAME input WAV file path (default: %s)\n", params.fname_inp.c_str());
+ fprintf(stderr, "\n");
+}
+
+
+// medium
+// hparams: {
+// 'n_mels': 80,
+// 'n_vocab': 51864,
+// 'n_audio_ctx': 1500,
+// 'n_audio_state': 1024,
+// 'n_audio_head': 16,
+// 'n_audio_layer': 24,
+// 'n_text_ctx': 448,
+// 'n_text_state': 1024,
+// 'n_text_head': 16,
+// 'n_text_layer': 24
+// }
+//
+// default hparams (Whisper tiny)
+struct whisper_hparams {
+ int32_t n_vocab = 51864;
+ int32_t n_audio_ctx = 1500;
+ int32_t n_audio_state = 384;
+ int32_t n_audio_head = 6;
+ int32_t n_audio_layer = 4;
+ int32_t n_text_ctx = 448;
+ int32_t n_text_state = 384;
+ int32_t n_text_head = 6;
+ int32_t n_text_layer = 4;
+ int32_t n_mels = 80;
+ int32_t f16 = 1;
+};
+
+// audio encoding layer
+struct whisper_layer_encoder {
+ // encoder.blocks.*.attn_ln
+ struct ggml_tensor * attn_ln_0_w;
+ struct ggml_tensor * attn_ln_0_b;
+
+ // encoder.blocks.*.attn.out
+ struct ggml_tensor * attn_ln_1_w;
+ struct ggml_tensor * attn_ln_1_b;
+
+ // encoder.blocks.*.attn.query
+ struct ggml_tensor * attn_q_w;
+ struct ggml_tensor * attn_q_b;
+
+ // encoder.blocks.*.attn.key
+ struct ggml_tensor * attn_k_w;
+
+ // encoder.blocks.*.attn.value
+ struct ggml_tensor * attn_v_w;
+ struct ggml_tensor * attn_v_b;
+
+ // encoder.blocks.*.mlp_ln
+ struct ggml_tensor * mlp_ln_w;
+ struct ggml_tensor * mlp_ln_b;
+
+ // encoder.blocks.*.mlp.0
+ struct ggml_tensor * mlp_0_w;
+ struct ggml_tensor * mlp_0_b;
+
+ // encoder.blocks.*.mlp.2
+ struct ggml_tensor * mlp_1_w;
+ struct ggml_tensor * mlp_1_b;
+};
+
+// token decoding layer
+struct whisper_layer_decoder {
+ // decoder.blocks.*.attn_ln
+ struct ggml_tensor * attn_ln_0_w;
+ struct ggml_tensor * attn_ln_0_b;
+
+ // decoder.blocks.*.attn.out
+ struct ggml_tensor * attn_ln_1_w;
+ struct ggml_tensor * attn_ln_1_b;
+
+ // decoder.blocks.*.attn.query
+ struct ggml_tensor * attn_q_w;
+ struct ggml_tensor * attn_q_b;
+
+ // decoder.blocks.*.attn.key
+ struct ggml_tensor * attn_k_w;
+
+ // decoder.blocks.*.attn.value
+ struct ggml_tensor * attn_v_w;
+ struct ggml_tensor * attn_v_b;
+
+ // decoder.blocks.*.cross_attn_ln
+ struct ggml_tensor * cross_attn_ln_0_w;
+ struct ggml_tensor * cross_attn_ln_0_b;
+
+ // decoder.blocks.*.cross_attn.out
+ struct ggml_tensor * cross_attn_ln_1_w;
+ struct ggml_tensor * cross_attn_ln_1_b;
+
+ // decoder.blocks.*.cross_attn.query
+ struct ggml_tensor * cross_attn_q_w;
+ struct ggml_tensor * cross_attn_q_b;
+
+ // decoder.blocks.*.cross_attn.key
+ struct ggml_tensor * cross_attn_k_w;
+
+ // decoder.blocks.*.cross_attn.value
+ struct ggml_tensor * cross_attn_v_w;
+ struct ggml_tensor * cross_attn_v_b;
+
+ // decoder.blocks.*.mlp_ln
+ struct ggml_tensor * mlp_ln_w;
+ struct ggml_tensor * mlp_ln_b;
+
+ // decoder.blocks.*.mlp.0
+ struct ggml_tensor * mlp_0_w;
+ struct ggml_tensor * mlp_0_b;
+
+ // decoder.blocks.*.mlp.2
+ struct ggml_tensor * mlp_1_w;
+ struct ggml_tensor * mlp_1_b;
+};
+
+struct whisper_model {
+ e_model type = MODEL_UNKNOWN;
+
+ whisper_hparams hparams;
+ whisper_filters filters;
+
+ // encoder.positional_embedding
+ struct ggml_tensor * e_pe;
+
+ // encoder.conv1
+ struct ggml_tensor * e_conv_1_w;
+ struct ggml_tensor * e_conv_1_b;
+
+ // encoder.conv2
+ struct ggml_tensor * e_conv_2_w;
+ struct ggml_tensor * e_conv_2_b;
+
+ // encoder.ln_post
+ struct ggml_tensor * e_ln_w;
+ struct ggml_tensor * e_ln_b;
+
+ // decoder.positional_embedding
+ struct ggml_tensor * d_pe; // DD
+
+ // decoder.token_embedding
+ struct ggml_tensor * d_te; // DD
+
+ // decoder.ln
+ struct ggml_tensor * d_ln_w; // DD
+ struct ggml_tensor * d_ln_b; // DD
+
+ std::vector<whisper_layer_encoder> layers_encoder;
+ std::vector<whisper_layer_decoder> layers_decoder;
+
+ // key + value memory
+ struct ggml_tensor * memory_k;
+ struct ggml_tensor * memory_v;
+
+ struct ggml_tensor * memory_cross_k;
+ struct ggml_tensor * memory_cross_v;
+
+ //
+ struct ggml_context * ctx;
+ std::map<std::string, struct ggml_tensor *> tensors;
+};
+
+// load the model from a ggml file
+//
+// file format:
+//
+// - hparams
+// - pre-computed mel filters
+// - vocab
+// - weights
+//
+// see the convert-pt-to-ggml.py script for details
+//
+bool whisper_model_load(const std::string & fname, whisper_model & model, whisper_vocab & vocab) {
+ printf("%s: loading model from '%s'\n", __func__, fname.c_str());
+
+ auto fin = std::ifstream(fname, std::ios::binary);
+ if (!fin) {
+ fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
+ return false;
+ }
+
+ // verify magic
+ {
+ uint32_t magic;
+ fin.read((char *) &magic, sizeof(magic));
+ if (magic != 0x67676d6c) {
+ fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
+ return false;
+ }
+ }
+
+ //load hparams
+ {
+ auto & hparams = model.hparams;
+
+ fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
+ fin.read((char *) &hparams.n_audio_ctx, sizeof(hparams.n_audio_ctx));
+ fin.read((char *) &hparams.n_audio_state, sizeof(hparams.n_audio_state));
+ fin.read((char *) &hparams.n_audio_head, sizeof(hparams.n_audio_head));
+ fin.read((char *) &hparams.n_audio_layer, sizeof(hparams.n_audio_layer));
+ fin.read((char *) &hparams.n_text_ctx, sizeof(hparams.n_text_ctx));
+ fin.read((char *) &hparams.n_text_state, sizeof(hparams.n_text_state));
+ fin.read((char *) &hparams.n_text_head, sizeof(hparams.n_text_head));
+ fin.read((char *) &hparams.n_text_layer, sizeof(hparams.n_text_layer));
+ fin.read((char *) &hparams.n_mels, sizeof(hparams.n_mels));
+ fin.read((char *) &hparams.f16, sizeof(hparams.f16));
+
+ assert(hparams.n_text_state == hparams.n_audio_state);
+
+ if (hparams.n_audio_layer == 4) {
+ model.type = e_model::MODEL_TINY;
+ }
+
+ if (hparams.n_audio_layer == 6) {
+ model.type = e_model::MODEL_BASE;
+ }
+
+ if (hparams.n_audio_layer == 12) {
+ model.type = e_model::MODEL_SMALL;
+ }
+
+ if (hparams.n_audio_layer == 24) {
+ model.type = e_model::MODEL_MEDIUM;
+ }
+
+ if (hparams.n_audio_layer == 32) {
+ model.type = e_model::MODEL_LARGE;
+ }
+
+ printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
+ printf("%s: n_audio_ctx = %d\n", __func__, hparams.n_audio_ctx);
+ printf("%s: n_audio_state = %d\n", __func__, hparams.n_audio_state);
+ printf("%s: n_audio_head = %d\n", __func__, hparams.n_audio_head);
+ printf("%s: n_audio_layer = %d\n", __func__, hparams.n_audio_layer);
+ printf("%s: n_text_ctx = %d\n", __func__, hparams.n_text_ctx);
+ printf("%s: n_text_state = %d\n", __func__, hparams.n_text_state);
+ printf("%s: n_text_head = %d\n", __func__, hparams.n_text_head);
+ printf("%s: n_text_layer = %d\n", __func__, hparams.n_text_layer);
+ printf("%s: n_mels = %d\n", __func__, hparams.n_mels);
+ printf("%s: f16 = %d\n", __func__, hparams.f16);
+ printf("%s: type = %d\n", __func__, model.type);
+
+ // this is the total memory required to run the inference
+ const size_t mem_required =
+ MEM_REQ_MODEL.at(model.type) +
+ MEM_REQ_ENCODE.at(model.type) +
+ MEM_REQ_ENCODE_LAYER.at(model.type) +
+ MEM_REQ_DECODE.at(model.type) +
+ MEM_REQ_DECODE_LAYER.at(model.type);
+
+ printf("%s: mem_required = %.2f MB\n", __func__, mem_required / 1024.0 / 1024.0);
+ }
+
+ // load mel filters
+ {
+ auto & filters = model.filters;
+
+ fin.read((char *) &filters.n_mel, sizeof(filters.n_mel));
+ fin.read((char *) &filters.n_fft, sizeof(filters.n_fft));
+
+ filters.data.resize(filters.n_mel * filters.n_fft);
+ fin.read((char *) filters.data.data(), filters.data.size() * sizeof(float));
+ }
+
+ // load vocab
+ {
+ int32_t n_vocab = 0;
+ fin.read((char *) &n_vocab, sizeof(n_vocab));
+
+ //if (n_vocab != model.hparams.n_vocab) {
+ // fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
+ // __func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
+ // return false;
+ //}
+
+ std::string word;
+ for (int i = 0; i < n_vocab; i++) {
+ uint32_t len;
+ fin.read((char *) &len, sizeof(len));
+
+ word.resize(len);
+ fin.read((char *) word.data(), len);
+
+ vocab.token_to_id[word] = i;
+ vocab.id_to_token[i] = word;
+
+ //printf("%s: vocab[%d] = '%s'\n", __func__, i, word.c_str());
+ }
+
+ vocab.n_vocab = model.hparams.n_vocab;
+ if (vocab.is_multilingual()) {
+ vocab.token_eot++;
+ vocab.token_sot++;
+ vocab.token_prev++;
+ vocab.token_solm++;
+ vocab.token_beg++;
+ }
+
+ if (n_vocab < model.hparams.n_vocab) {
+ printf("%s: adding %d extra tokens\n", __func__, model.hparams.n_vocab - n_vocab);
+ for (int i = n_vocab; i < model.hparams.n_vocab; i++) {
+ if (i > vocab.token_beg) {
+ word = "[_TT_" + std::to_string(i - vocab.token_beg) + "]";
+ } else if (i == vocab.token_eot) {
+ word = "[_EOT_]";
+ } else if (i == vocab.token_sot) {
+ word = "[_SOT_]";
+ } else if (i == vocab.token_prev) {
+ word = "[_PREV_]";
+ } else if (i == vocab.token_beg) {
+ word = "[_BEG_]";
+ } else {
+ word = "[_extra_token_" + std::to_string(i) + "]";
+ }
+ vocab.token_to_id[word] = i;
+ vocab.id_to_token[i] = word;
+ }
+ }
+ }
+
+ // for the big tensors, we have the option to store the data in 16-bit floats
+ // in order to save memory and also to speed up the computation
+ const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32;
+
+ auto & ctx = model.ctx;
+
+ size_t ctx_size = 0;
+
+ {
+ const auto & hparams = model.hparams;
+
+ const int n_vocab = hparams.n_vocab;
+
+ const int n_audio_ctx = hparams.n_audio_ctx;
+ const int n_audio_state = hparams.n_audio_state;
+ const int n_audio_layer = hparams.n_audio_layer;
+
+ const int n_text_ctx = hparams.n_text_ctx;
+ const int n_text_state = hparams.n_text_state;
+ const int n_text_layer = hparams.n_text_layer;
+
+ const int n_mels = hparams.n_mels;
+
+ // encoder
+ {
+ // TODO: F16 .. maybe not?
+ ctx_size += n_audio_ctx*n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_pe;
+
+ ctx_size += 3*n_mels*n_audio_state*ggml_type_size(wtype); // e_conv_1_w
+ ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_1_b
+
+ ctx_size += 3*n_audio_state*n_audio_state*ggml_type_size(wtype); // e_conv_2_w
+ ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_2_b
+
+ ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_w;
+ ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_b;
+ }
+
+ // decoder
+ {
+ // TODO: F16 .. maybe not?
+ ctx_size += n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // d_pe;
+
+ ctx_size += n_vocab*n_text_state*ggml_type_size(wtype); // d_te;
+
+ ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_w;
+ ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_b;
+ }
+
+ // encoder layers
+ {
+ ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w
+ ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b
+
+ ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_0_w
+ ctx_size += n_audio_layer*( 4*n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b
+
+ ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_1_w
+ ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b
+
+ ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w
+ ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b
+
+ ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_q_w
+ ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b
+
+ ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_k_w
+
+ ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_v_w
+ ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b
+
+ ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_ln_1_w
+ ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b
+ }
+
+ // decoder layers
+ {
+ ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w
+ ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b
+
+ ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_0_w
+ ctx_size += n_text_layer*( 4*n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b
+
+ ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_1_w
+ ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b
+
+ ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w
+ ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b
+
+ ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_q_w
+ ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b
+
+ ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_k_w
+
+ ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_v_w
+ ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b
+
+ ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_ln_1_w
+ ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b
+ //
+ ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_w
+ ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_b
+
+ ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_q_w
+ ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_q_b
+
+ ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_k_w
+
+ ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_v_w
+ ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_v_b
+
+ ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_ln_1_w
+ ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_1_b
+ }
+
+ ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_k
+ ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_v
+
+ ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_k
+ ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_v
+
+ ctx_size += (15 + 15*n_audio_layer + 24*n_text_layer)*256; // object overhead
+
+ printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
+ }
+
+ // create the ggml context
+ {
+ struct ggml_init_params params = {
+ .mem_size = ctx_size,
+ .mem_buffer = NULL,
+ };
+
+ model.ctx = ggml_init(params);
+ if (!model.ctx) {
+ fprintf(stderr, "%s: ggml_init() failed\n", __func__);
+ return false;
+ }
+ }
+
+ // prepare memory for the weights
+ {
+ const auto & hparams = model.hparams;
+
+ const int n_vocab = hparams.n_vocab;
+
+ const int n_audio_ctx = hparams.n_audio_ctx;
+ const int n_audio_state = hparams.n_audio_state;
+ const int n_audio_layer = hparams.n_audio_layer;
+
+ const int n_text_ctx = hparams.n_text_ctx;
+ const int n_text_state = hparams.n_text_state;
+ const int n_text_layer = hparams.n_text_layer;
+
+ const int n_mels = hparams.n_mels;
+
+ model.layers_encoder.resize(n_audio_layer);
+ model.layers_decoder.resize(n_text_layer);
+
+ // encoder
+ {
+ model.e_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_state, n_audio_ctx);
+
+ model.e_conv_1_w = ggml_new_tensor_3d(ctx, wtype, 3, n_mels, n_audio_state);
+ model.e_conv_1_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state);
+
+ model.e_conv_2_w = ggml_new_tensor_3d(ctx, wtype, 3, n_audio_state, n_audio_state);
+ model.e_conv_2_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state);
+
+ model.e_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
+ model.e_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
+
+ // map by name
+ model.tensors["encoder.positional_embedding"] = model.e_pe;
+
+ model.tensors["encoder.conv1.weight"] = model.e_conv_1_w;
+ model.tensors["encoder.conv1.bias"] = model.e_conv_1_b;
+
+ model.tensors["encoder.conv2.weight"] = model.e_conv_2_w;
+ model.tensors["encoder.conv2.bias"] = model.e_conv_2_b;
+
+ model.tensors["encoder.ln_post.weight"] = model.e_ln_w;
+ model.tensors["encoder.ln_post.bias"] = model.e_ln_b;
+
+ for (int i = 0; i < n_audio_layer; ++i) {
+ auto & layer = model.layers_encoder[i];
+
+ layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
+ layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
+
+ layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, 4*n_audio_state);
+ layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_audio_state);
+
+ layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_audio_state, n_audio_state);
+ layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
+
+ layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
+ layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
+
+ layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
+ layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
+
+ layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
+
+ layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
+ layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
+
+ layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
+ layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
+
+ // map by name
+ model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w;
+ model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b;
+
+ model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w;
+ model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b;
+
+ model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w;
+ model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b;
+
+ model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w;
+ model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b;
+
+ model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w;
+ model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b;
+
+ model.tensors["encoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w;
+
+ model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w;
+ model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b;
+
+ model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w;
+ model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b;
+ }
+ }
+
+ // decoder
+ {
+ model.d_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_text_state, n_text_ctx);
+
+ model.d_te = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_vocab);
+
+ model.d_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+ model.d_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+ // map by name
+ model.tensors["decoder.positional_embedding"] = model.d_pe;
+
+ model.tensors["decoder.token_embedding.weight"] = model.d_te;
+
+ model.tensors["decoder.ln.weight"] = model.d_ln_w;
+ model.tensors["decoder.ln.bias"] = model.d_ln_b;
+
+ for (int i = 0; i < n_text_layer; ++i) {
+ auto & layer = model.layers_decoder[i];
+
+ layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+ layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+ layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, 4*n_text_state);
+ layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_text_state);
+
+ layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_text_state, n_text_state);
+ layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+ layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+ layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+ layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
+ layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+ layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
+
+ layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
+ layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+ layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
+ layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+ layer.cross_attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+ layer.cross_attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+ layer.cross_attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
+ layer.cross_attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+ layer.cross_attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
+
+ layer.cross_attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
+ layer.cross_attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+ layer.cross_attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
+ layer.cross_attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+ // map by name
+ model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w;
+ model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b;
+
+ model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w;
+ model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b;
+
+ model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w;
+ model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b;
+
+ model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w;
+ model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b;
+
+ model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w;
+ model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b;
+
+ model.tensors["decoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w;
+
+ model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w;
+ model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b;
+
+ model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w;
+ model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b;
+
+ model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.weight"] = layer.cross_attn_ln_0_w;
+ model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.bias"] = layer.cross_attn_ln_0_b;
+
+ model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.weight"] = layer.cross_attn_q_w;
+ model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.bias"] = layer.cross_attn_q_b;
+
+ model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.key.weight"] = layer.cross_attn_k_w;
+
+ model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.weight"] = layer.cross_attn_v_w;
+ model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.bias"] = layer.cross_attn_v_b;
+
+ model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.weight"] = layer.cross_attn_ln_1_w;
+ model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.bias"] = layer.cross_attn_ln_1_b;
+ }
+ }
+ }
+
+ // key + value memory
+ {
+ const auto & hparams = model.hparams;
+
+ const int n_text_state = hparams.n_text_state;
+ const int n_text_layer = hparams.n_text_layer;
+ const int n_text_ctx = hparams.n_text_ctx;
+
+ // key/value memory for the self-attention layer
+ {
+ const int n_mem = n_text_layer*n_text_ctx;
+ const int n_elements = n_text_state*n_mem;
+
+ model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
+ model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
+ }
+
+ // key/value memory for the cross-attention layer
+ {
+ const int n_audio_ctx = hparams.n_audio_ctx;
+
+ const int n_mem = n_text_layer*n_audio_ctx;
+ const int n_elements = n_text_state*n_mem;
+
+ model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
+ model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
+ }
+
+ const size_t memory_size =
+ ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v) +
+ ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v);
+
+ printf("%s: memory size = %8.2f MB \n", __func__, memory_size/1024.0/1024.0);
+ }
+
+ // load weights
+ {
+ size_t total_size = 0;
+
+ while (true) {
+ int32_t n_dims;
+ int32_t length;
+ int32_t ftype;
+
+ fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
+ fin.read(reinterpret_cast<char *>(&length), sizeof(length));
+ fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
+
+ if (fin.eof()) {
+ break;
+ }
+
+ int32_t nelements = 1;
+ int32_t ne[3] = { 1, 1, 1 };
+ for (int i = 0; i < n_dims; ++i) {
+ fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
+ nelements *= ne[i];
+ }
+
+ std::string name(length, 0);
+ fin.read(&name[0], length);
+
+ if (model.tensors.find(name.data()) == model.tensors.end()) {
+ fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
+ return false;
+ }
+
+ auto tensor = model.tensors[name.data()];
+ if (ggml_nelements(tensor) != nelements) {
+ fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
+ return false;
+ }
+
+ if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1] || tensor->ne[2] != ne[2]) {
+ fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d, %d], expected [%d, %d, %d]\n",
+ __func__, name.data(), tensor->ne[0], tensor->ne[1], tensor->ne[2], ne[0], ne[1], ne[2]);
+ return false;
+ }
+
+ const size_t bpe = (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t);
+
+ if (nelements*bpe != ggml_nbytes(tensor)) {
+ fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
+ __func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
+ return false;
+ }
+
+ fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
+
+ //printf("%24s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
+ total_size += ggml_nbytes(tensor);
+ }
+
+ printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0);
+ }
+
+ fin.close();
+
+ return true;
+}
+
+// evaluate the encoder
+//
+// given audio recording (more specifically, its log mel spectrogram), runs forward pass of the encoder
+// part of the transformer model and returns the encoded features
+//
+// - model: the model
+// - n_threads: number of threads to use
+// - mel_offset: offset in the mel spectrogram (i.e. audio offset)
+// - mel_inp: input mel spectrogram
+// - features: output encoded features
+//
+bool whisper_encode(
+ const whisper_model & model,
+ const int n_threads,
+ const int mel_offset,
+ const whisper_mel & mel_inp,
+ std::vector<float> & features) {
+ const auto & hparams = model.hparams;
+
+ const int n_vocab = hparams.n_vocab;
+
+ const int n_ctx = hparams.n_audio_ctx;
+ const int n_state = hparams.n_audio_state;
+ const int n_head = hparams.n_audio_head;
+ const int n_layer = hparams.n_audio_layer;
+
+ const int N = n_ctx;
+
+ const int n_mels = hparams.n_mels;
+ assert(mel_inp.n_mel == n_mels);
+
+ struct ggml_init_params params;
+
+ {
+ static size_t buf_size = MEM_REQ_ENCODE.at(model.type);
+ static void * buf = malloc(buf_size);
+
+ params = {
+ .mem_size = buf_size,
+ .mem_buffer = buf,
+ };
+ }
+
+ struct ggml_context * ctx0 = ggml_init(params);
+
+ struct ggml_tensor * mel = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 2*n_ctx, n_mels);
+ assert(mel->type == GGML_TYPE_F32);
+ {
+ float * dst = (float *) mel->data;
+ memset(dst, 0, ggml_nbytes(mel));
+
+ const int i0 = std::min(mel_offset, mel_inp.n_len);
+ const int i1 = std::min(mel_offset + 2*n_ctx, mel_inp.n_len);
+
+ for (int j = 0; j < mel_inp.n_mel; ++j) {
+ for (int i = i0; i < i1; ++i) {
+ dst[j*2*n_ctx + (i - i0)] = mel_inp.data[j*mel_inp.n_len + i];
+ }
+ }
+ }
+
+ struct ggml_tensor * cur;
+
+ // convolution + gelu
+ {
+ cur = ggml_conv_1d_1s(ctx0, model.e_conv_1_w, mel);
+ cur = ggml_add(ctx0,
+ ggml_repeat(ctx0,
+ model.e_conv_1_b,
+ cur),
+ cur);
+
+ cur = ggml_gelu(ctx0, cur);
+
+ cur = ggml_conv_1d_2s(ctx0, model.e_conv_2_w, cur);
+ cur = ggml_add(ctx0,
+ ggml_repeat(ctx0,
+ model.e_conv_2_b,
+ cur),
+ cur);
+
+ cur = ggml_gelu(ctx0, cur);
+ }
+
+ cur = ggml_add(ctx0, model.e_pe, ggml_transpose(ctx0, cur));
+
+ struct ggml_tensor * inpL = cur;
+
+ for (int il = 0; il < n_layer; ++il) {
+ const auto & layer = model.layers_encoder[il];
+
+ // create separate context for each layer to reduce memory usage
+
+ struct ggml_init_params paramsL;
+ {
+ static size_t buf_size = MEM_REQ_ENCODE_LAYER.at(model.type);
+ static void * buf = malloc(buf_size);
+
+ paramsL = {
+ .mem_size = buf_size,
+ .mem_buffer = buf,
+ };
+ }
+
+ struct ggml_context * ctxL = ggml_init(paramsL);
+
+ // norm
+ {
+ cur = ggml_norm(ctxL, inpL);
+
+ // cur = ln_0_w*cur + ln_0_b
+ cur = ggml_add(ctxL,
+ ggml_mul(ctxL,
+ ggml_repeat(ctxL, layer.attn_ln_0_w, cur),
+ cur),
+ ggml_repeat(ctxL, layer.attn_ln_0_b, cur));
+ }
+
+ // self-attention
+ {
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctxL,
+ layer.attn_q_w,
+ cur);
+
+ Qcur = ggml_add(ctxL,
+ ggml_repeat(ctxL,
+ layer.attn_q_b,
+ Qcur),
+ Qcur);
+
+ //Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
+
+ // note: no bias for Key
+ struct ggml_tensor * Kcur = ggml_mul_mat(ctxL,
+ layer.attn_k_w,
+ cur);
+
+ //Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
+
+ struct ggml_tensor * Vcur = ggml_mul_mat(ctxL,
+ layer.attn_v_w,
+ cur);
+
+ Vcur = ggml_add(ctxL,
+ ggml_repeat(ctxL,
+ layer.attn_v_b,
+ Vcur),
+ Vcur);
+
+ // ------
+
+#ifdef USE_FLASH_ATTN
+ struct ggml_tensor * Q =
+ ggml_permute(ctxL,
+ ggml_cpy(ctxL,
+ Qcur,
+ ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
+ 0, 2, 1, 3);
+
+ struct ggml_tensor * K =
+ ggml_permute(ctxL,
+ ggml_cpy(ctxL,
+ Kcur,
+ ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
+ 0, 2, 1, 3);
+
+ struct ggml_tensor * V =
+ ggml_cpy(ctxL,
+ ggml_permute(ctxL,
+ ggml_reshape_3d(ctxL,
+ Vcur,
+ n_state/n_head, n_head, N),
+ 1, 2, 0, 3),
+ ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, N, n_state/n_head, n_head)
+ );
+
+ struct ggml_tensor * KQV = ggml_flash_attn(ctxL, Q, K, V, false);
+#else
+ struct ggml_tensor * Q =
+ ggml_permute(ctxL,
+ ggml_cpy(ctxL,
+ Qcur,
+ ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)),
+ 0, 2, 1, 3);
+
+ struct ggml_tensor * K =
+ ggml_permute(ctxL,
+ ggml_cpy(ctxL,
+ Kcur,
+ ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
+ 0, 2, 1, 3);
+
+ // K * Q
+ struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q);
+
+ struct ggml_tensor * KQ_scaled =
+ ggml_scale(ctxL,
+ KQ,
+ ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head))
+ );
+
+ struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_scaled);
+
+ //struct ggml_tensor * V_trans =
+ // ggml_permute(ctxL,
+ // ggml_cpy(ctxL,
+ // Vcur,
+ // ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
+ // 1, 2, 0, 3);
+
+ //struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max);
+
+ struct ggml_tensor * V =
+ ggml_cpy(ctxL,
+ ggml_permute(ctxL,
+ ggml_reshape_3d(ctxL,
+ Vcur,
+ n_state/n_head, n_head, N),
+ 0, 2, 1, 3),
+ ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, N, n_head)
+ );
+
+ struct ggml_tensor * KQV = ggml_mul_mat(ctxL, ggml_transpose(ctxL, V), KQ_soft_max);
+#endif
+
+ struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3);
+
+ cur = ggml_cpy(ctxL,
+ KQV_merged,
+ ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N));
+ }
+
+ // projection
+ {
+ cur = ggml_mul_mat(ctxL,
+ layer.attn_ln_1_w,
+ cur);
+
+ cur = ggml_add(ctxL,
+ ggml_repeat(ctxL, layer.attn_ln_1_b, cur),
+ cur);
+ }
+
+ // add the input
+ cur = ggml_add(ctxL, cur, inpL);
+
+ struct ggml_tensor * inpFF = cur;
+
+ // feed-forward network
+ {
+ // norm
+ {
+ cur = ggml_norm(ctxL, inpFF);
+
+ // cur = mlp_ln_w*cur + mlp_ln_b
+ cur = ggml_add(ctxL,
+ ggml_mul(ctxL,
+ ggml_repeat(ctxL, layer.mlp_ln_w, cur),
+ cur),
+ ggml_repeat(ctxL, layer.mlp_ln_b, cur));
+ }
+
+#ifdef USE_FLASH_FF
+ cur = ggml_flash_ff(ctxL,
+ ggml_cpy(ctxL, cur, ggml_new_tensor_2d(ctxL, GGML_TYPE_F16, n_state, N)),
+ layer.mlp_0_w, layer.mlp_0_b, layer.mlp_1_w, layer.mlp_1_b);
+#else
+ // fully connected
+ cur = ggml_mul_mat(ctxL,
+ layer.mlp_0_w,
+ cur);
+
+ cur = ggml_add(ctxL,
+ ggml_repeat(ctxL, layer.mlp_0_b, cur),
+ cur);
+
+ // GELU activation
+ cur = ggml_gelu(ctxL, cur);
+
+ // projection
+ cur = ggml_mul_mat(ctxL,
+ layer.mlp_1_w,
+ cur);
+
+ cur = ggml_add(ctxL,
+ ggml_repeat(ctxL, layer.mlp_1_b, cur),
+ cur);
+#endif
+ }
+
+ // output from this layer
+ struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF);
+
+ {
+ struct ggml_cgraph gf = { .n_threads = n_threads };
+
+ ggml_build_forward_expand(&gf, inpO);
+ ggml_graph_compute (ctxL, &gf);
+
+ //ggml_graph_print(&gf);
+ }
+
+ // TODO: this is a hack to have per-layer computation graphs - need to come up with something better
+ // input for next layer (inpO -> inpL)
+ memcpy(inpL->data, inpO->data, ggml_nbytes(inpL));
+ inpL->op = GGML_OP_NONE;
+ inpL->src0 = NULL;
+ inpL->src1 = NULL;
+
+ //printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0);
+
+ ggml_free(ctxL);
+ }
+
+ cur = inpL;
+
+ // norm
+ {
+ cur = ggml_norm(ctx0, cur);
+
+ // cur = ln_f_g*cur + ln_f_b
+ cur = ggml_add(ctx0,
+ ggml_mul(ctx0,
+ ggml_repeat(ctx0, model.e_ln_w, cur),
+ cur),
+ ggml_repeat(ctx0, model.e_ln_b, cur));
+ }
+
+ // run the computation
+ {
+ struct ggml_cgraph gf = { .n_threads = n_threads };
+
+ ggml_build_forward_expand(&gf, cur);
+ ggml_graph_compute (ctx0, &gf);
+
+ //ggml_graph_print(&gf);
+ }
+
+ // cur
+ //{
+ // printf("ne0 = %d\n", cur->ne[0]);
+ // printf("ne1 = %d\n", cur->ne[1]);
+ // for (int i = 0; i < 10; ++i) {
+ // printf("%8.4f ", ((float *)(cur->data))[i]);
+ // }
+ // printf("... ");
+ // for (int i = cur->ne[0] - 10; i < cur->ne[0]; ++i) {
+ // printf("%8.4f ", ((float *)(cur->data))[i]);
+ // }
+ // printf("\n");
+ //}
+
+ // pre-compute cross-attention memory
+ {
+ struct ggml_cgraph gf = { .n_threads = n_threads };
+
+ // TODO: hack to disconnect the encoded features from the previous graph
+ cur->op = GGML_OP_NONE;
+ cur->src0 = NULL;
+ cur->src1 = NULL;
+
+ for (int il = 0; il < model.hparams.n_text_layer; ++il) {
+ auto & layer = model.layers_decoder[il];
+
+ struct ggml_tensor * Kcross = ggml_mul_mat(ctx0,
+ layer.cross_attn_k_w,
+ cur);
+
+ Kcross = ggml_scale(ctx0, Kcross, ggml_new_f32(ctx0, pow(float(n_state)/n_head, -0.25)));
+
+ struct ggml_tensor * Vcross = ggml_mul_mat(ctx0,
+ layer.cross_attn_v_w,
+ cur);
+
+ Vcross = ggml_add(ctx0,
+ ggml_repeat(ctx0,
+ layer.cross_attn_v_b,
+ Vcross),
+ Vcross);
+
+ struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_cross_k, n_state*n_ctx, (ggml_element_size(model.memory_cross_k)*n_state)*(il*n_ctx));
+ struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_cross_v, n_state*n_ctx, (ggml_element_size(model.memory_cross_v)*n_state)*(il*n_ctx));
+
+ ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcross, k));
+ ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcross, v));
+ }
+
+ ggml_graph_compute(ctx0, &gf);
+ }
+
+ ////////////////////////////////////////////////////////////////////////////
+
+ // output the features
+ assert(cur->type == GGML_TYPE_F32);
+ features.resize(cur->ne[0]*cur->ne[1]);
+ memcpy(features.data(), cur->data, features.size()*sizeof(float));
+
+ //printf("%s: used_mem = %f MB\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0);
+
+ ggml_free(ctx0);
+
+ return true;
+}
+
+// evaluate the decoder
+//
+// given text prompt + audio features -> predicts the probabilities for the next token
+//
+// - model: the model
+// - n_threads: number of threads to use
+// - n_past: prompt length
+// - prompt: text prompt
+// - logits_out: output logits
+// - probs_out: output probabilities
+//
+bool whisper_decode(
+ const whisper_model & model,
+ const int n_threads,
+ const int n_past,
+ const std::vector<whisper_vocab::id> & prompt,
+ std::vector<float> & logits_out,
+ std::vector<float> & probs_out) {
+ const auto & hparams = model.hparams;
+
+ const int n_vocab = hparams.n_vocab;
+
+ const int n_ctx = hparams.n_text_ctx;
+ const int n_state = hparams.n_text_state;
+ const int n_head = hparams.n_text_head;
+ const int n_layer = hparams.n_text_layer;
+
+ const int N = prompt.size();
+ const int M = hparams.n_audio_ctx;
+
+ struct ggml_init_params params;
+
+ {
+ static size_t buf_size = MEM_REQ_DECODE.at(model.type);
+ static void * buf = malloc(buf_size);
+
+ params = {
+ .mem_size = buf_size,
+ .mem_buffer = buf,
+ };
+ }
+
+ struct ggml_context * ctx0 = ggml_init(params);
+
+ struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
+ memcpy(embd->data, prompt.data(), N*ggml_element_size(embd));
+
+ struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
+ for (int i = 0; i < N; ++i) {
+ ((int32_t *) position->data)[i] = n_past + i;
+ }
+
+ // token encoding + position encoding
+ struct ggml_tensor * cur =
+ ggml_add(ctx0,
+ ggml_get_rows(ctx0, model.d_te, embd),
+ ggml_get_rows(ctx0, model.d_pe, position));
+
+ struct ggml_tensor * inpL = cur;
+
+ for (int il = 0; il < n_layer; ++il) {
+ const auto & layer = model.layers_decoder[il];
+
+ struct ggml_init_params paramsL;
+
+ {
+ static size_t buf_size = MEM_REQ_DECODE_LAYER.at(model.type);
+ static void * buf = malloc(buf_size);
+
+ paramsL = {
+ .mem_size = buf_size,
+ .mem_buffer = buf,
+ };
+ }
+
+ struct ggml_context * ctxL = ggml_init(paramsL);
+ struct ggml_cgraph gf = { .n_threads = n_threads };
+
+ // norm
+ {
+ cur = ggml_norm(ctxL, inpL);
+
+ // cur = ln_0_w*cur + ln_0_b
+ cur = ggml_add(ctxL,
+ ggml_mul(ctxL,
+ ggml_repeat(ctxL, layer.attn_ln_0_w, cur),
+ cur),
+ ggml_repeat(ctxL, layer.attn_ln_0_b, cur));
+ }
+
+ // self-attention
+ {
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctxL,
+ layer.attn_q_w,
+ cur);
+
+ Qcur = ggml_add(ctxL,
+ ggml_repeat(ctxL,
+ layer.attn_q_b,
+ Qcur),
+ Qcur);
+
+ Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
+
+ // note: no bias for Key
+ struct ggml_tensor * Kcur = ggml_mul_mat(ctxL,
+ layer.attn_k_w,
+ cur);
+
+ Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
+
+ struct ggml_tensor * Vcur = ggml_mul_mat(ctxL,
+ layer.attn_v_w,
+ cur);
+
+ Vcur = ggml_add(ctxL,
+ ggml_repeat(ctxL,
+ layer.attn_v_b,
+ Vcur),
+ Vcur);
+
+ // store key and value to memory
+ {
+ struct ggml_tensor * k = ggml_view_1d(ctxL, model.memory_k, N*n_state, (ggml_element_size(model.memory_k)*n_state)*(il*n_ctx + n_past));
+ struct ggml_tensor * v = ggml_view_1d(ctxL, model.memory_v, N*n_state, (ggml_element_size(model.memory_v)*n_state)*(il*n_ctx + n_past));
+
+ ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Kcur, k));
+ ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Vcur, v));
+ }
+
+ // ------
+
+ struct ggml_tensor * Q =
+ ggml_permute(ctxL,
+ ggml_cpy(ctxL,
+ Qcur,
+ ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)),
+ 0, 2, 1, 3);
+
+ struct ggml_tensor * K =
+ ggml_permute(ctxL,
+ ggml_reshape_3d(ctxL,
+ ggml_view_1d(ctxL, model.memory_k, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_k)*n_state),
+ n_state/n_head, n_head, n_past + N),
+ 0, 2, 1, 3);
+
+ // K * Q
+ struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q);
+
+ //struct ggml_tensor * KQ_scaled =
+ // ggml_scale(ctxL,
+ // KQ,
+ // ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head))
+ // );
+
+ struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ, n_past);
+
+ struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_masked);
+
+ struct ggml_tensor * V_trans =
+ ggml_permute(ctxL,
+ ggml_reshape_3d(ctxL,
+ ggml_view_1d(ctxL, model.memory_v, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_v)*n_state),
+ n_state/n_head, n_head, n_past + N),
+ 1, 2, 0, 3);
+
+ struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max);
+
+ struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3);
+
+ cur = ggml_cpy(ctxL,
+ KQV_merged,
+ ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N));
+ }
+
+ {
+ cur = ggml_mul_mat(ctxL,
+ layer.attn_ln_1_w,
+ cur);
+
+ cur = ggml_add(ctxL,
+ ggml_repeat(ctxL, layer.attn_ln_1_b, cur),
+ cur);
+ }
+
+ // add the input
+ struct ggml_tensor * inpCA = ggml_add(ctxL, cur, inpL);
+
+ // norm
+ {
+ cur = ggml_norm(ctxL, inpCA); // note: we use inpCA here
+
+ // cur = ln_0_w*cur + ln_0_b
+ cur = ggml_add(ctxL,
+ ggml_mul(ctxL,
+ ggml_repeat(ctxL, layer.cross_attn_ln_0_w, cur),
+ cur),
+ ggml_repeat(ctxL, layer.cross_attn_ln_0_b, cur));
+ }
+
+ // cross-attention
+ {
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctxL,
+ layer.cross_attn_q_w,
+ cur);
+
+ Qcur = ggml_add(ctxL,
+ ggml_repeat(ctxL,
+ layer.cross_attn_q_b,
+ Qcur),
+ Qcur);
+
+ Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
+
+ // Kcross is already scaled
+ struct ggml_tensor * Kcross =
+ ggml_reshape_3d(ctxL,
+ ggml_view_1d(ctxL, model.memory_cross_k, M*n_state, il*M*ggml_element_size(model.memory_cross_k)*n_state),
+ n_state/n_head, n_head, M);
+
+ struct ggml_tensor * Vcross =
+ ggml_reshape_3d(ctxL,
+ ggml_view_1d(ctxL, model.memory_cross_v, M*n_state, il*M*ggml_element_size(model.memory_cross_v)*n_state),
+ n_state/n_head, n_head, M);
+
+ // ------
+
+ struct ggml_tensor * Q =
+ ggml_permute(ctxL,
+ ggml_cpy(ctxL,
+ Qcur,
+ ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)),
+ 0, 2, 1, 3);
+
+ struct ggml_tensor * K = ggml_permute(ctxL, Kcross, 0, 2, 1, 3);
+
+ // K * Q
+ struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q);
+
+ //struct ggml_tensor * KQ_scaled =
+ // ggml_scale(ctxL,
+ // KQ,
+ // ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head))
+ // );
+
+ // no masking for cross-attention
+ //struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ_scaled, n_past);
+
+ struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ);
+
+ struct ggml_tensor * V_trans = ggml_permute(ctxL, Vcross, 1, 2, 0, 3);
+
+ struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max);
+
+ struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3);
+
+ // cur = KQV_merged.contiguous().view(n_state, N)
+ cur = ggml_cpy(ctxL,
+ KQV_merged,
+ ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N));
+ }
+
+ // projection
+ {
+ cur = ggml_mul_mat(ctxL,
+ layer.cross_attn_ln_1_w,
+ cur);
+
+ cur = ggml_add(ctxL,
+ ggml_repeat(ctxL, layer.cross_attn_ln_1_b, cur),
+ cur);
+ }
+
+ // add the input
+ cur = ggml_add(ctxL, cur, inpCA);
+
+ struct ggml_tensor * inpFF = cur;
+
+ // feed-forward network
+ {
+ // norm
+ {
+ cur = ggml_norm(ctxL, inpFF);
+
+ // cur = mlp_ln_w*cur + mlp_ln_b
+ cur = ggml_add(ctxL,
+ ggml_mul(ctxL,
+ ggml_repeat(ctxL, layer.mlp_ln_w, cur),
+ cur),
+ ggml_repeat(ctxL, layer.mlp_ln_b, cur));
+ }
+
+ // fully connected
+ cur = ggml_mul_mat(ctxL,
+ layer.mlp_0_w,
+ cur);
+
+ cur = ggml_add(ctxL,
+ ggml_repeat(ctxL, layer.mlp_0_b, cur),
+ cur);
+
+ // GELU activation
+ cur = ggml_gelu(ctxL, cur);
+
+ // projection
+ cur = ggml_mul_mat(ctxL,
+ layer.mlp_1_w,
+ cur);
+
+ cur = ggml_add(ctxL,
+ ggml_repeat(ctxL, layer.mlp_1_b, cur),
+ cur);
+ }
+
+ // output from this layer
+ struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF);
+
+ {
+ ggml_build_forward_expand(&gf, inpO);
+ ggml_graph_compute (ctxL, &gf);
+
+ //ggml_graph_print(&gf);
+ }
+
+ // TODO: this is a hack to have per-layer computation graphs - need to come up with something better
+ // input for next layer (inpO -> inpL)
+ memcpy(inpL->data, inpO->data, ggml_nbytes(inpL));
+ inpL->op = GGML_OP_NONE;
+ inpL->src0 = NULL;
+ inpL->src1 = NULL;
+
+ if (N > 1) {
+ //printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0);
+ }
+
+ ggml_free(ctxL);
+ }
+
+ cur = inpL;
+
+ // norm
+ {
+ cur = ggml_norm(ctx0, cur);
+
+ cur = ggml_add(ctx0,
+ ggml_mul(ctx0,
+ ggml_repeat(ctx0, model.d_ln_w, cur),
+ cur),
+ ggml_repeat(ctx0, model.d_ln_b, cur));
+ }
+
+ struct ggml_tensor * logits = ggml_mul_mat(ctx0, model.d_te, cur);
+
+ // logits -> probs
+ cur = ggml_dup(ctx0, logits);
+ cur = ggml_soft_max(ctx0, cur); // in-place
+
+ // run the computation
+ {
+ struct ggml_cgraph gf = { .n_threads = n_threads };
+
+ ggml_build_forward_expand(&gf, cur);
+ ggml_graph_compute (ctx0, &gf);
+ }
+
+ logits_out.resize(N*n_vocab);
+ memcpy(logits_out.data(), ggml_get_data(logits), sizeof(float)*N*n_vocab);
+
+ probs_out.resize(N*n_vocab);
+ memcpy(probs_out.data(), ggml_get_data(cur), sizeof(float)*N*n_vocab);
+
+ if (N > 1) {
+ //const float mem_per_token = ggml_used_mem(ctx0)/1024.0/1024.0/N;
+ //printf("%s: used_mem = %f MB / %f per token\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0, mem_per_token);
+ //printf("%s: max mem = %f MB\n", __func__, mem_per_token*model.hparams.n_text_ctx);
+ }
+
+ ggml_free(ctx0);
+
+ return true;
+}
+
+// the most basic sampling scheme - select the top token
+// TODO: beam search
+// TODO: temperature
+whisper_vocab::id whisper_sample_best(
+ const whisper_vocab & vocab,
+ const float * probs,
+ double temp,
+ int offset = 0) {
+ int n_logits = vocab.id_to_token.size();
+
+ std::vector<std::pair<double, whisper_vocab::id>> probs_id;
+ probs_id.reserve(n_logits);
+
+ for (int i = offset; i < n_logits; i++) {
+ probs_id.push_back(std::make_pair(probs[i], i));
+ }
+
+ const int top_k = 10;
+
+ // find the top K tokens
+ std::partial_sort(
+ probs_id.begin(),
+ probs_id.begin() + top_k, probs_id.end(),
+ [](const std::pair<double, whisper_vocab::id> & a, const std::pair<double, whisper_vocab::id> & b) {
+ return a.first > b.first;
+ });
+
+ probs_id.resize(top_k);
+
+ //printf("\n");
+ //for (int i = 0; i < (int) probs_id.size(); i++) {
+ // printf("%d: '%s' %f, %d\n", i, vocab.id_to_token.at(probs_id[i].second).c_str(), probs_id[i].first, probs_id[i].second);
+ //}
+
+ int res = 0;
+ while (probs_id[res].second == vocab.token_solm && res < (int) probs_id.size() - 1) {
+ res++;
+ }
+
+ return probs_id[res].second;
+}
+
+// Cooley-Tukey FFT
+// poor man's implmentation - use something better
+// input is real-valued
+// output is complex-valued
+void fft(const std::vector<float> & in, std::vector<float> & out) {
+ out.resize(in.size()*2);
+
+ int N = in.size();
+
+ if (N == 1) {
+ out[0] = in[0];
+ out[1] = 0;
+ return;
+ }
+
+ std::vector<float> even;
+ std::vector<float> odd;
+
+ for (int i = 0; i < N; i++) {
+ if (i % 2 == 0) {
+ even.push_back(in[i]);
+ } else {
+ odd.push_back(in[i]);
+ }
+ }
+
+ std::vector<float> even_fft;
+ std::vector<float> odd_fft;
+
+ fft(even, even_fft);
+ fft(odd, odd_fft);
+
+ for (int k = 0; k < N/2; k++) {
+ float theta = 2*M_PI*k/N;
+
+ float re = cos(theta);
+ float im = -sin(theta);
+
+ float re_odd = odd_fft[2*k + 0];
+ float im_odd = odd_fft[2*k + 1];
+
+ out[2*k + 0] = even_fft[2*k + 0] + re*re_odd - im*im_odd;
+ out[2*k + 1] = even_fft[2*k + 1] + re*im_odd + im*re_odd;
+
+ out[2*(k + N/2) + 0] = even_fft[2*k + 0] - re*re_odd + im*im_odd;
+ out[2*(k + N/2) + 1] = even_fft[2*k + 1] - re*im_odd - im*re_odd;
+ }
+}
+
+// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L92-L124
+bool log_mel_spectrogram(
+ const std::vector<float> sf32,
+ const int sample_rate,
+ const int fft_size,
+ const int fft_step,
+ const int n_mel,
+ const int n_threads,
+ const whisper_filters & filters,
+ whisper_mel & mel) {
+ const int n_sample = sf32.size();
+ const float * samples = sf32.data();
+
+ // Hanning window
+ std::vector<float> hann;
+ hann.resize(fft_size);
+ for (int i = 0; i < fft_size; i++) {
+ hann[i] = 0.5*(1.0 - cos((2.0*M_PI*i)/(fft_size)));
+ }
+
+ mel.n_mel = n_mel;
+ mel.n_len = (n_sample)/fft_step;
+ mel.data.resize(mel.n_mel*mel.n_len);
+
+ const int n_fft = 1 + fft_size/2;
+
+ printf("%s: n_sample = %d, n_len = %d\n", __func__, n_sample, mel.n_len);
+ printf("%s: recording length: %f s\n", __func__, (float) n_sample/sample_rate);
+
+ std::vector<std::thread> workers(n_threads);
+ for (int iw = 0; iw < n_threads; ++iw) {
+ workers[iw] = std::thread([&](int ith) {
+ std::vector<float> fft_in;
+ fft_in.resize(fft_size);
+ for (int i = 0; i < fft_size; i++) {
+ fft_in[i] = 0.0;
+ }
+
+ std::vector<float> fft_out;
+ fft_out.resize(2*fft_size);
+
+ for (int i = ith; i < mel.n_len; i += n_threads) {
+ const int offset = i*fft_step;
+
+ // apply Hanning window
+ for (int j = 0; j < fft_size; j++) {
+ if (offset + j < n_sample) {
+ fft_in[j] = hann[j]*samples[offset + j];
+ } else {
+ fft_in[j] = 0.0;
+ }
+ }
+
+ // FFT -> mag^2
+ fft(fft_in, fft_out);
+
+ for (int j = 0; j < n_fft; j++) {
+ fft_out[j] = (fft_out[2*j + 0]*fft_out[2*j + 0] + fft_out[2*j + 1]*fft_out[2*j + 1]);
+ }
+
+ // mel spectrogram
+ for (int j = 0; j < mel.n_mel; j++) {
+ double sum = 0.0;
+
+ for (int k = 0; k < n_fft; k++) {
+ sum += fft_out[k]*filters.data[j*n_fft + k];
+ }
+ if (sum < 1e-10) {
+ sum = 1e-10;
+ }
+
+ sum = log10(sum);
+
+ mel.data[j*mel.n_len + i] = sum;
+ }
+ }
+ }, iw);
+ }
+
+ for (int iw = 0; iw < n_threads; ++iw) {
+ workers[iw].join();
+ }
+
+ // clamping and normalization
+ double mmax = -1e20;
+ for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
+ if (mel.data[i] > mmax) {
+ mmax = mel.data[i];
+ }
+ }
+
+ mmax -= 8.0;
+
+ for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
+ if (mel.data[i] < mmax) {
+ mel.data[i] = mmax;
+ }
+
+ mel.data[i] = (mel.data[i] + 4.0)/4.0;
+ }
+
+ return true;
+}
+
+int main(int argc, char ** argv) {
+ const int64_t t_main_start_us = ggml_time_us();
+
+ whisper_params params;
+
+ if (whisper_params_parse(argc, argv, params) == false) {
+ return 1;
+ }
+
+ if (params.seed < 0) {
+ params.seed = time(NULL);
+ }
+
+ // Model loading
+
+ //printf("%s: seed = %d\n", __func__, params.seed);
+
+ int64_t t_load_us = 0;
+ int64_t t_mel_us = 0;
+ int64_t t_sample_us = 0;
+ int64_t t_encode_us = 0;
+ int64_t t_decode_us = 0;
+
+ whisper_vocab vocab;
+ whisper_model model;
+
+ // load the model
+ {
+ const int64_t t_start_us = ggml_time_us();
+
+ if (!whisper_model_load(params.model, model, vocab)) {
+ fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
+ whisper_print_usage(argc, argv, {});
+ return 1;
+ }
+
+ t_load_us = ggml_time_us() - t_start_us;
+ }
+
+ // WAV input
+ std::vector<float> pcmf32;
+ {
+ drwav wav;
+ if (!drwav_init_file(&wav, params.fname_inp.c_str(), NULL)) {
+ fprintf(stderr, "%s: failed to open WAV file '%s' - check your input\n", argv[0], params.fname_inp.c_str());
+ whisper_print_usage(argc, argv, {});
+ return 2;
+ }
+
+ if (wav.channels != 1) {
+ fprintf(stderr, "%s: WAV file '%s' must be mono\n", argv[0], params.fname_inp.c_str());
+ return 3;
+ }
+
+ if (wav.sampleRate != SAMPLE_RATE) {
+ fprintf(stderr, "%s: WAV file '%s' must be 16 kHz\n", argv[0], params.fname_inp.c_str());
+ return 4;
+ }
+
+ if (wav.bitsPerSample != 16) {
+ fprintf(stderr, "%s: WAV file '%s' must be 16-bit\n", argv[0], params.fname_inp.c_str());
+ return 5;
+ }
+
+ std::vector<int16_t> pcm16;
+ pcm16.resize(wav.totalPCMFrameCount);
+ drwav_read_pcm_frames_s16(&wav, wav.totalPCMFrameCount, pcm16.data());
+ drwav_uninit(&wav);
+
+ // convert to float
+ pcmf32.resize(pcm16.size());
+ for (size_t i = 0; i < pcm16.size(); i++) {
+ pcmf32[i] = float(pcm16[i])/32768.0f;
+ }
+ }
+
+ // compute log mel spectrogram
+ whisper_mel mel_inp;
+ {
+ const int64_t t_start_us = ggml_time_us();
+
+ log_mel_spectrogram(pcmf32, SAMPLE_RATE, N_FFT, HOP_LENGTH, N_MEL, params.n_threads, model.filters, mel_inp);
+
+ t_mel_us = ggml_time_us() - t_start_us;
+ }
+
+ // print some info about the processing
+ {
+ printf("\n");
+ if (!vocab.is_multilingual()) {
+ if (params.language != "en" || params.translate) {
+ params.language = "en";
+ params.translate = false;
+ printf("%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
+ }
+ }
+ printf("%s: processing %d samples (%.1f sec), %d threads, lang = %s, task = %s ...\n",
+ __func__, int(pcmf32.size()), float(pcmf32.size())/SAMPLE_RATE, params.n_threads,
+ g_lang.at(params.language).second.c_str(),
+ params.translate ? "translate" : "transcribe");
+ }
+
+ // the accumulated text context so far
+ std::vector<whisper_vocab::id> prompt_past = { };
+
+ // these tokens determine the task that will be performed
+ std::vector<whisper_vocab::id> prompt_init = { vocab.token_sot };
+ if (vocab.is_multilingual()) {
+ prompt_init.push_back(vocab.token_sot + 1 + g_lang.at(params.language).first);
+ if (params.translate) {
+ prompt_init.push_back(vocab.token_translate);
+ } else {
+ prompt_init.push_back(vocab.token_transcribe);
+ }
+ }
+
+ // main loop
+ int seek = 0;
+ while (true) {
+ if (seek >= mel_inp.n_len) {
+ break;
+ }
+
+ // encode audio features starting at offset seek
+ std::vector<float> features;
+ {
+ const int64_t t_start_us = ggml_time_us();
+
+ if (!whisper_encode(model, params.n_threads, seek, mel_inp, features)) {
+ fprintf(stderr, "%s: failed to eval\n", __func__);
+ return 1;
+ }
+
+ t_encode_us = ggml_time_us() - t_start_us;
+ }
+
+ std::vector<float> probs;
+ std::vector<float> logits;
+
+ std::vector<whisper_vocab::id> prompt;
+
+ int n_past = 0;
+
+ // if we have already generated some text, use it as a prompt to condition the next generation
+ if (prompt_past.size() > 0) {
+ int n_take = std::min(model.hparams.n_text_ctx/2, int(prompt_past.size()));
+
+ prompt = { vocab.token_prev };
+ prompt.insert(prompt.begin() + 1, prompt_past.end() - n_take, prompt_past.end());
+
+ prompt_past.clear();
+ prompt_past.insert(prompt_past.end(), prompt.begin() + 1, prompt.end());
+ }
+
+ prompt.insert(prompt.end(), prompt_init.begin(), prompt_init.end());
+
+ bool done = false;
+ int seek_delta = 100*CHUNK_SIZE;
+ whisper_vocab::id last_id = 0;
+
+ //for (int i = 0; i < prompt.size(); i++) {
+ // printf("%s: prompt[%d] = %s\n", __func__, i, vocab.id_to_token[prompt[i]].c_str());
+ //}
+
+ printf("\n");
+ for (int i = 0; i < model.hparams.n_text_ctx/2; ++i) {
+ // decode
+ if (prompt.size() > 0) {
+ const int64_t t_start_us = ggml_time_us();
+
+ if (!whisper_decode(model, params.n_threads, n_past, prompt, logits, probs)) {
+ fprintf(stderr, "%s: failed to eval\n", __func__);
+ return 1;
+ }
+
+ t_decode_us += ggml_time_us() - t_start_us;
+ }
+
+ n_past += prompt.size();
+ prompt.clear();
+
+ // very basic greedy sampling strategy:
+ //
+ // - always take the most probable token
+ // - if we have accumulated more than 'params.max_tokens_per_iter' -> pick most probable timestamp token
+ // and advance the sliding window by that amount
+ // - in the meantime, if we encounter 2 consecutive timestamp tokens, we advance the sliding window too
+ //
+ // more sophisticated sampling strategies could be implemented here, but we keep it simple
+ // feel free to experiment!
+ //
+ {
+ // sample next token
+ const float temp = 1.0; // TODO
+
+ const int n_vocab = model.hparams.n_vocab;
+
+ whisper_vocab::id id = 0;
+
+ {
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ id = whisper_sample_best(vocab, probs.data() + (probs.size() - n_vocab), temp, i > params.max_tokens_per_iter ? vocab.token_beg : 0);
+
+ t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+
+ // end of text token
+ if (id == vocab.token_eot) {
+ break;
+ }
+
+ // 2 consecutive time tokens
+ if (id > vocab.token_beg && last_id > vocab.token_beg) {
+ seek_delta = 2*(id - vocab.token_beg);
+ done = true;
+ }
+ last_id = id;
+
+ // add it to the context
+ prompt.push_back(id);
+ prompt_past.push_back(id);
+ }
+
+ // display text
+ for (auto id : prompt) {
+ if (params.print_special_tokens == false && id >= vocab.token_eot) {
+ continue;
+ }
+ printf("%s", vocab.id_to_token[id].c_str());
+ }
+ fflush(stdout);
+
+ if (done) {
+ break;
+ }
+ }
+
+ seek += seek_delta;
+ }
+
+ // report timing
+ {
+ const int64_t t_main_end_us = ggml_time_us();
+
+ printf("\n\n");
+ printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
+ printf("%s: mel time = %8.2f ms\n", __func__, t_mel_us/1000.0f);
+ printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
+ printf("%s: encode time = %8.2f ms / %.2f ms per layer\n", __func__, t_encode_us/1000.0f, t_encode_us/1000.0f/model.hparams.n_audio_layer);
+ printf("%s: decode time = %8.2f ms\n", __func__, t_decode_us/1000.0f);
+ printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
+ }
+
+ ggml_free(model.ctx);
+
+ return 0;
+}
-#include "ggml/ggml.h"
+#include "ggml.h"
#include <assert.h>
#include <time.h>
#define UNUSED(x) (void)(x)
#define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
+#define GGML_ASSERT(x) \
+ do { \
+ if (!(x)) { \
+ fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
+ abort(); \
+ } \
+ } while (0)
+
+#ifdef GGML_USE_ACCELERATE
+#include <Accelerate/Accelerate.h>
+#endif
+
// floating point type used to accumulate sums
typedef double ggml_float;
}
#endif
+//
+// global data
+//
+
+// precomputed gelu table for f16 (128 KB)
+static ggml_fp16_t table_gelu_f16[1 << 16];
+
+// precomputed exp table for f16 (128 KB)
+static ggml_fp16_t table_exp_f16[1 << 16];
+
//
// timing
//
// fundamental operations
//
-inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
+inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
-inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
+inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
+
+inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
-inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
- for (int i = 0; i < n; ++i) {
- y[i] += x[i]*v;
+inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
+ ggml_float sumf = 0.0;
+#ifdef __ARM_NEON
+ // NEON 128-bit
+ const int n16 = (n & ~15);
+
+ float32x4_t sum0 = vdupq_n_f32(0);
+ float32x4_t sum1 = vdupq_n_f32(0);
+ float32x4_t sum2 = vdupq_n_f32(0);
+ float32x4_t sum3 = vdupq_n_f32(0);
+
+ float32x4_t x0, x1, x2, x3;
+ float32x4_t y0, y1, y2, y3;
+
+ for (int i = 0; i < n16; i += 16) {
+ x0 = vld1q_f32(x + i + 0);
+ x1 = vld1q_f32(x + i + 4);
+ x2 = vld1q_f32(x + i + 8);
+ x3 = vld1q_f32(x + i + 12);
+
+ y0 = vld1q_f32(y + i + 0);
+ y1 = vld1q_f32(y + i + 4);
+ y2 = vld1q_f32(y + i + 8);
+ y3 = vld1q_f32(y + i + 12);
+
+ sum0 = vfmaq_f32(sum0, x0, y0);
+ sum1 = vfmaq_f32(sum1, x1, y1);
+ sum2 = vfmaq_f32(sum2, x2, y2);
+ sum3 = vfmaq_f32(sum3, x3, y3);
}
-}
-inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
- ggml_float sum = 0.0;
+ // reduce sum0..sum3 to sum0
+ sum0 = vaddq_f32(sum0, sum1);
+ sum2 = vaddq_f32(sum2, sum3);
+ sum0 = vaddq_f32(sum0, sum2);
+
+ float32x2_t sumf32 = vadd_f32(vget_low_f32(sum0), vget_high_f32(sum0));
+ sumf = vget_lane_f32(sumf32, 0) + vget_lane_f32(sumf32, 1);
+
+ // leftovers
+ for (int i = n16; i < n; ++i) {
+ sumf += x[i]*y[i];
+ }
+#elif defined(__AVX2__)
+ // AVX 256-bit (unroll 4)
+ const int n32 = (n & ~31);
+
+ __m256 sum0 = _mm256_setzero_ps();
+ __m256 sum1 = _mm256_setzero_ps();
+ __m256 sum2 = _mm256_setzero_ps();
+ __m256 sum3 = _mm256_setzero_ps();
+
+ __m256 x0, x1, x2, x3;
+ __m256 y0, y1, y2, y3;
+
+ for (int i = 0; i < n32; i += 32) {
+ x0 = _mm256_loadu_ps(x + i + 0);
+ x1 = _mm256_loadu_ps(x + i + 8);
+ x2 = _mm256_loadu_ps(x + i + 16);
+ x3 = _mm256_loadu_ps(x + i + 24);
+
+ y0 = _mm256_loadu_ps(y + i + 0);
+ y1 = _mm256_loadu_ps(y + i + 8);
+ y2 = _mm256_loadu_ps(y + i + 16);
+ y3 = _mm256_loadu_ps(y + i + 24);
+
+ sum0 = _mm256_fmadd_ps(x0, y0, sum0);
+ sum1 = _mm256_fmadd_ps(x1, y1, sum1);
+ sum2 = _mm256_fmadd_ps(x2, y2, sum2);
+ sum3 = _mm256_fmadd_ps(x3, y3, sum3);
+ }
+
+ sum0 = _mm256_add_ps(sum0, sum1);
+ sum2 = _mm256_add_ps(sum2, sum3);
+ sum0 = _mm256_add_ps(sum0, sum2);
+
+ const __m128 r4 = _mm_add_ps(_mm256_castps256_ps128(sum0), _mm256_extractf128_ps(sum0, 1));
+ const __m128 r2 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
+ const __m128 r1 = _mm_add_ss(r2, _mm_movehdup_ps(r2));
+
+ sumf = _mm_cvtss_f32(r1);
+
+ // leftovers
+ for (int i = n32; i < n; ++i) {
+ sumf += x[i]*y[i];
+ }
+#else
+ // scalar
for (int i = 0; i < n; ++i) {
- sum += x[i]*y[i];
+ sumf += x[i]*y[i];
}
- *s = sum;
+#endif
+
+ *s = sumf;
}
inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
ggml_float sumf = 0.0;
#ifdef __ARM_NEON
- const int n64 = 64*(n/64);
+ const int n32 = (n & ~31);
- float16x8_t sum0 = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
- float16x8_t sum1 = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
- float16x8_t sum2 = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
- float16x8_t sum3 = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
- float16x8_t sum4 = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
- float16x8_t sum5 = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
- float16x8_t sum6 = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
- float16x8_t sum7 = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
+ float16x8_t sum0 = vdupq_n_f16(0);
+ float16x8_t sum1 = vdupq_n_f16(0);
+ float16x8_t sum2 = vdupq_n_f16(0);
+ float16x8_t sum3 = vdupq_n_f16(0);
- float16x8_t x0, x1, x2, x3, x4, x5, x6, x7;
- float16x8_t y0, y1, y2, y3, y4, y5, y6, y7;
+ float16x8_t x0, x1, x2, x3;
+ float16x8_t y0, y1, y2, y3;
- for (int i = 0; i < n64; i += 64) {
+ for (int i = 0; i < n32; i += 32) {
x0 = vld1q_f16(x + i + 0 );
x1 = vld1q_f16(x + i + 8 );
x2 = vld1q_f16(x + i + 16);
x3 = vld1q_f16(x + i + 24);
- x4 = vld1q_f16(x + i + 32);
- x5 = vld1q_f16(x + i + 40);
- x6 = vld1q_f16(x + i + 48);
- x7 = vld1q_f16(x + i + 56);
y0 = vld1q_f16(y + i + 0 );
y1 = vld1q_f16(y + i + 8 );
y2 = vld1q_f16(y + i + 16);
y3 = vld1q_f16(y + i + 24);
- y4 = vld1q_f16(y + i + 32);
- y5 = vld1q_f16(y + i + 40);
- y6 = vld1q_f16(y + i + 48);
- y7 = vld1q_f16(y + i + 56);
sum0 = vfmaq_f16(sum0, x0, y0);
sum1 = vfmaq_f16(sum1, x1, y1);
sum2 = vfmaq_f16(sum2, x2, y2);
sum3 = vfmaq_f16(sum3, x3, y3);
- sum4 = vfmaq_f16(sum4, x4, y4);
- sum5 = vfmaq_f16(sum5, x5, y5);
- sum6 = vfmaq_f16(sum6, x6, y6);
- sum7 = vfmaq_f16(sum7, x7, y7);
}
- // TODO: F16 - better way to reduce this ?
- float16x8_t sum = vaddq_f16(sum0, sum1);
+ // reduce sum0..sum3 to sum0
+ sum0 = vaddq_f16(sum0, sum1);
+ sum2 = vaddq_f16(sum2, sum3);
+ sum0 = vaddq_f16(sum0, sum2);
- sum = vaddq_f16(sum, sum2);
- sum = vaddq_f16(sum, sum3);
- sum = vaddq_f16(sum, sum4);
- sum = vaddq_f16(sum, sum5);
- sum = vaddq_f16(sum, sum6);
- sum = vaddq_f16(sum, sum7);
+ // load sum0 into 2 float32x4_t
+ float32x4_t sum0f32 = vcvt_f32_f16(vget_low_f16(sum0));
+ float32x4_t sum1f32 = vcvt_f32_f16(vget_high_f16(sum0));
- sumf += sum[0] + sum[1] + sum[2] + sum[3] + sum[4] + sum[5] + sum[6] + sum[7];
+ // reduce sum0f32 and sum1f32 to sumf
+ sum0f32 = vaddq_f32(sum0f32, sum1f32);
- // I think this somehow makes the inference worse .. not sure ?
- //sum0 = vaddq_f16(sum0, sum1);
- //sum2 = vaddq_f16(sum2, sum3);
- //sum4 = vaddq_f16(sum4, sum5);
- //sum6 = vaddq_f16(sum6, sum7);
-
- //sum0 = vaddq_f16(sum0, sum2);
- //sum4 = vaddq_f16(sum4, sum6);
-
- //sum0 = vaddq_f16(sum0, sum4);
-
- //for (int i = 0; i < 8; ++i) {
- // sumf += sum0[i];
- //}
+ float32x2_t sumf32 = vadd_f32(vget_low_f32(sum0f32), vget_high_f32(sum0f32));
+ sumf = vget_lane_f32(sumf32, 0) + vget_lane_f32(sumf32, 1);
// leftovers
- for (int i = n64; i < n; ++i) {
+ for (int i = n32; i < n; ++i) {
sumf += ggml_fp16_to_fp32(x[i])*ggml_fp16_to_fp32(y[i]);
}
-#else
+#elif defined(__AVX2__)
// AVX 256-bit (unroll 4)
- const int n32 = 32*(n/32);
+ const int n32 = (n & ~31);
__m256 sum0 = _mm256_setzero_ps();
__m256 sum1 = _mm256_setzero_ps();
// leftovers
for (int i = n32; i < n; ++i) {
+ //GGML_ASSERT(false);
+ sumf += ggml_fp16_to_fp32(x[i])*ggml_fp16_to_fp32(y[i]);
+ }
+#else
+ for (int i = 0; i < n; ++i) {
sumf += ggml_fp16_to_fp32(x[i])*ggml_fp16_to_fp32(y[i]);
}
#endif
*s = sumf;
}
+inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
+#ifdef __ARM_NEON
+ // NEON 128-bit
+ const int n16 = (n & ~15);
+
+ const float32x4_t v4 = vdupq_n_f32(v);
+
+ float32x4_t x0, x1, x2, x3;
+ float32x4_t y0, y1, y2, y3;
+
+ for (int i = 0; i < n16; i += 16) {
+ x0 = vld1q_f32(x + i + 0);
+ x1 = vld1q_f32(x + i + 4);
+ x2 = vld1q_f32(x + i + 8);
+ x3 = vld1q_f32(x + i + 12);
+
+ y0 = vld1q_f32(y + i + 0);
+ y1 = vld1q_f32(y + i + 4);
+ y2 = vld1q_f32(y + i + 8);
+ y3 = vld1q_f32(y + i + 12);
+
+ y0 = vfmaq_f32(y0, x0, v4);
+ y1 = vfmaq_f32(y1, x1, v4);
+ y2 = vfmaq_f32(y2, x2, v4);
+ y3 = vfmaq_f32(y3, x3, v4);
+
+ vst1q_f32(y + i + 0, y0);
+ vst1q_f32(y + i + 4, y1);
+ vst1q_f32(y + i + 8, y2);
+ vst1q_f32(y + i + 12, y3);
+ }
+
+ // leftovers
+ for (int i = n16; i < n; ++i) {
+ y[i] += x[i]*v;
+ }
+#elif defined(__AVX2__)
+ // AVX 256-bit (unroll 4)
+ const int n32 = (n & ~31);
+
+ const __m256 v4 = _mm256_set1_ps(v);
+
+ __m256 x0, x1, x2, x3;
+ __m256 y0, y1, y2, y3;
+
+ for (int i = 0; i < n32; i += 32) {
+ x0 = _mm256_loadu_ps(x + i + 0);
+ x1 = _mm256_loadu_ps(x + i + 8);
+ x2 = _mm256_loadu_ps(x + i + 16);
+ x3 = _mm256_loadu_ps(x + i + 24);
+
+ y0 = _mm256_loadu_ps(y + i + 0);
+ y1 = _mm256_loadu_ps(y + i + 8);
+ y2 = _mm256_loadu_ps(y + i + 16);
+ y3 = _mm256_loadu_ps(y + i + 24);
+
+ y0 = _mm256_fmadd_ps(x0, v4, y0);
+ y1 = _mm256_fmadd_ps(x1, v4, y1);
+ y2 = _mm256_fmadd_ps(x2, v4, y2);
+ y3 = _mm256_fmadd_ps(x3, v4, y3);
+
+ _mm256_storeu_ps(y + i + 0, y0);
+ _mm256_storeu_ps(y + i + 8, y1);
+ _mm256_storeu_ps(y + i + 16, y2);
+ _mm256_storeu_ps(y + i + 24, y3);
+ }
+
+ // leftovers
+ for (int i = n32; i < n; ++i) {
+ y[i] += x[i]*v;
+ }
+#else
+ // scalar
+ for (int i = 0; i < n; ++i) {
+ y[i] += x[i]*v;
+ }
+#endif
+}
+
inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, ggml_fp16_t * restrict x, const float v) {
#ifdef __ARM_NEON
// NEON 128-bit
- const int n64 = 64*(n/64);
+ const int n32 = (n & ~31);
const float16x8_t v8 = vdupq_n_f16(v);
- float16x8_t x0, x1, x2, x3, x4, x5, x6, x7;
- float16x8_t y0, y1, y2, y3, y4, y5, y6, y7;
+ float16x8_t x0, x1, x2, x3;
+ float16x8_t y0, y1, y2, y3;
- for (int i = 0; i < n64; i += 64) {
+ for (int i = 0; i < n32; i += 32) {
y0 = vld1q_f16(y + i + 0 );
y1 = vld1q_f16(y + i + 8 );
y2 = vld1q_f16(y + i + 16);
y3 = vld1q_f16(y + i + 24);
- y4 = vld1q_f16(y + i + 32);
- y5 = vld1q_f16(y + i + 40);
- y6 = vld1q_f16(y + i + 48);
- y7 = vld1q_f16(y + i + 56);
x0 = vld1q_f16(x + i + 0 );
x1 = vld1q_f16(x + i + 8 );
x2 = vld1q_f16(x + i + 16);
x3 = vld1q_f16(x + i + 24);
- x4 = vld1q_f16(x + i + 32);
- x5 = vld1q_f16(x + i + 40);
- x6 = vld1q_f16(x + i + 48);
- x7 = vld1q_f16(x + i + 56);
y0 = vfmaq_f16(y0, x0, v8);
y1 = vfmaq_f16(y1, x1, v8);
y2 = vfmaq_f16(y2, x2, v8);
y3 = vfmaq_f16(y3, x3, v8);
- y4 = vfmaq_f16(y4, x4, v8);
- y5 = vfmaq_f16(y5, x5, v8);
- y6 = vfmaq_f16(y6, x6, v8);
- y7 = vfmaq_f16(y7, x7, v8);
vst1q_f16(y + i + 0 , y0);
vst1q_f16(y + i + 8 , y1);
vst1q_f16(y + i + 16, y2);
vst1q_f16(y + i + 24, y3);
- vst1q_f16(y + i + 32, y4);
- vst1q_f16(y + i + 40, y5);
- vst1q_f16(y + i + 48, y6);
- vst1q_f16(y + i + 56, y7);
}
// leftovers
- for (int i = n64; i < n; ++i) {
+ for (int i = n32; i < n; ++i) {
+ GGML_ASSERT(false);
y[i] = ggml_fp32_to_fp16(ggml_fp16_to_fp32(y[i]) + ggml_fp16_to_fp32(x[i])*v);
}
-#else
+#elif defined(__AVX2__)
// AVX 256-bit
- const int n32 = 32*(n/32);
+ const int n32 = (n & ~31);
const __m256 v8 = _mm256_set1_ps(v);
// leftovers
for (int i = n32; i < n; ++i) {
+ GGML_ASSERT(false);
+ y[i] = ggml_fp32_to_fp16(ggml_fp16_to_fp32(y[i]) + ggml_fp16_to_fp32(x[i])*v);
+ }
+#else
+ for (int i = 0; i < n; ++i) {
y[i] = ggml_fp32_to_fp16(ggml_fp16_to_fp32(y[i]) + ggml_fp16_to_fp32(x[i])*v);
}
#endif
}
-
inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrt(*s); }
inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
const ggml_float GELU_COEF_A = 0.044715;
const ggml_float SQRT_2_OVER_PI = 0.79788456080286535587989211986876;
-inline static void ggml_vec_gelu_f32 (const int n, float * y, const float * x) {
+inline static float ggml_gelu_f32(float x) {
+ return 0.5*x*(1.0 + tanh(SQRT_2_OVER_PI*x*(1.0 + GELU_COEF_A*x*x)));
+}
+
+inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
+ for (int i = 0; i < n; ++i) {
+ y[i] = ggml_gelu_f32(x[i]);
+ }
+}
+
+inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
+ const uint16_t * i16 = (const uint16_t *) x;
for (int i = 0; i < n; ++i) {
- //y[i] = 0.5f*x[i]*(1.f + tanhf(SQRT_2_OVER_PI*(x[i] + 0.044715f*x[i]*x[i]*x[i])));
- //0.5*x*(1+tf.tanh(np.sqrt(2/np.pi)*(x+0.044715*tf.pow(x, 3))))
- const ggml_float xx = x[i];
- y[i] = 0.5*xx*(1.0 + tanh(SQRT_2_OVER_PI*xx*(1.0 + GELU_COEF_A*xx*xx)));
+ y[i] = table_gelu_f16[i16[i]];
}
}
"DIAG_MASK_INF",
"SOFT_MAX",
"ROPE",
+ "CONV_1D_1S",
+ "CONV_1D_2S",
+
+ "FLASH_ATTN",
+ "FLASH_FF",
};
const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"diag_mask_inf(x)",
"soft_max(x)",
"rope(x)",
+ "conv_1d_1s(x)",
+ "conv_1d_2s(x)",
+
+ "flash_attn(x)",
+ "flash_ff(x)",
};
//
(t1->ne[3]%t0->ne[3] == 0);
}
+int ggml_up32(int n) {
+ return (n + 31) & ~31;
+}
+
+int ggml_up64(int n) {
+ return (n + 63) & ~63;
+}
+
// assert that pointer is aligned to GGML_MEM_ALIGN
#define ggml_assert_aligned(ptr) \
assert(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
////////////////////////////////////////////////////////////////////////////////
struct ggml_context * ggml_init(struct ggml_init_params params) {
+ static bool is_first_call = true;
+ if (is_first_call) {
+ const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
+
+ for (int i = 0; i < (1 << 16); ++i) {
+ uint16_t ii = (uint16_t) i;
+ const float f = ggml_fp16_to_fp32(*(ggml_fp16_t *)(&ii));
+ table_gelu_f16[i] = ggml_fp32_to_fp16(ggml_gelu_f32(f));
+ table_exp_f16[i] = ggml_fp32_to_fp16(exp(f));
+ }
+
+ const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
+
+ GGML_PRINT_DEBUG("%s: GELU table initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
+
+ is_first_call = false;
+ }
+
// find non-used context in g_state
struct ggml_context * ctx = NULL;
}
if (ctx == NULL) {
- GGML_PRINT_DEBUG("%s\n", "ggml_init: no unused context found");
+ GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
return NULL;
}
if (&g_state.contexts[i].context == ctx) {
g_state.contexts[i].used = false;
- GGML_PRINT_DEBUG("ggml_free: context %d with %d objects has been freed. memory used = %zu\n",
- i, ctx->n_objects, ctx->objects_end->offset + ctx->objects_end->size);
+ GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
+ __func__, i, ctx->n_objects, ctx->objects_end->offset + ctx->objects_end->size);
if (ctx->mem_buffer_owned) {
free(ctx->mem_buffer);
/*.grad =*/ NULL,
/*.src0 =*/ NULL,
/*.src1 =*/ NULL,
+ /*.opt =*/ { NULL },
/*.n_tasks =*/ 0,
/*.perf_runs =*/ 0,
/*.perf_cycles =*/ 0,
return ggml_new_tensor(ctx, type, 4, ne);
}
+struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
+ struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
+
+ ggml_set_i32(result, value);
+
+ return result;
+}
+
struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
return tensor;
}
+struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
+ const int n = ggml_nrows(tensor);
+ const int nc = tensor->ne[0];
+ const size_t n1 = tensor->nb[1];
+
+ char * const data = tensor->data;
+
+ switch (tensor->type) {
+ case GGML_TYPE_I8:
+ {
+ assert(tensor->nb[0] == sizeof(int8_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
+ }
+ } break;
+ case GGML_TYPE_I16:
+ {
+ assert(tensor->nb[0] == sizeof(int16_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
+ }
+ } break;
+ case GGML_TYPE_I32:
+ {
+ assert(tensor->nb[0] == sizeof(int32_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
+ }
+ } break;
+ case GGML_TYPE_F16:
+ {
+ assert(tensor->nb[0] == sizeof(ggml_fp16_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
+ }
+ } break;
+ case GGML_TYPE_F32:
+ {
+ assert(tensor->nb[0] == sizeof(float));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
+ }
+ } break;
+ case GGML_TYPE_COUNT:
+ {
+ assert(false);
+ } break;
+ }
+
+ return tensor;
+}
+
struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
const int n = ggml_nrows(tensor);
const int nc = tensor->ne[0];
} break;
case GGML_TYPE_F16:
{
- assert(false); // TODO: implement
+ assert(tensor->nb[0] == sizeof(ggml_fp16_t));
+ for (int i = 0; i < n; i++) {
+ ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
+ }
} break;
case GGML_TYPE_F32:
{
return tensor;
}
+int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
+ switch (tensor->type) {
+ case GGML_TYPE_I8:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
+ return ((int8_t *)(tensor->data))[i];
+ } break;
+ case GGML_TYPE_I16:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
+ return ((int16_t *)(tensor->data))[i];
+ } break;
+ case GGML_TYPE_I32:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
+ return ((int32_t *)(tensor->data))[i];
+ } break;
+ case GGML_TYPE_F16:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
+ return ggml_fp16_to_fp32(((ggml_fp16_t *)(tensor->data))[i]);
+ } break;
+ case GGML_TYPE_F32:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(float));
+ return ((float *)(tensor->data))[i];
+ } break;
+ case GGML_TYPE_COUNT:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+
+ return 0.0f;
+}
+
+void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
+ switch (tensor->type) {
+ case GGML_TYPE_I8:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
+ ((int8_t *)(tensor->data))[i] = value;
+ } break;
+ case GGML_TYPE_I16:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
+ ((int16_t *)(tensor->data))[i] = value;
+ } break;
+ case GGML_TYPE_I32:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
+ ((int32_t *)(tensor->data))[i] = value;
+ } break;
+ case GGML_TYPE_F16:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
+ ((ggml_fp16_t *)(tensor->data))[i] = ggml_fp32_to_fp16(value);
+ } break;
+ case GGML_TYPE_F32:
+ {
+ GGML_ASSERT(tensor->nb[0] == sizeof(float));
+ ((float *)(tensor->data))[i] = value;
+ } break;
+ case GGML_TYPE_COUNT:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
switch (tensor->type) {
case GGML_TYPE_I8:
{
- assert(tensor->nb[0] == sizeof(int8_t));
+ GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
return ((int8_t *)(tensor->data))[i];
} break;
case GGML_TYPE_I16:
{
- assert(tensor->nb[0] == sizeof(int16_t));
+ GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
return ((int16_t *)(tensor->data))[i];
} break;
case GGML_TYPE_I32:
{
- assert(tensor->nb[0] == sizeof(int32_t));
+ GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
return ((int32_t *)(tensor->data))[i];
} break;
case GGML_TYPE_F16:
{
- assert(false); // TODO: implement
+ GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
+ return ggml_fp16_to_fp32(((ggml_fp16_t *)(tensor->data))[i]);
} break;
case GGML_TYPE_F32:
{
- assert(tensor->nb[0] == sizeof(float));
+ GGML_ASSERT(tensor->nb[0] == sizeof(float));
return ((float *)(tensor->data))[i];
} break;
case GGML_TYPE_COUNT:
{
- assert(false);
+ GGML_ASSERT(false);
} break;
}
- assert(false);
return 0.0f;
}
switch (tensor->type) {
case GGML_TYPE_I8:
{
- assert(tensor->nb[0] == sizeof(int8_t));
+ GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
((int8_t *)(tensor->data))[i] = value;
} break;
case GGML_TYPE_I16:
{
- assert(tensor->nb[0] == sizeof(int16_t));
+ GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
((int16_t *)(tensor->data))[i] = value;
} break;
case GGML_TYPE_I32:
{
- assert(tensor->nb[0] == sizeof(int32_t));
+ GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
((int32_t *)(tensor->data))[i] = value;
} break;
case GGML_TYPE_F16:
{
- assert(false); // TODO: implement
+ GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
+ ((ggml_fp16_t *)(tensor->data))[i] = ggml_fp32_to_fp16(value);
} break;
case GGML_TYPE_F32:
{
- assert(tensor->nb[0] == sizeof(float));
+ GGML_ASSERT(tensor->nb[0] == sizeof(float));
((float *)(tensor->data))[i] = value;
} break;
case GGML_TYPE_COUNT:
{
- assert(false);
+ GGML_ASSERT(false);
} break;
}
}
return result;
}
+// ggml_conv_1d_1s
+
+struct ggml_tensor * ggml_conv_1d_1s(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ assert(ggml_is_matrix(b));
+ assert(a->ne[1] == b->ne[1]);
+ assert(a->ne[3] == 1);
+ bool is_node = false;
+
+ if (a->grad || b->grad) {
+ assert(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ const int ne[4] = { b->ne[0], a->ne[2], 1, 1, };
+ struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
+
+ result->op = GGML_OP_CONV_1D_1S;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = b;
+
+ return result;
+}
+
+// ggml_conv_1d_2s
+
+struct ggml_tensor * ggml_conv_1d_2s(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ assert(ggml_is_matrix(b));
+ assert(a->ne[1] == b->ne[1]);
+ assert(a->ne[3] == 1);
+ bool is_node = false;
+
+ if (a->grad || b->grad) {
+ assert(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ const int ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
+ struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
+
+ result->op = GGML_OP_CONV_1D_2S;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = b;
+
+ return result;
+}
+
+// ggml_flash_attn
+
+struct ggml_tensor * ggml_flash_attn(
+ struct ggml_context * ctx,
+ struct ggml_tensor * q,
+ struct ggml_tensor * k,
+ struct ggml_tensor * v,
+ bool masked) {
+ assert(ggml_can_mul_mat(k, q));
+ // TODO: check if vT can be multiplied by (k*qT)
+
+ bool is_node = false;
+
+ if (q->grad || k->grad || v->grad) {
+ GGML_ASSERT(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
+ struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
+
+ result->op = GGML_OP_FLASH_ATTN;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = q;
+ result->src1 = k;
+ result->opt[0] = v;
+ result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
+
+ return result;
+}
+
+// ggml_flash_ff
+
+struct ggml_tensor * ggml_flash_ff(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b0,
+ struct ggml_tensor * b1,
+ struct ggml_tensor * c0,
+ struct ggml_tensor * c1) {
+ assert(ggml_can_mul_mat(b0, a));
+ // TODO: more checks
+
+ bool is_node = false;
+
+ if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
+ GGML_ASSERT(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
+ struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
+
+ result->op = GGML_OP_FLASH_FF;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = b0;
+ result->opt[0] = b1;
+ result->opt[1] = c0;
+ result->opt[2] = c1;
+
+ return result;
+}
+
////////////////////////////////////////////////////////////////////////////////
void ggml_set_param(
// ggml_compute_forward_dup
-void ggml_compute_forward_dup(
+void ggml_compute_forward_dup_f16(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
return;
}
- if (src0->nb[0] == sizeof(float)) {
- const int ne00 = src0->ne[0];
- const int ne01 = src0->ne[1];
- const int ne02 = src0->ne[2];
- const int ne03 = src0->ne[3];
+ //const int ne00 = src0->ne[0];
+ //const int ne01 = src0->ne[1];
+ //const int ne02 = src0->ne[2];
+ //const int ne03 = src0->ne[3];
+
+ //const size_t nb00 = src0->nb[0];
+ //const size_t nb01 = src0->nb[1];
+ //const size_t nb02 = src0->nb[2];
+ //const size_t nb03 = src0->nb[3];
+
+ if (ggml_is_contiguous(src0) && src0->type == dst->type) {
+ memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
+ return;
+ }
+
+ GGML_ASSERT(false); // TODO: implement
+}
+
+void ggml_compute_forward_dup_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ GGML_ASSERT(params->ith == 0);
+ GGML_ASSERT(ggml_is_contiguous(dst));
+ GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
- const size_t nb00 = src0->nb[0];
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ const int ne00 = src0->ne[0];
+ const int ne01 = src0->ne[1];
+ const int ne02 = src0->ne[2];
+ const int ne03 = src0->ne[3];
+ const size_t nb00 = src0->nb[0];
+ const size_t nb01 = src0->nb[1];
+ const size_t nb02 = src0->nb[2];
+ const size_t nb03 = src0->nb[3];
+
+ if (ggml_is_contiguous(src0) && src0->type == dst->type) {
+ memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
+ return;
+ }
+
+ if (src0->nb[0] == sizeof(float)) {
if (dst->type == GGML_TYPE_F32) {
int id = 0;
const size_t rs = ne00*nb00;
}
}
} else {
- assert(false); // TODO: implement
+ GGML_ASSERT(false); // TODO: implement
}
} else {
- GGML_PRINT_DEBUG("ggml_compute_forward_dup: fix me\n"); // TODO !!!
- const int ne00 = src0->ne[0];
- const int ne01 = src0->ne[1];
- const int ne02 = src0->ne[2];
- const int ne03 = src0->ne[3];
-
- const size_t nb00 = src0->nb[0];
- const size_t nb01 = src0->nb[1];
- const size_t nb02 = src0->nb[2];
- const size_t nb03 = src0->nb[3];
-
- int id = 0;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- for (int i01 = 0; i01 < ne01; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
- char * dst_ptr = (char *) dst->data + id*sizeof(float);
+ //printf("%s: this is not optimal - fix me\n", __func__);
- memcpy(dst_ptr, src0_ptr, sizeof(float));
+ if (dst->type == GGML_TYPE_F32) {
+ int id = 0;
+ float * dst_ptr = (float *) dst->data;
- id++;
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ for (int i01 = 0; i01 < ne01; i01++) {
+ for (int i00 = 0; i00 < ne00; i00++) {
+ const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+
+ dst_ptr[id] = *src0_ptr;
+ id++;
+ }
+ }
+ }
+ }
+ } else if (dst->type == GGML_TYPE_F16) {
+ int id = 0;
+ ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
+
+ for (int i03 = 0; i03 < ne03; i03++) {
+ for (int i02 = 0; i02 < ne02; i02++) {
+ for (int i01 = 0; i01 < ne01; i01++) {
+ for (int i00 = 0; i00 < ne00; i00++) {
+ const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+
+ dst_ptr[id] = ggml_fp32_to_fp16(*src0_ptr);
+ id++;
+ }
}
}
}
+ } else {
+ GGML_ASSERT(false); // TODO: implement
}
}
}
+void ggml_compute_forward_dup(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_dup_f16(params, src0, dst);
+ } break;
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_dup_f32(params, src0, dst);
+ } break;
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_COUNT:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
// ggml_compute_forward_add
void ggml_compute_forward_add_f32(
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
+ GGML_ASSERT(params->ith == 0);
+ GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
- assert( dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- assert(src1->nb[0] == sizeof(float));
+ const size_t nb00 = src0->nb[0];
+ const size_t nb01 = src0->nb[1];
- for (int i = 0; i < n; i++) {
- ggml_vec_add_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])),
- (float *) ((char *) src1->data + i*(src1->nb[1])));
+ const size_t nb10 = src1->nb[0];
+ const size_t nb11 = src1->nb[1];
+
+ const size_t nb0 = dst->nb[0];
+ const size_t nb1 = dst->nb[1];
+
+ GGML_ASSERT( nb0 == sizeof(float));
+ GGML_ASSERT(nb00 == sizeof(float));
+
+ if (nb10 == sizeof(float)) {
+ for (int j = 0; j < n; j++) {
+ ggml_vec_add_f32(nc,
+ (float *) ((char *) dst->data + j*nb1),
+ (float *) ((char *) src0->data + j*nb01),
+ (float *) ((char *) src1->data + j*nb11));
+ }
+ } else {
+ // src1 is not contiguous
+ for (int j = 0; j < n; j++) {
+ float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
+ float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
+ for (int i = 0; i < nc; i++) {
+ float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
+
+ dst_ptr[i] = src0_ptr[i] + *src1_ptr;
+ }
+ }
}
}
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
+ GGML_ASSERT(ggml_is_contiguous(src0));
+ GGML_ASSERT(ggml_is_contiguous(dst));
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
- const int n = ggml_nrows(src0);
+ const int ith = params->ith;
+ const int nth = params->nth;
+
const int nc = src0->ne[0];
+ const int nr = ggml_nrows(src0);
- assert(dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
- for (int i = 0; i < n; i++) {
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
ggml_vec_gelu_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
+ (float *) ((char *) dst->data + i1*( dst->nb[1])),
+ (float *) ((char *) src0->data + i1*(src0->nb[1])));
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i*( dst->nb[1])))[k];
+ const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
UNUSED(x);
assert(!isnan(x));
assert(!isinf(x));
float * const wdata = params->wdata;
- ggml_vec_cpy_f32(ne, dst->data, wdata);
+ // cols per thread
+ const int dc = (ne + nth - 1)/nth;
+
+ // col range for this thread
+ const int ic0 = dc*ith;
+ const int ic1 = MIN(ic0 + dc, ne);
+
+ ggml_vec_cpy_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + ic0);
for (int k = 1; k < nth; k++) {
- ggml_vec_acc_f32(ne, dst->data, wdata + (ne + CACHE_LINE_SIZE_F32)*k);
+ ggml_vec_acc_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + (ne + CACHE_LINE_SIZE_F32)*k + ic0);
}
return;
}
+//#ifdef GGML_USE_ACCELERATE
+// // try to use BLAS
+//
+// if (nb01 >= nb00 && ne0 > 1024 && ne1 > 1024) {
+// if (params->ith != 0) return;
+// printf("XXXXXXXX\n");
+//
+// GGML_ASSERT(ggml_is_contiguous(src0));
+// GGML_ASSERT(ggml_is_contiguous(src1));
+//
+// printf("ne00 = %d, ne01 = %d, ne02 = %d, ne03 = %d\n", ne00, ne01, ne02, ne03);
+// printf("ne10 = %d, ne11 = %d, ne12 = %d, ne13 = %d\n", ne10, ne11, ne12, ne13);
+// printf("ne0 = %d, ne1 = %d, ne2 = %d, ne3 = %d\n", ne0, ne1, ne2, ne3);
+//
+// printf("nb00 = %d, nb01 = %d, nb02 = %d, nb03 = %d\n", nb00, nb01, nb02, nb03);
+// printf("nb10 = %d, nb11 = %d, nb12 = %d, nb13 = %d\n", nb10, nb11, nb12, nb13);
+// printf("nb0 = %d, nb1 = %d, nb2 = %d, nb3 = %d\n", nb0, nb1, nb2, nb3);
+//
+// float * const wdata = params->wdata;
+//
+// int64_t tsum = 0.0;
+// for (int i03 = 0; i03 < ne03; i03++) {
+// for (int i02 = 0; i02 < ne02; i02++) {
+// const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
+// const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
+// float * z = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
+//
+// // transpose src1
+// for (int j = 0; j < ne11; ++j) {
+// for (int i = 0; i < ne10; ++i) {
+// wdata[i*ne11 + j] = y[j*ne10 + i];
+// }
+// }
+//
+// {
+// const int64_t tt0 = ggml_time_us();
+// cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
+// 1500, 1500, 64,
+// 1.0, x, 64,
+// wdata, 1500,
+// 0.0, z, 1500);
+// const int64_t tt1 = ggml_time_us();
+// tsum += tt1 - tt0;
+// }
+//
+// // transpose z
+// for (int j = 0; j < ne1; ++j) {
+// for (int i = 0; i < ne0; ++i) {
+// wdata[i*ne1 + j] = z[j*ne0 + i];
+// }
+// }
+//
+// memcpy(z, wdata, ne0*ne1*sizeof(float));
+//
+// //cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
+// // ne0, ne1, 64,
+// // 1.0f,
+// // x, ne00,
+// // y, ne11,
+// // 0.0f,
+// // z, 1500);
+// }
+// }
+// printf("time = %f ms\n", tsum/1000.0);
+// return;
+// } else {
+// //cblas_sgemv(CblasRowMajor, CblasTrans, ne00, ne01, 1.0, src0->data, ne01, src1->data, 1, 0.0, dst->data, 1);
+// }
+//
+//#endif
+
+
if (nb01 >= nb00) {
// TODO: do not support transposed src1
assert(nb10 == sizeof(float));
const int nb02 = src0->nb[2];
const int nb03 = src0->nb[3];
+ const int nb10 = src1->nb[0];
+ const int nb11 = src1->nb[1];
+ const int nb12 = src1->nb[2];
+ const int nb13 = src1->nb[3];
+
const int nb0 = dst->nb[0];
const int nb1 = dst->nb[1];
const int nb2 = dst->nb[2];
if (nb01 >= nb00) {
ggml_fp16_t * const wdata = params->wdata;
- for (int i = 0; i < ne10*ne11*ne12*ne13; ++i) {
- wdata[i] = ggml_fp32_to_fp16(((float *) src1->data)[i]);
+ int id = 0;
+ for (int i13 = 0; i13 < ne13; ++i13) {
+ for (int i12 = 0; i12 < ne12; ++i12) {
+ for (int i11 = 0; i11 < ne11; ++i11) {
+ for (int i10 = 0; i10 < ne10; ++i10) {
+ wdata[id++] = ggml_fp32_to_fp16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
+ }
+ }
+ }
}
+ GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
+
return;
}
ggml_fp16_t * const wdata = params->wdata;
- for (int i = 0; i < ne; ++i) {
+ // cols per thread
+ const int dc = (ne + nth - 1)/nth;
+
+ // col range for this thread
+ const int ic0 = dc*ith;
+ const int ic1 = MIN(ic0 + dc, ne);
+
+ for (int i = ic0; i < ic1; ++i) {
((float *) dst->data)[i] = ggml_fp16_to_fp32(wdata[i]);
}
for (int k = 1; k < nth; k++) {
- for (int i = 0; i < ne; ++i) {
+ for (int i = ic0; i < ic1; ++i) {
((float *) dst->data)[i] += ggml_fp16_to_fp32(wdata[(ne + CACHE_LINE_SIZE_F32)*k + i]);
}
}
if (nb01 >= nb00) {
// fp16 -> half the size, so divide by 2
- const int nb10 = src1->nb[0]/2; UNUSED(nb10);
-
// TODO: do not support transposed src1
- assert(nb10 == sizeof(ggml_fp16_t));
+ assert(nb10/2 == sizeof(ggml_fp16_t));
// parallelize by src0 rows using ggml_vec_dot_f32
const int i02 = (ir - i03*ne02*ne01)/ne01;
const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
- ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
-
- for (int ic = 0; ic < ne11; ++ic) {
- // src1 indices
- const int i13 = i03;
- const int i12 = i02;
- const int i11 = ic;
+ const int i13 = i03;
+ const int i12 = i02;
- // dst indices
- const int i0 = i01;
- const int i1 = i11;
- const int i2 = i02;
- const int i3 = i03;
+ const int i0 = i01;
+ const int i2 = i02;
+ const int i3 = i03;
- assert(ne00 % 64 == 0);
+ ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
+ ggml_fp16_t * src1_col = wdata + (i13*ne12*ne11 + i12*ne11 + 0)*ne00;
- ggml_fp16_t * src1_col = wdata + (i13*ne12*ne11 + i12*ne11 + i11)*ne00;
+ float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
- float * dst_row = (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3));
+ for (int ic = 0; ic < ne11; ++ic) {
+ assert(ne00 % 32 == 0);
- ggml_vec_dot_f16(ne00, dst_row, src0_row, src1_col);
+ ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
}
}
} else {
// each thread has its own work data
// during FINALIZE we accumulate all work data into dst
- const int nb10 = src1->nb[0];
- const int nb11 = src1->nb[1];
- const int nb12 = src1->nb[2];
- const int nb13 = src1->nb[3];
-
// total columns in src1
const int nc = ne10;
} break;
}
}
+
// ggml_compute_forward_scale
void ggml_compute_forward_scale_f32(
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_is_scalar(src1));
+ GGML_ASSERT(ggml_is_contiguous(src0));
+ GGML_ASSERT(ggml_is_contiguous(dst));
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+ GGML_ASSERT(ggml_is_scalar(src1));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
- const int n = ggml_nrows(src0);
+ // scale factor
+ const float v = *(float *) src1->data;
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
const int nc = src0->ne[0];
+ const int nr = ggml_nrows(src0);
- assert( dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- assert(src1->nb[0] == sizeof(float));
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
- const float v = *(float *) src1->data;
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
- for (int i = 0; i < n; i++) {
- ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i*(dst->nb[1])), v);
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
}
}
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
- assert(params->ith == 0);
+ GGML_ASSERT(ggml_is_contiguous(src0));
+ GGML_ASSERT(ggml_is_contiguous(dst));
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
// TODO: handle transposed/permuted matrices
- const int n = ggml_nrows(src0);
+ const int ith = params->ith;
+ const int nth = params->nth;
+
const int nc = src0->ne[0];
- const int nr = src0->ne[1];
- const int nz = n/nr;
+ const int nr = ggml_nrows(src0);
- assert( dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
- for (int k = 0; k < nz; k++) {
- for (int j = 0; j < nr; j++) {
- float *p = (float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1]);
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
#ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- assert(!isnan(p[i]));
- }
+ for (int i = 0; i < nc; ++i) {
+ assert(!isnan(p[i]));
+ }
#endif
- float max = -INFINITY;
- for (int i = 0; i < nc; i++) {
- max = MAX(max, p[i]);
- }
+ float max = -INFINITY;
+ for (int i = 0; i < nc; i++) {
+ max = MAX(max, p[i]);
+ }
+
+ ggml_float sum = 0.0;
+
+ for (int i = 0; i < nc; i++) {
+ if (p[i] == -INFINITY) {
+ p[i] = 0.0;
+ } else {
+ //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
+ ggml_fp16_t s = ggml_fp32_to_fp16(p[i] - max);
+ const float val = ggml_fp16_to_fp32(table_exp_f16[*(uint16_t *) &s]);
+ sum += val;
+ p[i] = val;
+ }
+ }
+
+ assert(sum > 0.0f);
+
+ sum = 1.0/sum;
+ ggml_vec_scale_f32(nc, p, sum);
+
+#ifndef NDEBUG
+ for (int i = 0; i < nc; ++i) {
+ assert(!isnan(p[i]));
+ assert(!isinf(p[i]));
+ }
+#endif
+ }
+}
+
+void ggml_compute_forward_soft_max(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_soft_max_f32(params, src0, dst);
+ } break;
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_F16:
+ case GGML_TYPE_COUNT:
+ {
+ assert(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_rope
+
+void ggml_compute_forward_rope_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ assert(params->ith == 0);
+ assert(src1->type == GGML_TYPE_I32);
+ assert(ggml_nelements(src1) == 3);
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ const int n_past = ((int32_t *) src1->data)[0];
+ const int n_dims = ((int32_t *) src1->data)[1];
+ const int mode = ((int32_t *) src1->data)[2];
+
+ //const int ne0 = src0->ne[0];
+ const int ne1 = src0->ne[1];
+ const int ne2 = src0->ne[2];
+ const int ne3 = src0->ne[3];
+
+ const int nb0 = src0->nb[0];
+ const int nb1 = src0->nb[1];
+ const int nb2 = src0->nb[2];
+ const int nb3 = src0->nb[3];
+
+ //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
+ //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
+
+ assert(nb0 == sizeof(float));
+
+ // TODO: optimize
+ for (int i3 = 0; i3 < ne3; i3++) {
+ for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
+ const int p = (mode == 0 ? n_past + i2 : i2);
+ for (int i1 = 0; i1 < ne1; i1++) {
+ for (int i0 = 0; i0 < n_dims; i0 += 2) {
+ const double theta = pow(10000.0, ((double)-i0)/n_dims);
+
+ const double cos_theta = cos(p*theta);
+ const double sin_theta = sin(p*theta);
+
+ const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+ float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ double x0 = src[0];
+ double x1 = src[1];
+
+ dst_data[0] = x0*cos_theta - x1*sin_theta;
+ dst_data[1] = x0*sin_theta + x1*cos_theta;
+ }
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_rope(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_rope_f32(params, src0, src1, dst);
+ } break;
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_F16:
+ case GGML_TYPE_COUNT:
+ {
+ assert(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_conv_1d_1s
+
+void ggml_compute_forward_conv_1d_1s_f16_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ GGML_ASSERT(src0->type == GGML_TYPE_F16);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ int64_t t0 = ggml_perf_time_us();
+ UNUSED(t0);
+
+ const int ne00 = src0->ne[0];
+ const int ne01 = src0->ne[1];
+ const int ne02 = src0->ne[2];
+ //const int ne03 = src0->ne[3];
+
+ const int ne10 = src1->ne[0];
+ const int ne11 = src1->ne[1];
+ //const int ne12 = src1->ne[2];
+ //const int ne13 = src1->ne[3];
+
+ //const int ne0 = dst->ne[0];
+ //const int ne1 = dst->ne[1];
+ //const int ne2 = dst->ne[2];
+ //const int ne3 = dst->ne[3];
+ //const int ne = ne0*ne1*ne2*ne3;
+
+ const int nb00 = src0->nb[0];
+ const int nb01 = src0->nb[1];
+ const int nb02 = src0->nb[2];
+ //const int nb03 = src0->nb[3];
+
+ const int nb10 = src1->nb[0];
+ const int nb11 = src1->nb[1];
+ //const int nb12 = src1->nb[2];
+ //const int nb13 = src1->nb[3];
+
+ //const int nb0 = dst->nb[0];
+ const int nb1 = dst->nb[1];
+ //const int nb2 = dst->nb[2];
+ //const int nb3 = dst->nb[3];
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nk = ne00;
+ const int nh = nk/2;
+
+ const int ew0 = ggml_up32(ne01);
+
+ GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
+ GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
+ GGML_ASSERT(nb10 == sizeof(float));
+
+ if (params->type == GGML_TASK_INIT) {
+ // TODO: fix this memset (wsize is overestimated)
+ memset(params->wdata, 0, params->wsize);
+
+ // prepare kernel data (src0)
+ {
+ ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
+
+ for (int i02 = 0; i02 < ne02; i02++) {
+ for (int i01 = 0; i01 < ne01; i01++) {
+ const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
+ ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
+ for (int i00 = 0; i00 < ne00; i00++) {
+ dst_data[i00*ew0 + i01] = src[i00];
+ }
+ }
+ }
+ }
+
+ // prepare source data (src1)
+ {
+ ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
+
+ for (int i11 = 0; i11 < ne11; i11++) {
+ const float * const src = (float *)((char *) src1->data + i11*nb11);
+ ggml_fp16_t * dst_data = wdata;
+ for (int i10 = 0; i10 < ne10; i10++) {
+ dst_data[(i10 + nh)*ew0 + i11] = ggml_fp32_to_fp16(src[i10]);
+ }
+ }
+ }
+
+ return;
+ }
+
+ if (params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ // total rows in dst
+ const int nr = ne02;
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ float * dst_data = (float *)((char *) dst->data + i1*nb1);
+ for (int i0 = 0; i0 < ne10; ++i0) {
+ dst_data[i0] = 0;
+ for (int k = -nh; k <= nh; k++) {
+ float v = 0.0f;
+ ggml_vec_dot_f16(ew0, &v,
+ (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
+ (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
+
+ dst_data[i0] += v;
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_conv_1d_1s_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ int64_t t0 = ggml_perf_time_us();
+ UNUSED(t0);
+
+ const int ne00 = src0->ne[0];
+ const int ne01 = src0->ne[1];
+ const int ne02 = src0->ne[2];
+ //const int ne03 = src0->ne[3];
+
+ const int ne10 = src1->ne[0];
+ const int ne11 = src1->ne[1];
+ //const int ne12 = src1->ne[2];
+ //const int ne13 = src1->ne[3];
+
+ //const int ne0 = dst->ne[0];
+ //const int ne1 = dst->ne[1];
+ //const int ne2 = dst->ne[2];
+ //const int ne3 = dst->ne[3];
+ //const int ne = ne0*ne1*ne2*ne3;
+
+ const int nb00 = src0->nb[0];
+ const int nb01 = src0->nb[1];
+ const int nb02 = src0->nb[2];
+ //const int nb03 = src0->nb[3];
+
+ const int nb10 = src1->nb[0];
+ const int nb11 = src1->nb[1];
+ //const int nb12 = src1->nb[2];
+ //const int nb13 = src1->nb[3];
+
+ //const int nb0 = dst->nb[0];
+ const int nb1 = dst->nb[1];
+ //const int nb2 = dst->nb[2];
+ //const int nb3 = dst->nb[3];
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nk = ne00;
+ const int nh = nk/2;
+
+ const int ew0 = ggml_up32(ne01);
+
+ GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
+ GGML_ASSERT(nb00 == sizeof(float));
+ GGML_ASSERT(nb10 == sizeof(float));
+
+ if (params->type == GGML_TASK_INIT) {
+ // TODO: fix this memset (wsize is overestimated)
+ memset(params->wdata, 0, params->wsize);
+
+ // prepare kernel data (src0)
+ {
+ float * const wdata = (float *) params->wdata + 0;
+
+ for (int i02 = 0; i02 < ne02; i02++) {
+ for (int i01 = 0; i01 < ne01; i01++) {
+ const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
+ float * dst_data = wdata + i02*ew0*ne00;
+ for (int i00 = 0; i00 < ne00; i00++) {
+ dst_data[i00*ew0 + i01] = src[i00];
+ }
+ }
+ }
+ }
+
+ // prepare source data (src1)
+ {
+ float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
+
+ for (int i11 = 0; i11 < ne11; i11++) {
+ const float * const src = (float *)((char *) src1->data + i11*nb11);
+ float * dst_data = wdata;
+ for (int i10 = 0; i10 < ne10; i10++) {
+ dst_data[(i10 + nh)*ew0 + i11] = src[i10];
+ }
+ }
+ }
+
+ return;
+ }
+
+ if (params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ // total rows in dst
+ const int nr = ne02;
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ float * dst_data = (float *)((char *) dst->data + i1*nb1);
+ for (int i0 = 0; i0 < ne10; ++i0) {
+ dst_data[i0] = 0;
+ for (int k = -nh; k <= nh; k++) {
+ float v = 0.0f;
+ ggml_vec_dot_f32(ew0, &v,
+ (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
+ (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
+
+ dst_data[i0] += v;
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_conv_1d_1s(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
+ } break;
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
+ } break;
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_COUNT:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_conv_1d_2s
+
+void ggml_compute_forward_conv_1d_2s_f16_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ GGML_ASSERT(src0->type == GGML_TYPE_F16);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ int64_t t0 = ggml_perf_time_us();
+ UNUSED(t0);
+
+ const int ne00 = src0->ne[0];
+ const int ne01 = src0->ne[1];
+ const int ne02 = src0->ne[2];
+ //const int ne03 = src0->ne[3];
+
+ const int ne10 = src1->ne[0];
+ const int ne11 = src1->ne[1];
+ //const int ne12 = src1->ne[2];
+ //const int ne13 = src1->ne[3];
+
+ //const int ne0 = dst->ne[0];
+ //const int ne1 = dst->ne[1];
+ //const int ne2 = dst->ne[2];
+ //const int ne3 = dst->ne[3];
+ //const int ne = ne0*ne1*ne2*ne3;
+
+ const int nb00 = src0->nb[0];
+ const int nb01 = src0->nb[1];
+ const int nb02 = src0->nb[2];
+ //const int nb03 = src0->nb[3];
+
+ const int nb10 = src1->nb[0];
+ const int nb11 = src1->nb[1];
+ //const int nb12 = src1->nb[2];
+ //const int nb13 = src1->nb[3];
+
+ //const int nb0 = dst->nb[0];
+ const int nb1 = dst->nb[1];
+ //const int nb2 = dst->nb[2];
+ //const int nb3 = dst->nb[3];
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nk = ne00;
+ const int nh = nk/2;
+
+ const int ew0 = ggml_up32(ne01);
+
+ GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
+ GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
+ GGML_ASSERT(nb10 == sizeof(float));
+
+ if (params->type == GGML_TASK_INIT) {
+ // TODO: fix this memset (wsize is overestimated)
+ memset(params->wdata, 0, params->wsize);
+
+ // prepare kernel data (src0)
+ {
+ ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
+
+ for (int i02 = 0; i02 < ne02; i02++) {
+ for (int i01 = 0; i01 < ne01; i01++) {
+ const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
+ ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
+ for (int i00 = 0; i00 < ne00; i00++) {
+ dst_data[i00*ew0 + i01] = src[i00];
+ }
+ }
+ }
+ }
+
+ // prepare source data (src1)
+ {
+ ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
+
+ for (int i11 = 0; i11 < ne11; i11++) {
+ const float * const src = (float *)((char *) src1->data + i11*nb11);
+ ggml_fp16_t * dst_data = wdata;
+ for (int i10 = 0; i10 < ne10; i10++) {
+ dst_data[(i10 + nh)*ew0 + i11] = ggml_fp32_to_fp16(src[i10]);
+ }
+ }
+ }
+
+ return;
+ }
+
+ if (params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ // total rows in dst
+ const int nr = ne02;
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ float * dst_data = (float *)((char *) dst->data + i1*nb1);
+ for (int i0 = 0; i0 < ne10; i0 += 2) {
+ dst_data[i0/2] = 0;
+ for (int k = -nh; k <= nh; k++) {
+ float v = 0.0f;
+ ggml_vec_dot_f16(ew0, &v,
+ (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
+ (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
+
+ dst_data[i0/2] += v;
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_conv_1d_2s_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ int64_t t0 = ggml_perf_time_us();
+ UNUSED(t0);
+
+ const int ne00 = src0->ne[0];
+ const int ne01 = src0->ne[1];
+ const int ne02 = src0->ne[2];
+ //const int ne03 = src0->ne[3];
+
+ const int ne10 = src1->ne[0];
+ const int ne11 = src1->ne[1];
+ //const int ne12 = src1->ne[2];
+ //const int ne13 = src1->ne[3];
+
+ //const int ne0 = dst->ne[0];
+ //const int ne1 = dst->ne[1];
+ //const int ne2 = dst->ne[2];
+ //const int ne3 = dst->ne[3];
+ //const int ne = ne0*ne1*ne2*ne3;
+
+ const int nb00 = src0->nb[0];
+ const int nb01 = src0->nb[1];
+ const int nb02 = src0->nb[2];
+ //const int nb03 = src0->nb[3];
+
+ const int nb10 = src1->nb[0];
+ const int nb11 = src1->nb[1];
+ //const int nb12 = src1->nb[2];
+ //const int nb13 = src1->nb[3];
+
+ //const int nb0 = dst->nb[0];
+ const int nb1 = dst->nb[1];
+ //const int nb2 = dst->nb[2];
+ //const int nb3 = dst->nb[3];
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nk = ne00;
+ const int nh = nk/2;
+
+ const int ew0 = ggml_up32(ne01);
+
+ GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
+ GGML_ASSERT(nb00 == sizeof(float));
+ GGML_ASSERT(nb10 == sizeof(float));
+
+ if (params->type == GGML_TASK_INIT) {
+ // TODO: fix this memset (wsize is overestimated)
+ memset(params->wdata, 0, params->wsize);
+
+ // prepare kernel data (src0)
+ {
+ float * const wdata = (float *) params->wdata + 0;
+
+ for (int i02 = 0; i02 < ne02; i02++) {
+ for (int i01 = 0; i01 < ne01; i01++) {
+ const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
+ float * dst_data = wdata + i02*ew0*ne00;
+ for (int i00 = 0; i00 < ne00; i00++) {
+ dst_data[i00*ew0 + i01] = src[i00];
+ }
+ }
+ }
+ }
+
+ // prepare source data (src1)
+ {
+ float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
+
+ for (int i11 = 0; i11 < ne11; i11++) {
+ const float * const src = (float *)((char *) src1->data + i11*nb11);
+ float * dst_data = wdata;
+ for (int i10 = 0; i10 < ne10; i10++) {
+ dst_data[(i10 + nh)*ew0 + i11] = src[i10];
+ }
+ }
+ }
+
+ return;
+ }
+
+ if (params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ // total rows in dst
+ const int nr = ne02;
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ float * dst_data = (float *)((char *) dst->data + i1*nb1);
+ for (int i0 = 0; i0 < ne10; i0 += 2) {
+ dst_data[i0/2] = 0;
+ for (int k = -nh; k <= nh; k++) {
+ float v = 0.0f;
+ ggml_vec_dot_f32(ew0, &v,
+ (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
+ (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
+
+ dst_data[i0/2] += v;
+ }
+ }
+ }
+}
+
+void ggml_compute_forward_conv_1d_2s(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
+ } break;
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
+ } break;
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_COUNT:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_flash_attn
+
+void ggml_compute_forward_flash_attn_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * q,
+ const struct ggml_tensor * k,
+ const struct ggml_tensor * v,
+ const bool masked,
+ struct ggml_tensor * dst) {
+ int64_t t0 = ggml_perf_time_us();
+ UNUSED(t0);
+
+ const int neq0 = q->ne[0];
+ const int neq1 = q->ne[1];
+ const int neq2 = q->ne[2];
+ const int neq3 = q->ne[3];
+
+ const int nek0 = k->ne[0];
+ const int nek1 = k->ne[1];
+ //const int nek2 = k->ne[2];
+ //const int nek3 = k->ne[3];
+
+ //const int nev0 = v->ne[0];
+ const int nev1 = v->ne[1];
+ //const int nev2 = v->ne[2];
+ //const int nev3 = v->ne[3];
+
+ const int ne0 = dst->ne[0];
+ const int ne1 = dst->ne[1];
+ //const int ne2 = dst->ne[2];
+ //const int ne3 = dst->ne[3];
+
+ const int nbk0 = k->nb[0];
+ const int nbk1 = k->nb[1];
+ const int nbk2 = k->nb[2];
+ const int nbk3 = k->nb[3];
+
+ const int nbq0 = q->nb[0];
+ const int nbq1 = q->nb[1];
+ const int nbq2 = q->nb[2];
+ const int nbq3 = q->nb[3];
+
+ const int nbv0 = v->nb[0];
+ const int nbv1 = v->nb[1];
+ const int nbv2 = v->nb[2];
+ const int nbv3 = v->nb[3];
+
+ const int nb0 = dst->nb[0];
+ const int nb1 = dst->nb[1];
+ const int nb2 = dst->nb[2];
+ const int nb3 = dst->nb[3];
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int D = neq0;
+ const int N = neq1;
+ const int P = nek1 - N;
+ const int M = P + N;
+
+ GGML_ASSERT(ne0 == D);
+ GGML_ASSERT(ne1 == N);
+ GGML_ASSERT(P >= 0);
+
+ GGML_ASSERT(nbq0 == sizeof(float));
+ GGML_ASSERT(nbk0 == sizeof(float));
+ GGML_ASSERT(nbv0 == sizeof(float));
+
+ GGML_ASSERT(neq0 == D);
+ GGML_ASSERT(nek0 == D);
+ GGML_ASSERT(nev1 == D);
+
+ GGML_ASSERT(neq1 == N);
+ GGML_ASSERT(nek1 == N + P);
+ GGML_ASSERT(nev1 == D);
+
+ // dst cannot be transposed or permuted
+ GGML_ASSERT(nb0 == sizeof(float));
+ GGML_ASSERT(nb0 <= nb1);
+ GGML_ASSERT(nb1 <= nb2);
+ GGML_ASSERT(nb2 <= nb3);
+
+ if (params->type == GGML_TASK_INIT) {
+ return;
+ }
+
+ if (params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ // parallelize by q rows using ggml_vec_dot_f32
+
+ // total rows in q
+ const int nr = neq1*neq2*neq3;
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ const float scale = 1.0/sqrt((double) D);
+
+ //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
+
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // q indices
+ const int iq3 = ir/(neq2*neq1);
+ const int iq2 = (ir - iq3*neq2*neq1)/neq1;
+ const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
+
+ float * S = (float *) params->wdata + ith*(M + CACHE_LINE_SIZE_F32);
+
+ for (int ic = 0; ic < nek1; ++ic) {
+ // k indices
+ const int ik3 = iq3;
+ const int ik2 = iq2;
+ const int ik1 = ic;
+
+ // S indices
+ const int i1 = ik1;
+
+ ggml_vec_dot_f32(neq0,
+ S + i1,
+ (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
+ (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
+ }
+
+ // scale
+ ggml_vec_scale_f32(nek1, S, scale);
+
+ if (masked) {
+ for (int i = P; i < M; i++) {
+ if (i > P + iq1) {
+ S[i] = -INFINITY;
+ }
+ }
+ }
+
+ // softmax
+ {
+ float max = -INFINITY;
+ for (int i = 0; i < M; i++) {
+ max = MAX(max, S[i]);
+ }
+
+ ggml_float sum = 0.0;
+
+ for (int i = 0; i < M; i++) {
+ if (S[i] == -INFINITY) {
+ S[i] = 0.0;
+ } else {
+ //const float val = (S[i] == -INFINITY) ? 0.0 : exp(S[i] - max);
+ ggml_fp16_t s = ggml_fp32_to_fp16(S[i] - max);
+ const float val = ggml_fp16_to_fp32(table_exp_f16[*(uint16_t *) &s]);
+ sum += val;
+ S[i] = val;
+ }
+ }
+
+ assert(sum > 0.0f);
+
+ sum = 1.0/sum;
+ ggml_vec_scale_f32(M, S, sum);
+ }
+
+ for (int ic = 0; ic < nev1; ++ic) {
+ // dst indices
+ const int i1 = iq1;
+ const int i2 = iq2;
+ const int i3 = iq3;
+
+ ggml_vec_dot_f32(nek1,
+ (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
+ (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
+ S);
+ }
+ }
+}
+
+void ggml_compute_forward_flash_attn_f16(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * q,
+ const struct ggml_tensor * k,
+ const struct ggml_tensor * v,
+ const bool masked,
+ struct ggml_tensor * dst) {
+ int64_t t0 = ggml_perf_time_us();
+ UNUSED(t0);
+
+ const int neq0 = q->ne[0];
+ const int neq1 = q->ne[1];
+ const int neq2 = q->ne[2];
+ const int neq3 = q->ne[3];
+
+ const int nek0 = k->ne[0];
+ const int nek1 = k->ne[1];
+ //const int nek2 = k->ne[2];
+ //const int nek3 = k->ne[3];
+
+ //const int nev0 = v->ne[0];
+ const int nev1 = v->ne[1];
+ //const int nev2 = v->ne[2];
+ //const int nev3 = v->ne[3];
+
+ const int ne0 = dst->ne[0];
+ const int ne1 = dst->ne[1];
+ //const int ne2 = dst->ne[2];
+ //const int ne3 = dst->ne[3];
+
+ const int nbk0 = k->nb[0];
+ const int nbk1 = k->nb[1];
+ const int nbk2 = k->nb[2];
+ const int nbk3 = k->nb[3];
+
+ const int nbq0 = q->nb[0];
+ const int nbq1 = q->nb[1];
+ const int nbq2 = q->nb[2];
+ const int nbq3 = q->nb[3];
+
+ const int nbv0 = v->nb[0];
+ const int nbv1 = v->nb[1];
+ const int nbv2 = v->nb[2];
+ const int nbv3 = v->nb[3];
+
+ const int nb0 = dst->nb[0];
+ const int nb1 = dst->nb[1];
+ const int nb2 = dst->nb[2];
+ const int nb3 = dst->nb[3];
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int D = neq0;
+ const int N = neq1;
+ const int P = nek1 - N;
+ const int M = P + N;
+
+ GGML_ASSERT(ne0 == D);
+ GGML_ASSERT(ne1 == N);
+ GGML_ASSERT(P >= 0);
+
+ GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
+ GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
+ GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
+
+ GGML_ASSERT(neq0 == D);
+ GGML_ASSERT(nek0 == D);
+ GGML_ASSERT(nev1 == D);
+
+ GGML_ASSERT(neq1 == N);
+ GGML_ASSERT(nek1 == N + P);
+ GGML_ASSERT(nev1 == D);
+
+ // dst cannot be transposed or permuted
+ GGML_ASSERT(nb0 == sizeof(float));
+ GGML_ASSERT(nb0 <= nb1);
+ GGML_ASSERT(nb1 <= nb2);
+ GGML_ASSERT(nb2 <= nb3);
+
+ if (params->type == GGML_TASK_INIT) {
+ return;
+ }
+
+ if (params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ // parallelize by q rows using ggml_vec_dot_f32
+
+ // total rows in q
+ const int nr = neq1*neq2*neq3;
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ const float scale = 1.0/sqrt((double) D);
+
+ //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
+
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // q indices
+ const int iq3 = ir/(neq2*neq1);
+ const int iq2 = (ir - iq3*neq2*neq1)/neq1;
+ const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
+
+ float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
+
+ for (int ic = 0; ic < nek1; ++ic) {
+ // k indices
+ const int ik3 = iq3;
+ const int ik2 = iq2;
+ const int ik1 = ic;
+
+ // S indices
+ const int i1 = ik1;
+
+ ggml_vec_dot_f16(neq0,
+ S + i1,
+ (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
+ (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
+ }
+
+ // scale
+ ggml_vec_scale_f32(nek1, S, scale);
+
+ if (masked) {
+ for (int i = P; i < M; i++) {
+ if (i > P + iq1) {
+ S[i] = -INFINITY;
+ }
+ }
+ }
+
+ // softmax
+ {
+ float max = -INFINITY;
+ for (int i = 0; i < M; i++) {
+ max = MAX(max, S[i]);
+ }
ggml_float sum = 0.0;
- for (int i = 0; i < nc; i++) {
- const ggml_float v = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
- sum += v;
- p[i] = v;
+
+ for (int i = 0; i < M; i++) {
+ if (S[i] == -INFINITY) {
+ S[i] = 0.0;
+ } else {
+ //const float val = (S[i] == -INFINITY) ? 0.0 : exp(S[i] - max);
+ ggml_fp16_t s = ggml_fp32_to_fp16(S[i] - max);
+ const float val = ggml_fp16_to_fp32(table_exp_f16[*(uint16_t *) &s]);
+ sum += val;
+ S[i] = val;
+ }
}
assert(sum > 0.0f);
sum = 1.0/sum;
- ggml_vec_scale_f32(nc, p, sum);
+ ggml_vec_scale_f32(M, S, sum);
+ }
-#ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- assert(!isnan(p[i]));
- assert(!isinf(p[i]));
- }
-#endif
+ ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
+
+ for (int i = 0; i < M; i++) {
+ S16[i] = ggml_fp32_to_fp16(S[i]);
+ }
+
+ for (int ic = 0; ic < nev1; ++ic) {
+ // dst indices
+ const int i1 = iq1;
+ const int i2 = iq2;
+ const int i3 = iq3;
+
+ ggml_vec_dot_f16(nek1,
+ (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
+ (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
+ S16);
}
}
}
-void ggml_compute_forward_soft_max(
+void ggml_compute_forward_flash_attn(
const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
+ const struct ggml_tensor * q,
+ const struct ggml_tensor * k,
+ const struct ggml_tensor * v,
+ const bool masked,
struct ggml_tensor * dst) {
- switch (src0->type) {
+ switch (q->type) {
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
+ } break;
case GGML_TYPE_F32:
{
- ggml_compute_forward_soft_max_f32(params, src0, dst);
+ ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
} break;
case GGML_TYPE_I8:
case GGML_TYPE_I16:
case GGML_TYPE_I32:
- case GGML_TYPE_F16:
case GGML_TYPE_COUNT:
{
assert(false);
}
}
-// ggml_compute_forward_rope
+// ggml_compute_forward_flash_ff
-void ggml_compute_forward_rope_f32(
+void ggml_compute_forward_flash_ff_f16(
const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
+ const struct ggml_tensor * a, // F16
+ const struct ggml_tensor * b0, // F16 fc_w
+ const struct ggml_tensor * b1, // F32 fc_b
+ const struct ggml_tensor * c0, // F16 proj_w
+ const struct ggml_tensor * c1, // F32 proj_b
struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(src1->type == GGML_TYPE_I32);
- assert(ggml_nelements(src1) == 3);
+ int64_t t0 = ggml_perf_time_us();
+ UNUSED(t0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ const int nea0 = a->ne[0];
+ const int nea1 = a->ne[1];
+ const int nea2 = a->ne[2];
+ const int nea3 = a->ne[3];
+
+ const int neb00 = b0->ne[0];
+ const int neb01 = b0->ne[1];
+ //const int neb02 = b0->ne[2];
+ //const int neb03 = b0->ne[3];
+
+ const int neb10 = b1->ne[0];
+ const int neb11 = b1->ne[1];
+ //const int neb12 = b1->ne[2];
+ //const int neb13 = b1->ne[3];
+
+ const int nec00 = c0->ne[0];
+ const int nec01 = c0->ne[1];
+ //const int nec02 = c0->ne[2];
+ //const int nec03 = c0->ne[3];
+
+ const int nec10 = c1->ne[0];
+ const int nec11 = c1->ne[1];
+ //const int nec12 = c1->ne[2];
+ //const int nec13 = c1->ne[3];
+
+ const int ne0 = dst->ne[0];
+ const int ne1 = dst->ne[1];
+ const int ne2 = dst->ne[2];
+ //const int ne3 = dst->ne[3];
+
+ const int nba0 = a->nb[0];
+ const int nba1 = a->nb[1];
+ const int nba2 = a->nb[2];
+ const int nba3 = a->nb[3];
+
+ const int nbb00 = b0->nb[0];
+ const int nbb01 = b0->nb[1];
+ const int nbb02 = b0->nb[2];
+ const int nbb03 = b0->nb[3];
+
+ const int nbb10 = b1->nb[0];
+ //const int nbb11 = b1->nb[1];
+ //const int nbb12 = b1->nb[2];
+ //const int nbb13 = b1->nb[3];
+
+ const int nbc00 = c0->nb[0];
+ const int nbc01 = c0->nb[1];
+ const int nbc02 = c0->nb[2];
+ const int nbc03 = c0->nb[3];
+
+ const int nbc10 = c1->nb[0];
+ //const int nbc11 = c1->nb[1];
+ //const int nbc12 = c1->nb[2];
+ //const int nbc13 = c1->nb[3];
+
+ const int nb0 = dst->nb[0];
+ const int nb1 = dst->nb[1];
+ const int nb2 = dst->nb[2];
+ const int nb3 = dst->nb[3];
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int D = nea0;
+ //const int N = nea1;
+ const int M = neb01;
+
+ GGML_ASSERT(ne0 == nea0);
+ GGML_ASSERT(ne1 == nea1);
+ GGML_ASSERT(ne2 == nea2);
+
+ GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
+ GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
+ GGML_ASSERT(nbb10 == sizeof(float));
+ GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
+ GGML_ASSERT(nbc10 == sizeof(float));
+
+ GGML_ASSERT(neb00 == D);
+ GGML_ASSERT(neb01 == M);
+ GGML_ASSERT(neb10 == M);
+ GGML_ASSERT(neb11 == 1);
+
+ GGML_ASSERT(nec00 == M);
+ GGML_ASSERT(nec01 == D);
+ GGML_ASSERT(nec10 == D);
+ GGML_ASSERT(nec11 == 1);
+
+ // dst cannot be transposed or permuted
+ GGML_ASSERT(nb0 == sizeof(float));
+ GGML_ASSERT(nb0 <= nb1);
+ GGML_ASSERT(nb1 <= nb2);
+ GGML_ASSERT(nb2 <= nb3);
+
+ if (params->type == GGML_TASK_INIT) {
return;
}
- const int n_past = ((int32_t *) src1->data)[0];
- const int n_dims = ((int32_t *) src1->data)[1];
- const int mode = ((int32_t *) src1->data)[2];
+ if (params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
- //const int ne0 = src0->ne[0];
- const int ne1 = src0->ne[1];
- const int ne2 = src0->ne[2];
- const int ne3 = src0->ne[3];
+ // parallelize by a rows using ggml_vec_dot_f32
- const int nb0 = src0->nb[0];
- const int nb1 = src0->nb[1];
- const int nb2 = src0->nb[2];
- const int nb3 = src0->nb[3];
+ // total rows in a
+ const int nr = nea1*nea2*nea3;
- //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
- //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
- assert(nb0 == sizeof(float));
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
- // TODO: optimize
- for (int i3 = 0; i3 < ne3; i3++) {
- for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
- const int p = (mode == 0 ? n_past + i2 : i2);
- for (int i1 = 0; i1 < ne1; i1++) {
- for (int i0 = 0; i0 < n_dims; i0 += 2) {
- const double theta = pow(10000.0, ((double)-i0)/n_dims);
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // a indices
+ const int ia3 = ir/(nea2*nea1);
+ const int ia2 = (ir - ia3*nea2*nea1)/nea1;
+ const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
- const double cos_theta = cos(p*theta);
- const double sin_theta = sin(p*theta);
+ float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
- const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+ for (int ic = 0; ic < neb01; ++ic) {
+ // b0 indices
+ const int ib03 = ia3;
+ const int ib02 = ia2;
+ const int ib01 = ic;
- double x0 = src[0];
- double x1 = src[1];
+ // S indices
+ const int i1 = ib01;
- dst_data[0] = x0*cos_theta - x1*sin_theta;
- dst_data[1] = x0*sin_theta + x1*cos_theta;
- }
+ ggml_vec_dot_f16(nea0,
+ S + i1,
+ (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
+ (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
+ }
+
+ ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
+ //ggml_vec_gelu_f32(neb01, S, S);
+
+ ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
+
+ for (int i = 0; i < M; i++) {
+ S16[i] = ggml_fp32_to_fp16(S[i]);
+ }
+
+ ggml_vec_gelu_f16(neb01, S16, S16);
+
+ {
+ // dst indices
+ const int i1 = ia1;
+ const int i2 = ia2;
+ const int i3 = ia3;
+
+ for (int ic = 0; ic < nec01; ++ic) {
+
+ ggml_vec_dot_f16(neb01,
+ (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
+ (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
+ S16);
}
+
+ ggml_vec_add_f32(nec01,
+ (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
+ (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
+ (float *) c1->data);
}
}
}
-void ggml_compute_forward_rope(
+void ggml_compute_forward_flash_ff(
const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
+ const struct ggml_tensor * a,
+ const struct ggml_tensor * b0,
+ const struct ggml_tensor * b1,
+ const struct ggml_tensor * c0,
+ const struct ggml_tensor * c1,
struct ggml_tensor * dst) {
- switch (src0->type) {
+ switch (b0->type) {
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
+ } break;
case GGML_TYPE_F32:
{
- ggml_compute_forward_rope_f32(params, src0, src1, dst);
+ GGML_ASSERT(false); // TODO
} break;
case GGML_TYPE_I8:
case GGML_TYPE_I16:
case GGML_TYPE_I32:
- case GGML_TYPE_F16:
case GGML_TYPE_COUNT:
{
assert(false);
{
ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
} break;
+ case GGML_OP_CONV_1D_1S:
+ {
+ ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
+ } break;
+ case GGML_OP_CONV_1D_2S:
+ {
+ ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
+ } break;
+ case GGML_OP_FLASH_ATTN:
+ {
+ int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
+ GGML_ASSERT(t == 0 || t == 1);
+ bool masked = t != 0;
+ ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
+ } break;
+ case GGML_OP_FLASH_FF:
+ {
+ ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
+ } break;
case GGML_OP_NONE:
{
// nop
} break;
case GGML_OP_COUNT:
{
- assert(false);
+ GGML_ASSERT(false);
} break;
};
}
} break;
case GGML_OP_SCALE:
{
- assert(false); // TODO: not implemented
+ GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_CPY:
{
- assert(false); // TODO: not implemented
+ GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_RESHAPE:
{
- assert(false); // TODO: not implemented
+ GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_VIEW:
{
- assert(false); // not supported
+ GGML_ASSERT(false); // not supported
} break;
case GGML_OP_PERMUTE:
{
- assert(false); // TODO: not implemented
+ GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_TRANSPOSE:
{
- assert(false); // TODO: not implemented
+ GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_GET_ROWS:
{
- assert(false); // TODO: not implemented
+ GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_DIAG_MASK_INF:
{
- assert(false); // TODO: not implemented
+ GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_SOFT_MAX:
{
- assert(false); // TODO: not implemented
+ GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_ROPE:
{
- assert(false); // TODO: not implemented
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
+ case GGML_OP_CONV_1D_1S:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
+ case GGML_OP_CONV_1D_2S:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
+ case GGML_OP_FLASH_ATTN:
+ {
+ GGML_ASSERT(false); // not supported
+ } break;
+ case GGML_OP_FLASH_FF:
+ {
+ GGML_ASSERT(false); // not supported
} break;
case GGML_OP_NONE:
{
} break;
case GGML_OP_COUNT:
{
- assert(false);
+ GGML_ASSERT(false);
} break;
};
}
ggml_visit_parents(cgraph, node->src1);
}
+ for (int i = 0; i < GGML_MAX_OPT; ++i) {
+ if (node->opt[i]) {
+ ggml_visit_parents(cgraph, node->opt[i]);
+ }
+ }
+
if (node->op == GGML_OP_NONE && node->grad == NULL) {
// reached a leaf node, not part of the gradient graph (e.g. a constant)
assert(cgraph->n_leafs < GGML_MAX_NODES);
case GGML_OP_NEG:
case GGML_OP_STEP:
case GGML_OP_RELU:
+ {
+ node->n_tasks = 1;
+ } break;
case GGML_OP_GELU:
+ {
+ node->n_tasks = MIN(n_threads, ggml_nrows(node->src0));
+ } break;
case GGML_OP_NORM:
{
node->n_tasks = 1;
// TODO: use different scheduling for different matrix sizes
node->n_tasks = n_threads;
+ size_t cur = 0;
+
// TODO: better way to determine if the matrix is transposed
if (node->src0->nb[1] < node->src0->nb[0]) {
- size_t cur = ggml_nbytes(node)*node->n_tasks; // TODO: this can become (n_tasks-1)
- work_size = MAX(work_size, cur);
+ cur = ggml_nbytes(node)*node->n_tasks; // TODO: this can become (n_tasks-1)
} else {
if (node->src0->type == GGML_TYPE_F16 &&
node->src1->type == GGML_TYPE_F32) {
- size_t cur = sizeof(ggml_fp16_t)*ggml_nelements(node->src1);
- work_size = MAX(work_size, cur);
+ cur = sizeof(ggml_fp16_t)*ggml_nelements(node->src1);
+ } else if (node->src0->type == GGML_TYPE_F32 &&
+ node->src1->type == GGML_TYPE_F32) {
+ cur = 0;
+ } else {
+ GGML_ASSERT(false);
}
}
+
+ work_size = MAX(work_size, cur);
} break;
case GGML_OP_SCALE:
+ {
+ node->n_tasks = MIN(n_threads, ggml_nrows(node->src0));
+ } break;
case GGML_OP_CPY:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_TRANSPOSE:
case GGML_OP_GET_ROWS:
case GGML_OP_DIAG_MASK_INF:
+ {
+ node->n_tasks = 1;
+ } break;
case GGML_OP_SOFT_MAX:
+ {
+ node->n_tasks = MIN(n_threads, ggml_nrows(node->src0));
+ } break;
case GGML_OP_ROPE:
{
node->n_tasks = 1;
} break;
+ case GGML_OP_CONV_1D_1S:
+ case GGML_OP_CONV_1D_2S:
+ {
+ node->n_tasks = n_threads;
+
+ GGML_ASSERT(node->src0->ne[3] == 1);
+ GGML_ASSERT(node->src1->ne[2] == 1);
+ GGML_ASSERT(node->src1->ne[3] == 1);
+
+ size_t cur = 0;
+ const int nk = node->src0->ne[0];
+
+ if (node->src0->type == GGML_TYPE_F16 &&
+ node->src1->type == GGML_TYPE_F32) {
+ cur = sizeof(ggml_fp16_t)*(
+ nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
+ ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
+ );
+ } else if (node->src0->type == GGML_TYPE_F32 &&
+ node->src1->type == GGML_TYPE_F32) {
+ cur = sizeof(float)*(
+ nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
+ ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
+ );
+ } else {
+ GGML_ASSERT(false);
+ }
+
+ work_size = MAX(work_size, cur);
+ } break;
+ case GGML_OP_FLASH_ATTN:
+ {
+ node->n_tasks = n_threads;
+
+ size_t cur = 0;
+
+ if (node->src1->type == GGML_TYPE_F32) {
+ cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
+ cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
+ }
+
+ if (node->src1->type == GGML_TYPE_F16) {
+ cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
+ cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
+ }
+
+ work_size = MAX(work_size, cur);
+ } break;
+ case GGML_OP_FLASH_FF:
+ {
+ node->n_tasks = n_threads;
+
+ size_t cur = 0;
+
+ if (node->src1->type == GGML_TYPE_F32) {
+ cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
+ cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
+ }
+
+ if (node->src1->type == GGML_TYPE_F16) {
+ cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
+ cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
+ }
+
+ work_size = MAX(work_size, cur);
+ } break;
case GGML_OP_NONE:
{
node->n_tasks = 1;
params.type = GGML_TASK_COMPUTE;
ggml_compute_forward(¶ms, node);
+ // wait for thread pool
if (node->n_tasks > 1) {
if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
atomic_store(&state_shared.has_work, false);
}
// FINALIZE
+ if (node->n_tasks > 1) {
+ if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
+ atomic_store(&state_shared.has_work, false);
+ }
+
+ while (atomic_load(&state_shared.has_work)) {
+ ggml_lock_lock (&state_shared.spin);
+ ggml_lock_unlock(&state_shared.spin);
+ }
+
+ // launch thread pool
+ for (int j = 0; j < n_threads - 1; j++) {
+ workers[j].params = (struct ggml_compute_params) {
+ .type = GGML_TASK_FINALIZE,
+ .ith = j + 1,
+ .nth = n_threads,
+ .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
+ .wdata = cgraph->work ? cgraph->work->data : NULL,
+ };
+ workers[j].node = node;
+ }
+
+ atomic_fetch_sub(&state_shared.n_ready, 1);
+
+ while (atomic_load(&state_shared.n_ready) > 0) {
+ ggml_lock_lock (&state_shared.spin);
+ ggml_lock_unlock(&state_shared.spin);
+ }
+
+ atomic_store(&state_shared.has_work, true);
+ }
+
params.type = GGML_TASK_FINALIZE;
ggml_compute_forward(¶ms, node);
+ // wait for thread pool
+ if (node->n_tasks > 1) {
+ if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
+ atomic_store(&state_shared.has_work, false);
+ }
+
+ while (atomic_load(&state_shared.has_work)) {
+ ggml_lock_lock (&state_shared.spin);
+ ggml_lock_unlock(&state_shared.spin);
+ }
+
+ atomic_fetch_sub(&state_shared.n_ready, 1);
+
+ while (atomic_load(&state_shared.n_ready) != 0) {
+ ggml_lock_lock (&state_shared.spin);
+ ggml_lock_unlock(&state_shared.spin);
+ }
+ }
+
// performance stats (node)
{
int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;