]> git.djapps.eu Git - pkg/ggml/sources/ggml/commitdiff
Adding Whisper inference example
authorGeorgi Gerganov <redacted>
Wed, 28 Sep 2022 18:12:20 +0000 (21:12 +0300)
committerGeorgi Gerganov <redacted>
Wed, 28 Sep 2022 18:12:20 +0000 (21:12 +0300)
15 files changed:
CMakeLists.txt
README.md
examples/CMakeLists.txt
examples/dr_wav.h [new file with mode: 0644]
examples/gpt-2/main.cpp
examples/gpt-j/main.cpp
examples/utils.cpp
examples/utils.h
examples/whisper/CMakeLists.txt [new file with mode: 0644]
examples/whisper/README.md [new file with mode: 0644]
examples/whisper/convert-pt-to-ggml.py [new file with mode: 0644]
examples/whisper/main.cpp [new file with mode: 0644]
include/ggml/ggml.h
src/CMakeLists.txt
src/ggml.c

index 378dd76cb189bc7543f548046561425aa866154d..c23ec55c7cf0d3b2217bfba9220f0c6440758f1b 100644 (file)
@@ -25,6 +25,8 @@ option(GGML_SANITIZE_UNDEFINED      "ggml: enable undefined sanitizer" OFF)
 option(GGML_BUILD_TESTS             "ggml: build tests"    ${GGML_STANDALONE})
 option(GGML_BUILD_EXAMPLES          "ggml: build examples" ${GGML_STANDALONE})
 
+option(GGML_PERF                    "ggml: enable perf timings" ${GGML_PERF})
+
 # sanitizers
 
 if (GGML_SANITIZE_THREAD)
index 9678e3947fd4ed69e3787b6d540c80824ea8449e..193d4fa2870231cc7c91de5fa51e7660dd617652 100644 (file)
--- a/README.md
+++ b/README.md
@@ -13,7 +13,21 @@ Tensor library for machine learning
 - No third-party dependencies
 - Zero memory allocations during runtime
 
-## Example - GPT inference
+## Whisper inference (example)
+
+With ggml you can efficiently run [Whisper](examples/whisper) inference on the CPU.
+
+Memory requirements:
+
+| Model | Mem |
+| ---   | --- |
+| tiny.en | ~460 MB |
+| base.en | ~620 MB |
+| small.en | ~1.3 GB |
+| medium.en | ~2.8 GB |
+| large | ~4.9 GB |
+
+## GPT inference (example)
 
 With ggml you can efficiently run [GPT-2](examples/gpt-2) and [GPT-J](examples/gpt-j) inference on the CPU.
 
index cdbcfadddf7455697594ddbd1d2a16608e4cf589..5f7f3a485c56c48ac9889e235e661397680dc931 100644 (file)
@@ -3,3 +3,4 @@ target_include_directories(ggml_utils PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})
 
 add_subdirectory(gpt-2)
 add_subdirectory(gpt-j)
+add_subdirectory(whisper)
diff --git a/examples/dr_wav.h b/examples/dr_wav.h
new file mode 100644 (file)
index 0000000..fd3e95b
--- /dev/null
@@ -0,0 +1,6434 @@
+/*
+WAV audio loader and writer. Choice of public domain or MIT-0. See license statements at the end of this file.
+dr_wav - v0.12.16 - 2020-12-02
+
+David Reid - mackron@gmail.com
+
+GitHub: https://github.com/mackron/dr_libs
+*/
+
+/*
+RELEASE NOTES - VERSION 0.12
+============================
+Version 0.12 includes breaking changes to custom chunk handling.
+
+
+Changes to Chunk Callback
+-------------------------
+dr_wav supports the ability to fire a callback when a chunk is encounted (except for WAVE and FMT chunks). The callback has been updated to include both the
+container (RIFF or Wave64) and the FMT chunk which contains information about the format of the data in the wave file.
+
+Previously, there was no direct way to determine the container, and therefore no way to discriminate against the different IDs in the chunk header (RIFF and
+Wave64 containers encode chunk ID's differently). The `container` parameter can be used to know which ID to use.
+
+Sometimes it can be useful to know the data format at the time the chunk callback is fired. A pointer to a `drwav_fmt` object is now passed into the chunk
+callback which will give you information about the data format. To determine the sample format, use `drwav_fmt_get_format()`. This will return one of the
+`DR_WAVE_FORMAT_*` tokens.
+*/
+
+/*
+Introduction
+============
+This is a single file library. To use it, do something like the following in one .c file.
+    
+    ```c
+    #define DR_WAV_IMPLEMENTATION
+    #include "dr_wav.h"
+    ```
+
+You can then #include this file in other parts of the program as you would with any other header file. Do something like the following to read audio data:
+
+    ```c
+    drwav wav;
+    if (!drwav_init_file(&wav, "my_song.wav", NULL)) {
+        // Error opening WAV file.
+    }
+
+    drwav_int32* pDecodedInterleavedPCMFrames = malloc(wav.totalPCMFrameCount * wav.channels * sizeof(drwav_int32));
+    size_t numberOfSamplesActuallyDecoded = drwav_read_pcm_frames_s32(&wav, wav.totalPCMFrameCount, pDecodedInterleavedPCMFrames);
+
+    ...
+
+    drwav_uninit(&wav);
+    ```
+
+If you just want to quickly open and read the audio data in a single operation you can do something like this:
+
+    ```c
+    unsigned int channels;
+    unsigned int sampleRate;
+    drwav_uint64 totalPCMFrameCount;
+    float* pSampleData = drwav_open_file_and_read_pcm_frames_f32("my_song.wav", &channels, &sampleRate, &totalPCMFrameCount, NULL);
+    if (pSampleData == NULL) {
+        // Error opening and reading WAV file.
+    }
+
+    ...
+
+    drwav_free(pSampleData);
+    ```
+
+The examples above use versions of the API that convert the audio data to a consistent format (32-bit signed PCM, in this case), but you can still output the
+audio data in its internal format (see notes below for supported formats):
+
+    ```c
+    size_t framesRead = drwav_read_pcm_frames(&wav, wav.totalPCMFrameCount, pDecodedInterleavedPCMFrames);
+    ```
+
+You can also read the raw bytes of audio data, which could be useful if dr_wav does not have native support for a particular data format:
+
+    ```c
+    size_t bytesRead = drwav_read_raw(&wav, bytesToRead, pRawDataBuffer);
+    ```
+
+dr_wav can also be used to output WAV files. This does not currently support compressed formats. To use this, look at `drwav_init_write()`,
+`drwav_init_file_write()`, etc. Use `drwav_write_pcm_frames()` to write samples, or `drwav_write_raw()` to write raw data in the "data" chunk.
+
+    ```c
+    drwav_data_format format;
+    format.container = drwav_container_riff;     // <-- drwav_container_riff = normal WAV files, drwav_container_w64 = Sony Wave64.
+    format.format = DR_WAVE_FORMAT_PCM;          // <-- Any of the DR_WAVE_FORMAT_* codes.
+    format.channels = 2;
+    format.sampleRate = 44100;
+    format.bitsPerSample = 16;
+    drwav_init_file_write(&wav, "data/recording.wav", &format, NULL);
+
+    ...
+
+    drwav_uint64 framesWritten = drwav_write_pcm_frames(pWav, frameCount, pSamples);
+    ```
+
+dr_wav has seamless support the Sony Wave64 format. The decoder will automatically detect it and it should Just Work without any manual intervention.
+
+
+Build Options
+=============
+#define these options before including this file.
+
+#define DR_WAV_NO_CONVERSION_API
+  Disables conversion APIs such as `drwav_read_pcm_frames_f32()` and `drwav_s16_to_f32()`.
+
+#define DR_WAV_NO_STDIO
+  Disables APIs that initialize a decoder from a file such as `drwav_init_file()`, `drwav_init_file_write()`, etc.
+
+
+
+Notes
+=====
+- Samples are always interleaved.
+- The default read function does not do any data conversion. Use `drwav_read_pcm_frames_f32()`, `drwav_read_pcm_frames_s32()` and `drwav_read_pcm_frames_s16()`
+  to read and convert audio data to 32-bit floating point, signed 32-bit integer and signed 16-bit integer samples respectively. Tested and supported internal
+  formats include the following:
+  - Unsigned 8-bit PCM
+  - Signed 12-bit PCM
+  - Signed 16-bit PCM
+  - Signed 24-bit PCM
+  - Signed 32-bit PCM
+  - IEEE 32-bit floating point
+  - IEEE 64-bit floating point
+  - A-law and u-law
+  - Microsoft ADPCM
+  - IMA ADPCM (DVI, format code 0x11)
+- dr_wav will try to read the WAV file as best it can, even if it's not strictly conformant to the WAV format.
+*/
+
+#ifndef dr_wav_h
+#define dr_wav_h
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#define DRWAV_STRINGIFY(x)      #x
+#define DRWAV_XSTRINGIFY(x)     DRWAV_STRINGIFY(x)
+
+#define DRWAV_VERSION_MAJOR     0
+#define DRWAV_VERSION_MINOR     12
+#define DRWAV_VERSION_REVISION  16
+#define DRWAV_VERSION_STRING    DRWAV_XSTRINGIFY(DRWAV_VERSION_MAJOR) "." DRWAV_XSTRINGIFY(DRWAV_VERSION_MINOR) "." DRWAV_XSTRINGIFY(DRWAV_VERSION_REVISION)
+
+#include <stddef.h> /* For size_t. */
+
+/* Sized types. */
+typedef   signed char           drwav_int8;
+typedef unsigned char           drwav_uint8;
+typedef   signed short          drwav_int16;
+typedef unsigned short          drwav_uint16;
+typedef   signed int            drwav_int32;
+typedef unsigned int            drwav_uint32;
+#if defined(_MSC_VER)
+    typedef   signed __int64    drwav_int64;
+    typedef unsigned __int64    drwav_uint64;
+#else
+    #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)))
+        #pragma GCC diagnostic push
+        #pragma GCC diagnostic ignored "-Wlong-long"
+        #if defined(__clang__)
+            #pragma GCC diagnostic ignored "-Wc++11-long-long"
+        #endif
+    #endif
+    typedef   signed long long  drwav_int64;
+    typedef unsigned long long  drwav_uint64;
+    #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)))
+        #pragma GCC diagnostic pop
+    #endif
+#endif
+#if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__)) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__)
+    typedef drwav_uint64        drwav_uintptr;
+#else
+    typedef drwav_uint32        drwav_uintptr;
+#endif
+typedef drwav_uint8             drwav_bool8;
+typedef drwav_uint32            drwav_bool32;
+#define DRWAV_TRUE              1
+#define DRWAV_FALSE             0
+
+#if !defined(DRWAV_API)
+    #if defined(DRWAV_DLL)
+        #if defined(_WIN32)
+            #define DRWAV_DLL_IMPORT  __declspec(dllimport)
+            #define DRWAV_DLL_EXPORT  __declspec(dllexport)
+            #define DRWAV_DLL_PRIVATE static
+        #else
+            #if defined(__GNUC__) && __GNUC__ >= 4
+                #define DRWAV_DLL_IMPORT  __attribute__((visibility("default")))
+                #define DRWAV_DLL_EXPORT  __attribute__((visibility("default")))
+                #define DRWAV_DLL_PRIVATE __attribute__((visibility("hidden")))
+            #else
+                #define DRWAV_DLL_IMPORT
+                #define DRWAV_DLL_EXPORT
+                #define DRWAV_DLL_PRIVATE static
+            #endif
+        #endif
+
+        #if defined(DR_WAV_IMPLEMENTATION) || defined(DRWAV_IMPLEMENTATION)
+            #define DRWAV_API  DRWAV_DLL_EXPORT
+        #else
+            #define DRWAV_API  DRWAV_DLL_IMPORT
+        #endif
+        #define DRWAV_PRIVATE DRWAV_DLL_PRIVATE
+    #else
+        #define DRWAV_API extern
+        #define DRWAV_PRIVATE static
+    #endif
+#endif
+
+typedef drwav_int32 drwav_result;
+#define DRWAV_SUCCESS                        0
+#define DRWAV_ERROR                         -1   /* A generic error. */
+#define DRWAV_INVALID_ARGS                  -2
+#define DRWAV_INVALID_OPERATION             -3
+#define DRWAV_OUT_OF_MEMORY                 -4
+#define DRWAV_OUT_OF_RANGE                  -5
+#define DRWAV_ACCESS_DENIED                 -6
+#define DRWAV_DOES_NOT_EXIST                -7
+#define DRWAV_ALREADY_EXISTS                -8
+#define DRWAV_TOO_MANY_OPEN_FILES           -9
+#define DRWAV_INVALID_FILE                  -10
+#define DRWAV_TOO_BIG                       -11
+#define DRWAV_PATH_TOO_LONG                 -12
+#define DRWAV_NAME_TOO_LONG                 -13
+#define DRWAV_NOT_DIRECTORY                 -14
+#define DRWAV_IS_DIRECTORY                  -15
+#define DRWAV_DIRECTORY_NOT_EMPTY           -16
+#define DRWAV_END_OF_FILE                   -17
+#define DRWAV_NO_SPACE                      -18
+#define DRWAV_BUSY                          -19
+#define DRWAV_IO_ERROR                      -20
+#define DRWAV_INTERRUPT                     -21
+#define DRWAV_UNAVAILABLE                   -22
+#define DRWAV_ALREADY_IN_USE                -23
+#define DRWAV_BAD_ADDRESS                   -24
+#define DRWAV_BAD_SEEK                      -25
+#define DRWAV_BAD_PIPE                      -26
+#define DRWAV_DEADLOCK                      -27
+#define DRWAV_TOO_MANY_LINKS                -28
+#define DRWAV_NOT_IMPLEMENTED               -29
+#define DRWAV_NO_MESSAGE                    -30
+#define DRWAV_BAD_MESSAGE                   -31
+#define DRWAV_NO_DATA_AVAILABLE             -32
+#define DRWAV_INVALID_DATA                  -33
+#define DRWAV_TIMEOUT                       -34
+#define DRWAV_NO_NETWORK                    -35
+#define DRWAV_NOT_UNIQUE                    -36
+#define DRWAV_NOT_SOCKET                    -37
+#define DRWAV_NO_ADDRESS                    -38
+#define DRWAV_BAD_PROTOCOL                  -39
+#define DRWAV_PROTOCOL_UNAVAILABLE          -40
+#define DRWAV_PROTOCOL_NOT_SUPPORTED        -41
+#define DRWAV_PROTOCOL_FAMILY_NOT_SUPPORTED -42
+#define DRWAV_ADDRESS_FAMILY_NOT_SUPPORTED  -43
+#define DRWAV_SOCKET_NOT_SUPPORTED          -44
+#define DRWAV_CONNECTION_RESET              -45
+#define DRWAV_ALREADY_CONNECTED             -46
+#define DRWAV_NOT_CONNECTED                 -47
+#define DRWAV_CONNECTION_REFUSED            -48
+#define DRWAV_NO_HOST                       -49
+#define DRWAV_IN_PROGRESS                   -50
+#define DRWAV_CANCELLED                     -51
+#define DRWAV_MEMORY_ALREADY_MAPPED         -52
+#define DRWAV_AT_END                        -53
+
+/* Common data formats. */
+#define DR_WAVE_FORMAT_PCM          0x1
+#define DR_WAVE_FORMAT_ADPCM        0x2
+#define DR_WAVE_FORMAT_IEEE_FLOAT   0x3
+#define DR_WAVE_FORMAT_ALAW         0x6
+#define DR_WAVE_FORMAT_MULAW        0x7
+#define DR_WAVE_FORMAT_DVI_ADPCM    0x11
+#define DR_WAVE_FORMAT_EXTENSIBLE   0xFFFE
+
+/* Constants. */
+#ifndef DRWAV_MAX_SMPL_LOOPS
+#define DRWAV_MAX_SMPL_LOOPS        1
+#endif
+
+/* Flags to pass into drwav_init_ex(), etc. */
+#define DRWAV_SEQUENTIAL            0x00000001
+
+DRWAV_API void drwav_version(drwav_uint32* pMajor, drwav_uint32* pMinor, drwav_uint32* pRevision);
+DRWAV_API const char* drwav_version_string(void);
+
+typedef enum
+{
+    drwav_seek_origin_start,
+    drwav_seek_origin_current
+} drwav_seek_origin;
+
+typedef enum
+{
+    drwav_container_riff,
+    drwav_container_w64,
+    drwav_container_rf64
+} drwav_container;
+
+typedef struct
+{
+    union
+    {
+        drwav_uint8 fourcc[4];
+        drwav_uint8 guid[16];
+    } id;
+
+    /* The size in bytes of the chunk. */
+    drwav_uint64 sizeInBytes;
+
+    /*
+    RIFF = 2 byte alignment.
+    W64  = 8 byte alignment.
+    */
+    unsigned int paddingSize;
+} drwav_chunk_header;
+
+typedef struct
+{
+    /*
+    The format tag exactly as specified in the wave file's "fmt" chunk. This can be used by applications
+    that require support for data formats not natively supported by dr_wav.
+    */
+    drwav_uint16 formatTag;
+
+    /* The number of channels making up the audio data. When this is set to 1 it is mono, 2 is stereo, etc. */
+    drwav_uint16 channels;
+
+    /* The sample rate. Usually set to something like 44100. */
+    drwav_uint32 sampleRate;
+
+    /* Average bytes per second. You probably don't need this, but it's left here for informational purposes. */
+    drwav_uint32 avgBytesPerSec;
+
+    /* Block align. This is equal to the number of channels * bytes per sample. */
+    drwav_uint16 blockAlign;
+
+    /* Bits per sample. */
+    drwav_uint16 bitsPerSample;
+
+    /* The size of the extended data. Only used internally for validation, but left here for informational purposes. */
+    drwav_uint16 extendedSize;
+
+    /*
+    The number of valid bits per sample. When <formatTag> is equal to WAVE_FORMAT_EXTENSIBLE, <bitsPerSample>
+    is always rounded up to the nearest multiple of 8. This variable contains information about exactly how
+    many bits are valid per sample. Mainly used for informational purposes.
+    */
+    drwav_uint16 validBitsPerSample;
+
+    /* The channel mask. Not used at the moment. */
+    drwav_uint32 channelMask;
+
+    /* The sub-format, exactly as specified by the wave file. */
+    drwav_uint8 subFormat[16];
+} drwav_fmt;
+
+DRWAV_API drwav_uint16 drwav_fmt_get_format(const drwav_fmt* pFMT);
+
+
+/*
+Callback for when data is read. Return value is the number of bytes actually read.
+
+pUserData   [in]  The user data that was passed to drwav_init() and family.
+pBufferOut  [out] The output buffer.
+bytesToRead [in]  The number of bytes to read.
+
+Returns the number of bytes actually read.
+
+A return value of less than bytesToRead indicates the end of the stream. Do _not_ return from this callback until
+either the entire bytesToRead is filled or you have reached the end of the stream.
+*/
+typedef size_t (* drwav_read_proc)(void* pUserData, void* pBufferOut, size_t bytesToRead);
+
+/*
+Callback for when data is written. Returns value is the number of bytes actually written.
+
+pUserData    [in]  The user data that was passed to drwav_init_write() and family.
+pData        [out] A pointer to the data to write.
+bytesToWrite [in]  The number of bytes to write.
+
+Returns the number of bytes actually written.
+
+If the return value differs from bytesToWrite, it indicates an error.
+*/
+typedef size_t (* drwav_write_proc)(void* pUserData, const void* pData, size_t bytesToWrite);
+
+/*
+Callback for when data needs to be seeked.
+
+pUserData [in] The user data that was passed to drwav_init() and family.
+offset    [in] The number of bytes to move, relative to the origin. Will never be negative.
+origin    [in] The origin of the seek - the current position or the start of the stream.
+
+Returns whether or not the seek was successful.
+
+Whether or not it is relative to the beginning or current position is determined by the "origin" parameter which will be either drwav_seek_origin_start or
+drwav_seek_origin_current.
+*/
+typedef drwav_bool32 (* drwav_seek_proc)(void* pUserData, int offset, drwav_seek_origin origin);
+
+/*
+Callback for when drwav_init_ex() finds a chunk.
+
+pChunkUserData    [in] The user data that was passed to the pChunkUserData parameter of drwav_init_ex() and family.
+onRead            [in] A pointer to the function to call when reading.
+onSeek            [in] A pointer to the function to call when seeking.
+pReadSeekUserData [in] The user data that was passed to the pReadSeekUserData parameter of drwav_init_ex() and family.
+pChunkHeader      [in] A pointer to an object containing basic header information about the chunk. Use this to identify the chunk.
+container         [in] Whether or not the WAV file is a RIFF or Wave64 container. If you're unsure of the difference, assume RIFF.
+pFMT              [in] A pointer to the object containing the contents of the "fmt" chunk.
+
+Returns the number of bytes read + seeked.
+
+To read data from the chunk, call onRead(), passing in pReadSeekUserData as the first parameter. Do the same for seeking with onSeek(). The return value must
+be the total number of bytes you have read _plus_ seeked.
+
+Use the `container` argument to discriminate the fields in `pChunkHeader->id`. If the container is `drwav_container_riff` or `drwav_container_rf64` you should
+use `id.fourcc`, otherwise you should use `id.guid`.
+
+The `pFMT` parameter can be used to determine the data format of the wave file. Use `drwav_fmt_get_format()` to get the sample format, which will be one of the
+`DR_WAVE_FORMAT_*` identifiers. 
+
+The read pointer will be sitting on the first byte after the chunk's header. You must not attempt to read beyond the boundary of the chunk.
+*/
+typedef drwav_uint64 (* drwav_chunk_proc)(void* pChunkUserData, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pReadSeekUserData, const drwav_chunk_header* pChunkHeader, drwav_container container, const drwav_fmt* pFMT);
+
+typedef struct
+{
+    void* pUserData;
+    void* (* onMalloc)(size_t sz, void* pUserData);
+    void* (* onRealloc)(void* p, size_t sz, void* pUserData);
+    void  (* onFree)(void* p, void* pUserData);
+} drwav_allocation_callbacks;
+
+/* Structure for internal use. Only used for loaders opened with drwav_init_memory(). */
+typedef struct
+{
+    const drwav_uint8* data;
+    size_t dataSize;
+    size_t currentReadPos;
+} drwav__memory_stream;
+
+/* Structure for internal use. Only used for writers opened with drwav_init_memory_write(). */
+typedef struct
+{
+    void** ppData;
+    size_t* pDataSize;
+    size_t dataSize;
+    size_t dataCapacity;
+    size_t currentWritePos;
+} drwav__memory_stream_write;
+
+typedef struct
+{
+    drwav_container container;  /* RIFF, W64. */
+    drwav_uint32 format;        /* DR_WAVE_FORMAT_* */
+    drwav_uint32 channels;
+    drwav_uint32 sampleRate;
+    drwav_uint32 bitsPerSample;
+} drwav_data_format;
+
+
+/* See the following for details on the 'smpl' chunk: https://sites.google.com/site/musicgapi/technical-documents/wav-file-format#smpl */
+typedef struct
+{
+    drwav_uint32 cuePointId;
+    drwav_uint32 type;
+    drwav_uint32 start;
+    drwav_uint32 end;
+    drwav_uint32 fraction;
+    drwav_uint32 playCount;
+} drwav_smpl_loop;
+
+ typedef struct
+{
+    drwav_uint32 manufacturer;
+    drwav_uint32 product;
+    drwav_uint32 samplePeriod;
+    drwav_uint32 midiUnityNotes;
+    drwav_uint32 midiPitchFraction;
+    drwav_uint32 smpteFormat;
+    drwav_uint32 smpteOffset;
+    drwav_uint32 numSampleLoops;
+    drwav_uint32 samplerData;
+    drwav_smpl_loop loops[DRWAV_MAX_SMPL_LOOPS];
+} drwav_smpl;
+
+typedef struct
+{
+    /* A pointer to the function to call when more data is needed. */
+    drwav_read_proc onRead;
+
+    /* A pointer to the function to call when data needs to be written. Only used when the drwav object is opened in write mode. */
+    drwav_write_proc onWrite;
+
+    /* A pointer to the function to call when the wav file needs to be seeked. */
+    drwav_seek_proc onSeek;
+
+    /* The user data to pass to callbacks. */
+    void* pUserData;
+
+    /* Allocation callbacks. */
+    drwav_allocation_callbacks allocationCallbacks;
+
+
+    /* Whether or not the WAV file is formatted as a standard RIFF file or W64. */
+    drwav_container container;
+
+
+    /* Structure containing format information exactly as specified by the wav file. */
+    drwav_fmt fmt;
+
+    /* The sample rate. Will be set to something like 44100. */
+    drwav_uint32 sampleRate;
+
+    /* The number of channels. This will be set to 1 for monaural streams, 2 for stereo, etc. */
+    drwav_uint16 channels;
+
+    /* The bits per sample. Will be set to something like 16, 24, etc. */
+    drwav_uint16 bitsPerSample;
+
+    /* Equal to fmt.formatTag, or the value specified by fmt.subFormat if fmt.formatTag is equal to 65534 (WAVE_FORMAT_EXTENSIBLE). */
+    drwav_uint16 translatedFormatTag;
+
+    /* The total number of PCM frames making up the audio data. */
+    drwav_uint64 totalPCMFrameCount;
+
+
+    /* The size in bytes of the data chunk. */
+    drwav_uint64 dataChunkDataSize;
+    
+    /* The position in the stream of the first byte of the data chunk. This is used for seeking. */
+    drwav_uint64 dataChunkDataPos;
+
+    /* The number of bytes remaining in the data chunk. */
+    drwav_uint64 bytesRemaining;
+
+
+    /*
+    Only used in sequential write mode. Keeps track of the desired size of the "data" chunk at the point of initialization time. Always
+    set to 0 for non-sequential writes and when the drwav object is opened in read mode. Used for validation.
+    */
+    drwav_uint64 dataChunkDataSizeTargetWrite;
+
+    /* Keeps track of whether or not the wav writer was initialized in sequential mode. */
+    drwav_bool32 isSequentialWrite;
+
+
+    /* smpl chunk. */
+    drwav_smpl smpl;
+
+
+    /* A hack to avoid a DRWAV_MALLOC() when opening a decoder with drwav_init_memory(). */
+    drwav__memory_stream memoryStream;
+    drwav__memory_stream_write memoryStreamWrite;
+
+    /* Generic data for compressed formats. This data is shared across all block-compressed formats. */
+    struct
+    {
+        drwav_uint64 iCurrentPCMFrame;  /* The index of the next PCM frame that will be read by drwav_read_*(). This is used with "totalPCMFrameCount" to ensure we don't read excess samples at the end of the last block. */
+    } compressed;
+    
+    /* Microsoft ADPCM specific data. */
+    struct
+    {
+        drwav_uint32 bytesRemainingInBlock;
+        drwav_uint16 predictor[2];
+        drwav_int32  delta[2];
+        drwav_int32  cachedFrames[4];  /* Samples are stored in this cache during decoding. */
+        drwav_uint32 cachedFrameCount;
+        drwav_int32  prevFrames[2][2]; /* The previous 2 samples for each channel (2 channels at most). */
+    } msadpcm;
+
+    /* IMA ADPCM specific data. */
+    struct
+    {
+        drwav_uint32 bytesRemainingInBlock;
+        drwav_int32  predictor[2];
+        drwav_int32  stepIndex[2];
+        drwav_int32  cachedFrames[16]; /* Samples are stored in this cache during decoding. */
+        drwav_uint32 cachedFrameCount;
+    } ima;
+} drwav;
+
+
+/*
+Initializes a pre-allocated drwav object for reading.
+
+pWav                         [out]          A pointer to the drwav object being initialized.
+onRead                       [in]           The function to call when data needs to be read from the client.
+onSeek                       [in]           The function to call when the read position of the client data needs to move.
+onChunk                      [in, optional] The function to call when a chunk is enumerated at initialized time.
+pUserData, pReadSeekUserData [in, optional] A pointer to application defined data that will be passed to onRead and onSeek.
+pChunkUserData               [in, optional] A pointer to application defined data that will be passed to onChunk.
+flags                        [in, optional] A set of flags for controlling how things are loaded.
+
+Returns true if successful; false otherwise.
+
+Close the loader with drwav_uninit().
+
+This is the lowest level function for initializing a WAV file. You can also use drwav_init_file() and drwav_init_memory()
+to open the stream from a file or from a block of memory respectively.
+
+Possible values for flags:
+  DRWAV_SEQUENTIAL: Never perform a backwards seek while loading. This disables the chunk callback and will cause this function
+                    to return as soon as the data chunk is found. Any chunks after the data chunk will be ignored.
+
+drwav_init() is equivalent to "drwav_init_ex(pWav, onRead, onSeek, NULL, pUserData, NULL, 0);".
+
+The onChunk callback is not called for the WAVE or FMT chunks. The contents of the FMT chunk can be read from pWav->fmt
+after the function returns.
+
+See also: drwav_init_file(), drwav_init_memory(), drwav_uninit()
+*/
+DRWAV_API drwav_bool32 drwav_init(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_ex(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, drwav_chunk_proc onChunk, void* pReadSeekUserData, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks);
+
+/*
+Initializes a pre-allocated drwav object for writing.
+
+onWrite   [in]           The function to call when data needs to be written.
+onSeek    [in]           The function to call when the write position needs to move.
+pUserData [in, optional] A pointer to application defined data that will be passed to onWrite and onSeek.
+
+Returns true if successful; false otherwise.
+
+Close the writer with drwav_uninit().
+
+This is the lowest level function for initializing a WAV file. You can also use drwav_init_file_write() and drwav_init_memory_write()
+to open the stream from a file or from a block of memory respectively.
+
+If the total sample count is known, you can use drwav_init_write_sequential(). This avoids the need for dr_wav to perform
+a post-processing step for storing the total sample count and the size of the data chunk which requires a backwards seek.
+
+See also: drwav_init_file_write(), drwav_init_memory_write(), drwav_uninit()
+*/
+DRWAV_API drwav_bool32 drwav_init_write(drwav* pWav, const drwav_data_format* pFormat, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_write_sequential(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_write_sequential_pcm_frames(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks);
+
+/*
+Utility function to determine the target size of the entire data to be written (including all headers and chunks).
+
+Returns the target size in bytes.
+
+Useful if the application needs to know the size to allocate.
+
+Only writing to the RIFF chunk and one data chunk is currently supported.
+
+See also: drwav_init_write(), drwav_init_file_write(), drwav_init_memory_write()
+*/
+DRWAV_API drwav_uint64 drwav_target_write_size_bytes(const drwav_data_format* pFormat, drwav_uint64 totalSampleCount);
+
+/*
+Uninitializes the given drwav object.
+
+Use this only for objects initialized with drwav_init*() functions (drwav_init(), drwav_init_ex(), drwav_init_write(), drwav_init_write_sequential()).
+*/
+DRWAV_API drwav_result drwav_uninit(drwav* pWav);
+
+
+/*
+Reads raw audio data.
+
+This is the lowest level function for reading audio data. It simply reads the given number of
+bytes of the raw internal sample data.
+
+Consider using drwav_read_pcm_frames_s16(), drwav_read_pcm_frames_s32() or drwav_read_pcm_frames_f32() for
+reading sample data in a consistent format.
+
+pBufferOut can be NULL in which case a seek will be performed.
+
+Returns the number of bytes actually read.
+*/
+DRWAV_API size_t drwav_read_raw(drwav* pWav, size_t bytesToRead, void* pBufferOut);
+
+/*
+Reads up to the specified number of PCM frames from the WAV file.
+
+The output data will be in the file's internal format, converted to native-endian byte order. Use
+drwav_read_pcm_frames_s16/f32/s32() to read data in a specific format.
+
+If the return value is less than <framesToRead> it means the end of the file has been reached or
+you have requested more PCM frames than can possibly fit in the output buffer.
+
+This function will only work when sample data is of a fixed size and uncompressed. If you are
+using a compressed format consider using drwav_read_raw() or drwav_read_pcm_frames_s16/s32/f32().
+
+pBufferOut can be NULL in which case a seek will be performed.
+*/
+DRWAV_API drwav_uint64 drwav_read_pcm_frames(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut);
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_le(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut);
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_be(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut);
+
+/*
+Seeks to the given PCM frame.
+
+Returns true if successful; false otherwise.
+*/
+DRWAV_API drwav_bool32 drwav_seek_to_pcm_frame(drwav* pWav, drwav_uint64 targetFrameIndex);
+
+
+/*
+Writes raw audio data.
+
+Returns the number of bytes actually written. If this differs from bytesToWrite, it indicates an error.
+*/
+DRWAV_API size_t drwav_write_raw(drwav* pWav, size_t bytesToWrite, const void* pData);
+
+/*
+Writes PCM frames.
+
+Returns the number of PCM frames written.
+
+Input samples need to be in native-endian byte order. On big-endian architectures the input data will be converted to
+little-endian. Use drwav_write_raw() to write raw audio data without performing any conversion.
+*/
+DRWAV_API drwav_uint64 drwav_write_pcm_frames(drwav* pWav, drwav_uint64 framesToWrite, const void* pData);
+DRWAV_API drwav_uint64 drwav_write_pcm_frames_le(drwav* pWav, drwav_uint64 framesToWrite, const void* pData);
+DRWAV_API drwav_uint64 drwav_write_pcm_frames_be(drwav* pWav, drwav_uint64 framesToWrite, const void* pData);
+
+
+/* Conversion Utilities */
+#ifndef DR_WAV_NO_CONVERSION_API
+
+/*
+Reads a chunk of audio data and converts it to signed 16-bit PCM samples.
+
+pBufferOut can be NULL in which case a seek will be performed.
+
+Returns the number of PCM frames actually read.
+
+If the return value is less than <framesToRead> it means the end of the file has been reached.
+*/
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut);
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16le(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut);
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16be(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut);
+
+/* Low-level function for converting unsigned 8-bit PCM samples to signed 16-bit PCM samples. */
+DRWAV_API void drwav_u8_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount);
+
+/* Low-level function for converting signed 24-bit PCM samples to signed 16-bit PCM samples. */
+DRWAV_API void drwav_s24_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount);
+
+/* Low-level function for converting signed 32-bit PCM samples to signed 16-bit PCM samples. */
+DRWAV_API void drwav_s32_to_s16(drwav_int16* pOut, const drwav_int32* pIn, size_t sampleCount);
+
+/* Low-level function for converting IEEE 32-bit floating point samples to signed 16-bit PCM samples. */
+DRWAV_API void drwav_f32_to_s16(drwav_int16* pOut, const float* pIn, size_t sampleCount);
+
+/* Low-level function for converting IEEE 64-bit floating point samples to signed 16-bit PCM samples. */
+DRWAV_API void drwav_f64_to_s16(drwav_int16* pOut, const double* pIn, size_t sampleCount);
+
+/* Low-level function for converting A-law samples to signed 16-bit PCM samples. */
+DRWAV_API void drwav_alaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount);
+
+/* Low-level function for converting u-law samples to signed 16-bit PCM samples. */
+DRWAV_API void drwav_mulaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount);
+
+
+/*
+Reads a chunk of audio data and converts it to IEEE 32-bit floating point samples.
+
+pBufferOut can be NULL in which case a seek will be performed.
+
+Returns the number of PCM frames actually read.
+
+If the return value is less than <framesToRead> it means the end of the file has been reached.
+*/
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut);
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32le(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut);
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32be(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut);
+
+/* Low-level function for converting unsigned 8-bit PCM samples to IEEE 32-bit floating point samples. */
+DRWAV_API void drwav_u8_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount);
+
+/* Low-level function for converting signed 16-bit PCM samples to IEEE 32-bit floating point samples. */
+DRWAV_API void drwav_s16_to_f32(float* pOut, const drwav_int16* pIn, size_t sampleCount);
+
+/* Low-level function for converting signed 24-bit PCM samples to IEEE 32-bit floating point samples. */
+DRWAV_API void drwav_s24_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount);
+
+/* Low-level function for converting signed 32-bit PCM samples to IEEE 32-bit floating point samples. */
+DRWAV_API void drwav_s32_to_f32(float* pOut, const drwav_int32* pIn, size_t sampleCount);
+
+/* Low-level function for converting IEEE 64-bit floating point samples to IEEE 32-bit floating point samples. */
+DRWAV_API void drwav_f64_to_f32(float* pOut, const double* pIn, size_t sampleCount);
+
+/* Low-level function for converting A-law samples to IEEE 32-bit floating point samples. */
+DRWAV_API void drwav_alaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount);
+
+/* Low-level function for converting u-law samples to IEEE 32-bit floating point samples. */
+DRWAV_API void drwav_mulaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount);
+
+
+/*
+Reads a chunk of audio data and converts it to signed 32-bit PCM samples.
+
+pBufferOut can be NULL in which case a seek will be performed.
+
+Returns the number of PCM frames actually read.
+
+If the return value is less than <framesToRead> it means the end of the file has been reached.
+*/
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut);
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32le(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut);
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32be(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut);
+
+/* Low-level function for converting unsigned 8-bit PCM samples to signed 32-bit PCM samples. */
+DRWAV_API void drwav_u8_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount);
+
+/* Low-level function for converting signed 16-bit PCM samples to signed 32-bit PCM samples. */
+DRWAV_API void drwav_s16_to_s32(drwav_int32* pOut, const drwav_int16* pIn, size_t sampleCount);
+
+/* Low-level function for converting signed 24-bit PCM samples to signed 32-bit PCM samples. */
+DRWAV_API void drwav_s24_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount);
+
+/* Low-level function for converting IEEE 32-bit floating point samples to signed 32-bit PCM samples. */
+DRWAV_API void drwav_f32_to_s32(drwav_int32* pOut, const float* pIn, size_t sampleCount);
+
+/* Low-level function for converting IEEE 64-bit floating point samples to signed 32-bit PCM samples. */
+DRWAV_API void drwav_f64_to_s32(drwav_int32* pOut, const double* pIn, size_t sampleCount);
+
+/* Low-level function for converting A-law samples to signed 32-bit PCM samples. */
+DRWAV_API void drwav_alaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount);
+
+/* Low-level function for converting u-law samples to signed 32-bit PCM samples. */
+DRWAV_API void drwav_mulaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount);
+
+#endif  /* DR_WAV_NO_CONVERSION_API */
+
+
+/* High-Level Convenience Helpers */
+
+#ifndef DR_WAV_NO_STDIO
+/*
+Helper for initializing a wave file for reading using stdio.
+
+This holds the internal FILE object until drwav_uninit() is called. Keep this in mind if you're caching drwav
+objects because the operating system may restrict the number of file handles an application can have open at
+any given time.
+*/
+DRWAV_API drwav_bool32 drwav_init_file(drwav* pWav, const char* filename, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_file_ex(drwav* pWav, const char* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_file_w(drwav* pWav, const wchar_t* filename, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_file_ex_w(drwav* pWav, const wchar_t* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks);
+
+/*
+Helper for initializing a wave file for writing using stdio.
+
+This holds the internal FILE object until drwav_uninit() is called. Keep this in mind if you're caching drwav
+objects because the operating system may restrict the number of file handles an application can have open at
+any given time.
+*/
+DRWAV_API drwav_bool32 drwav_init_file_write(drwav* pWav, const char* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_file_write_sequential(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_file_write_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_file_write_sequential_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks);
+#endif  /* DR_WAV_NO_STDIO */
+
+/*
+Helper for initializing a loader from a pre-allocated memory buffer.
+
+This does not create a copy of the data. It is up to the application to ensure the buffer remains valid for
+the lifetime of the drwav object.
+
+The buffer should contain the contents of the entire wave file, not just the sample data.
+*/
+DRWAV_API drwav_bool32 drwav_init_memory(drwav* pWav, const void* data, size_t dataSize, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_memory_ex(drwav* pWav, const void* data, size_t dataSize, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks);
+
+/*
+Helper for initializing a writer which outputs data to a memory buffer.
+
+dr_wav will manage the memory allocations, however it is up to the caller to free the data with drwav_free().
+
+The buffer will remain allocated even after drwav_uninit() is called. The buffer should not be considered valid
+until after drwav_uninit() has been called.
+*/
+DRWAV_API drwav_bool32 drwav_init_memory_write(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_memory_write_sequential(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_bool32 drwav_init_memory_write_sequential_pcm_frames(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks);
+
+
+#ifndef DR_WAV_NO_CONVERSION_API
+/*
+Opens and reads an entire wav file in a single operation.
+
+The return value is a heap-allocated buffer containing the audio data. Use drwav_free() to free the buffer.
+*/
+DRWAV_API drwav_int16* drwav_open_and_read_pcm_frames_s16(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API float* drwav_open_and_read_pcm_frames_f32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_int32* drwav_open_and_read_pcm_frames_s32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+#ifndef DR_WAV_NO_STDIO
+/*
+Opens and decodes an entire wav file in a single operation.
+
+The return value is a heap-allocated buffer containing the audio data. Use drwav_free() to free the buffer.
+*/
+DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+#endif
+/*
+Opens and decodes an entire wav file from a block of memory in a single operation.
+
+The return value is a heap-allocated buffer containing the audio data. Use drwav_free() to free the buffer.
+*/
+DRWAV_API drwav_int16* drwav_open_memory_and_read_pcm_frames_s16(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API float* drwav_open_memory_and_read_pcm_frames_f32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+DRWAV_API drwav_int32* drwav_open_memory_and_read_pcm_frames_s32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
+#endif
+
+/* Frees data that was allocated internally by dr_wav. */
+DRWAV_API void drwav_free(void* p, const drwav_allocation_callbacks* pAllocationCallbacks);
+
+/* Converts bytes from a wav stream to a sized type of native endian. */
+DRWAV_API drwav_uint16 drwav_bytes_to_u16(const drwav_uint8* data);
+DRWAV_API drwav_int16 drwav_bytes_to_s16(const drwav_uint8* data);
+DRWAV_API drwav_uint32 drwav_bytes_to_u32(const drwav_uint8* data);
+DRWAV_API drwav_int32 drwav_bytes_to_s32(const drwav_uint8* data);
+DRWAV_API drwav_uint64 drwav_bytes_to_u64(const drwav_uint8* data);
+DRWAV_API drwav_int64 drwav_bytes_to_s64(const drwav_uint8* data);
+
+/* Compares a GUID for the purpose of checking the type of a Wave64 chunk. */
+DRWAV_API drwav_bool32 drwav_guid_equal(const drwav_uint8 a[16], const drwav_uint8 b[16]);
+
+/* Compares a four-character-code for the purpose of checking the type of a RIFF chunk. */
+DRWAV_API drwav_bool32 drwav_fourcc_equal(const drwav_uint8* a, const char* b);
+
+#ifdef __cplusplus
+}
+#endif
+#endif  /* dr_wav_h */
+
+
+/************************************************************************************************************************************************************
+ ************************************************************************************************************************************************************
+
+ IMPLEMENTATION
+
+ ************************************************************************************************************************************************************
+ ************************************************************************************************************************************************************/
+#if defined(DR_WAV_IMPLEMENTATION) || defined(DRWAV_IMPLEMENTATION)
+#ifndef dr_wav_c
+#define dr_wav_c
+
+#include <stdlib.h>
+#include <string.h> /* For memcpy(), memset() */
+#include <limits.h> /* For INT_MAX */
+
+#ifndef DR_WAV_NO_STDIO
+#include <stdio.h>
+#include <wchar.h>
+#endif
+
+/* Standard library stuff. */
+#ifndef DRWAV_ASSERT
+#include <assert.h>
+#define DRWAV_ASSERT(expression)           assert(expression)
+#endif
+#ifndef DRWAV_MALLOC
+#define DRWAV_MALLOC(sz)                   malloc((sz))
+#endif
+#ifndef DRWAV_REALLOC
+#define DRWAV_REALLOC(p, sz)               realloc((p), (sz))
+#endif
+#ifndef DRWAV_FREE
+#define DRWAV_FREE(p)                      free((p))
+#endif
+#ifndef DRWAV_COPY_MEMORY
+#define DRWAV_COPY_MEMORY(dst, src, sz)    memcpy((dst), (src), (sz))
+#endif
+#ifndef DRWAV_ZERO_MEMORY
+#define DRWAV_ZERO_MEMORY(p, sz)           memset((p), 0, (sz))
+#endif
+#ifndef DRWAV_ZERO_OBJECT
+#define DRWAV_ZERO_OBJECT(p)               DRWAV_ZERO_MEMORY((p), sizeof(*p))
+#endif
+
+#define drwav_countof(x)                   (sizeof(x) / sizeof(x[0]))
+#define drwav_align(x, a)                  ((((x) + (a) - 1) / (a)) * (a))
+#define drwav_min(a, b)                    (((a) < (b)) ? (a) : (b))
+#define drwav_max(a, b)                    (((a) > (b)) ? (a) : (b))
+#define drwav_clamp(x, lo, hi)             (drwav_max((lo), drwav_min((hi), (x))))
+
+#define DRWAV_MAX_SIMD_VECTOR_SIZE         64  /* 64 for AVX-512 in the future. */
+
+/* CPU architecture. */
+#if defined(__x86_64__) || defined(_M_X64)
+    #define DRWAV_X64
+#elif defined(__i386) || defined(_M_IX86)
+    #define DRWAV_X86
+#elif defined(__arm__) || defined(_M_ARM)
+    #define DRWAV_ARM
+#endif
+
+#ifdef _MSC_VER
+    #define DRWAV_INLINE __forceinline
+#elif defined(__GNUC__)
+    /*
+    I've had a bug report where GCC is emitting warnings about functions possibly not being inlineable. This warning happens when
+    the __attribute__((always_inline)) attribute is defined without an "inline" statement. I think therefore there must be some
+    case where "__inline__" is not always defined, thus the compiler emitting these warnings. When using -std=c89 or -ansi on the
+    command line, we cannot use the "inline" keyword and instead need to use "__inline__". In an attempt to work around this issue
+    I am using "__inline__" only when we're compiling in strict ANSI mode.
+    */
+    #if defined(__STRICT_ANSI__)
+        #define DRWAV_INLINE __inline__ __attribute__((always_inline))
+    #else
+        #define DRWAV_INLINE inline __attribute__((always_inline))
+    #endif
+#elif defined(__WATCOMC__)
+    #define DRWAV_INLINE __inline
+#else
+    #define DRWAV_INLINE
+#endif
+
+#if defined(SIZE_MAX)
+    #define DRWAV_SIZE_MAX  SIZE_MAX
+#else
+    #if defined(_WIN64) || defined(_LP64) || defined(__LP64__)
+        #define DRWAV_SIZE_MAX  ((drwav_uint64)0xFFFFFFFFFFFFFFFF)
+    #else
+        #define DRWAV_SIZE_MAX  0xFFFFFFFF
+    #endif
+#endif
+
+#if defined(_MSC_VER) && _MSC_VER >= 1400
+    #define DRWAV_HAS_BYTESWAP16_INTRINSIC
+    #define DRWAV_HAS_BYTESWAP32_INTRINSIC
+    #define DRWAV_HAS_BYTESWAP64_INTRINSIC
+#elif defined(__clang__)
+    #if defined(__has_builtin)
+        #if __has_builtin(__builtin_bswap16)
+            #define DRWAV_HAS_BYTESWAP16_INTRINSIC
+        #endif
+        #if __has_builtin(__builtin_bswap32)
+            #define DRWAV_HAS_BYTESWAP32_INTRINSIC
+        #endif
+        #if __has_builtin(__builtin_bswap64)
+            #define DRWAV_HAS_BYTESWAP64_INTRINSIC
+        #endif
+    #endif
+#elif defined(__GNUC__)
+    #if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3))
+        #define DRWAV_HAS_BYTESWAP32_INTRINSIC
+        #define DRWAV_HAS_BYTESWAP64_INTRINSIC
+    #endif
+    #if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))
+        #define DRWAV_HAS_BYTESWAP16_INTRINSIC
+    #endif
+#endif
+
+DRWAV_API void drwav_version(drwav_uint32* pMajor, drwav_uint32* pMinor, drwav_uint32* pRevision)
+{
+    if (pMajor) {
+        *pMajor = DRWAV_VERSION_MAJOR;
+    }
+
+    if (pMinor) {
+        *pMinor = DRWAV_VERSION_MINOR;
+    }
+
+    if (pRevision) {
+        *pRevision = DRWAV_VERSION_REVISION;
+    }
+}
+
+DRWAV_API const char* drwav_version_string(void)
+{
+    return DRWAV_VERSION_STRING;
+}
+
+/*
+These limits are used for basic validation when initializing the decoder. If you exceed these limits, first of all: what on Earth are
+you doing?! (Let me know, I'd be curious!) Second, you can adjust these by #define-ing them before the dr_wav implementation.
+*/
+#ifndef DRWAV_MAX_SAMPLE_RATE
+#define DRWAV_MAX_SAMPLE_RATE       384000
+#endif
+#ifndef DRWAV_MAX_CHANNELS
+#define DRWAV_MAX_CHANNELS          256
+#endif
+#ifndef DRWAV_MAX_BITS_PER_SAMPLE
+#define DRWAV_MAX_BITS_PER_SAMPLE   64
+#endif
+
+static const drwav_uint8 drwavGUID_W64_RIFF[16] = {0x72,0x69,0x66,0x66, 0x2E,0x91, 0xCF,0x11, 0xA5,0xD6, 0x28,0xDB,0x04,0xC1,0x00,0x00};    /* 66666972-912E-11CF-A5D6-28DB04C10000 */
+static const drwav_uint8 drwavGUID_W64_WAVE[16] = {0x77,0x61,0x76,0x65, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A};    /* 65766177-ACF3-11D3-8CD1-00C04F8EDB8A */
+/*static const drwav_uint8 drwavGUID_W64_JUNK[16] = {0x6A,0x75,0x6E,0x6B, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A};*/    /* 6B6E756A-ACF3-11D3-8CD1-00C04F8EDB8A */
+static const drwav_uint8 drwavGUID_W64_FMT [16] = {0x66,0x6D,0x74,0x20, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A};    /* 20746D66-ACF3-11D3-8CD1-00C04F8EDB8A */
+static const drwav_uint8 drwavGUID_W64_FACT[16] = {0x66,0x61,0x63,0x74, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A};    /* 74636166-ACF3-11D3-8CD1-00C04F8EDB8A */
+static const drwav_uint8 drwavGUID_W64_DATA[16] = {0x64,0x61,0x74,0x61, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A};    /* 61746164-ACF3-11D3-8CD1-00C04F8EDB8A */
+static const drwav_uint8 drwavGUID_W64_SMPL[16] = {0x73,0x6D,0x70,0x6C, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A};    /* 6C706D73-ACF3-11D3-8CD1-00C04F8EDB8A */
+
+static DRWAV_INLINE drwav_bool32 drwav__guid_equal(const drwav_uint8 a[16], const drwav_uint8 b[16])
+{
+    int i;
+    for (i = 0; i < 16; i += 1) {
+        if (a[i] != b[i]) {
+            return DRWAV_FALSE;
+        }
+    }
+
+    return DRWAV_TRUE;
+}
+
+static DRWAV_INLINE drwav_bool32 drwav__fourcc_equal(const drwav_uint8* a, const char* b)
+{
+    return
+        a[0] == b[0] &&
+        a[1] == b[1] &&
+        a[2] == b[2] &&
+        a[3] == b[3];
+}
+
+
+
+static DRWAV_INLINE int drwav__is_little_endian(void)
+{
+#if defined(DRWAV_X86) || defined(DRWAV_X64)
+    return DRWAV_TRUE;
+#elif defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && __BYTE_ORDER == __LITTLE_ENDIAN
+    return DRWAV_TRUE;
+#else
+    int n = 1;
+    return (*(char*)&n) == 1;
+#endif
+}
+
+static DRWAV_INLINE drwav_uint16 drwav__bytes_to_u16(const drwav_uint8* data)
+{
+    return (data[0] << 0) | (data[1] << 8);
+}
+
+static DRWAV_INLINE drwav_int16 drwav__bytes_to_s16(const drwav_uint8* data)
+{
+    return (short)drwav__bytes_to_u16(data);
+}
+
+static DRWAV_INLINE drwav_uint32 drwav__bytes_to_u32(const drwav_uint8* data)
+{
+    return (data[0] << 0) | (data[1] << 8) | (data[2] << 16) | (data[3] << 24);
+}
+
+static DRWAV_INLINE drwav_int32 drwav__bytes_to_s32(const drwav_uint8* data)
+{
+    return (drwav_int32)drwav__bytes_to_u32(data);
+}
+
+static DRWAV_INLINE drwav_uint64 drwav__bytes_to_u64(const drwav_uint8* data)
+{
+    return
+        ((drwav_uint64)data[0] <<  0) | ((drwav_uint64)data[1] <<  8) | ((drwav_uint64)data[2] << 16) | ((drwav_uint64)data[3] << 24) |
+        ((drwav_uint64)data[4] << 32) | ((drwav_uint64)data[5] << 40) | ((drwav_uint64)data[6] << 48) | ((drwav_uint64)data[7] << 56);
+}
+
+static DRWAV_INLINE drwav_int64 drwav__bytes_to_s64(const drwav_uint8* data)
+{
+    return (drwav_int64)drwav__bytes_to_u64(data);
+}
+
+static DRWAV_INLINE void drwav__bytes_to_guid(const drwav_uint8* data, drwav_uint8* guid)
+{
+    int i;
+    for (i = 0; i < 16; ++i) {
+        guid[i] = data[i];
+    }
+}
+
+
+static DRWAV_INLINE drwav_uint16 drwav__bswap16(drwav_uint16 n)
+{
+#ifdef DRWAV_HAS_BYTESWAP16_INTRINSIC
+    #if defined(_MSC_VER)
+        return _byteswap_ushort(n);
+    #elif defined(__GNUC__) || defined(__clang__)
+        return __builtin_bswap16(n);
+    #else
+        #error "This compiler does not support the byte swap intrinsic."
+    #endif
+#else
+    return ((n & 0xFF00) >> 8) |
+           ((n & 0x00FF) << 8);
+#endif
+}
+
+static DRWAV_INLINE drwav_uint32 drwav__bswap32(drwav_uint32 n)
+{
+#ifdef DRWAV_HAS_BYTESWAP32_INTRINSIC
+    #if defined(_MSC_VER)
+        return _byteswap_ulong(n);
+    #elif defined(__GNUC__) || defined(__clang__)
+        #if defined(DRWAV_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 6) && !defined(DRWAV_64BIT)   /* <-- 64-bit inline assembly has not been tested, so disabling for now. */
+            /* Inline assembly optimized implementation for ARM. In my testing, GCC does not generate optimized code with __builtin_bswap32(). */
+            drwav_uint32 r;
+            __asm__ __volatile__ (
+            #if defined(DRWAV_64BIT)
+                "rev %w[out], %w[in]" : [out]"=r"(r) : [in]"r"(n)   /* <-- This is untested. If someone in the community could test this, that would be appreciated! */
+            #else
+                "rev %[out], %[in]" : [out]"=r"(r) : [in]"r"(n)
+            #endif
+            );
+            return r;
+        #else
+            return __builtin_bswap32(n);
+        #endif
+    #else
+        #error "This compiler does not support the byte swap intrinsic."
+    #endif
+#else
+    return ((n & 0xFF000000) >> 24) |
+           ((n & 0x00FF0000) >>  8) |
+           ((n & 0x0000FF00) <<  8) |
+           ((n & 0x000000FF) << 24);
+#endif
+}
+
+static DRWAV_INLINE drwav_uint64 drwav__bswap64(drwav_uint64 n)
+{
+#ifdef DRWAV_HAS_BYTESWAP64_INTRINSIC
+    #if defined(_MSC_VER)
+        return _byteswap_uint64(n);
+    #elif defined(__GNUC__) || defined(__clang__)
+        return __builtin_bswap64(n);
+    #else
+        #error "This compiler does not support the byte swap intrinsic."
+    #endif
+#else
+    /* Weird "<< 32" bitshift is required for C89 because it doesn't support 64-bit constants. Should be optimized out by a good compiler. */
+    return ((n & ((drwav_uint64)0xFF000000 << 32)) >> 56) |
+           ((n & ((drwav_uint64)0x00FF0000 << 32)) >> 40) |
+           ((n & ((drwav_uint64)0x0000FF00 << 32)) >> 24) |
+           ((n & ((drwav_uint64)0x000000FF << 32)) >>  8) |
+           ((n & ((drwav_uint64)0xFF000000      )) <<  8) |
+           ((n & ((drwav_uint64)0x00FF0000      )) << 24) |
+           ((n & ((drwav_uint64)0x0000FF00      )) << 40) |
+           ((n & ((drwav_uint64)0x000000FF      )) << 56);
+#endif
+}
+
+
+static DRWAV_INLINE drwav_int16 drwav__bswap_s16(drwav_int16 n)
+{
+    return (drwav_int16)drwav__bswap16((drwav_uint16)n);
+}
+
+static DRWAV_INLINE void drwav__bswap_samples_s16(drwav_int16* pSamples, drwav_uint64 sampleCount)
+{
+    drwav_uint64 iSample;
+    for (iSample = 0; iSample < sampleCount; iSample += 1) {
+        pSamples[iSample] = drwav__bswap_s16(pSamples[iSample]);
+    }
+}
+
+
+static DRWAV_INLINE void drwav__bswap_s24(drwav_uint8* p)
+{
+    drwav_uint8 t;
+    t = p[0];
+    p[0] = p[2];
+    p[2] = t;
+}
+
+static DRWAV_INLINE void drwav__bswap_samples_s24(drwav_uint8* pSamples, drwav_uint64 sampleCount)
+{
+    drwav_uint64 iSample;
+    for (iSample = 0; iSample < sampleCount; iSample += 1) {
+        drwav_uint8* pSample = pSamples + (iSample*3);
+        drwav__bswap_s24(pSample);
+    }
+}
+
+
+static DRWAV_INLINE drwav_int32 drwav__bswap_s32(drwav_int32 n)
+{
+    return (drwav_int32)drwav__bswap32((drwav_uint32)n);
+}
+
+static DRWAV_INLINE void drwav__bswap_samples_s32(drwav_int32* pSamples, drwav_uint64 sampleCount)
+{
+    drwav_uint64 iSample;
+    for (iSample = 0; iSample < sampleCount; iSample += 1) {
+        pSamples[iSample] = drwav__bswap_s32(pSamples[iSample]);
+    }
+}
+
+
+static DRWAV_INLINE float drwav__bswap_f32(float n)
+{
+    union {
+        drwav_uint32 i;
+        float f;
+    } x;
+    x.f = n;
+    x.i = drwav__bswap32(x.i);
+
+    return x.f;
+}
+
+static DRWAV_INLINE void drwav__bswap_samples_f32(float* pSamples, drwav_uint64 sampleCount)
+{
+    drwav_uint64 iSample;
+    for (iSample = 0; iSample < sampleCount; iSample += 1) {
+        pSamples[iSample] = drwav__bswap_f32(pSamples[iSample]);
+    }
+}
+
+
+static DRWAV_INLINE double drwav__bswap_f64(double n)
+{
+    union {
+        drwav_uint64 i;
+        double f;
+    } x;
+    x.f = n;
+    x.i = drwav__bswap64(x.i);
+
+    return x.f;
+}
+
+static DRWAV_INLINE void drwav__bswap_samples_f64(double* pSamples, drwav_uint64 sampleCount)
+{
+    drwav_uint64 iSample;
+    for (iSample = 0; iSample < sampleCount; iSample += 1) {
+        pSamples[iSample] = drwav__bswap_f64(pSamples[iSample]);
+    }
+}
+
+
+static DRWAV_INLINE void drwav__bswap_samples_pcm(void* pSamples, drwav_uint64 sampleCount, drwav_uint32 bytesPerSample)
+{
+    /* Assumes integer PCM. Floating point PCM is done in drwav__bswap_samples_ieee(). */
+    switch (bytesPerSample)
+    {
+        case 2: /* s16, s12 (loosely packed) */
+        {
+            drwav__bswap_samples_s16((drwav_int16*)pSamples, sampleCount);
+        } break;
+        case 3: /* s24 */
+        {
+            drwav__bswap_samples_s24((drwav_uint8*)pSamples, sampleCount);
+        } break;
+        case 4: /* s32 */
+        {
+            drwav__bswap_samples_s32((drwav_int32*)pSamples, sampleCount);
+        } break;
+        default:
+        {
+            /* Unsupported format. */
+            DRWAV_ASSERT(DRWAV_FALSE);
+        } break;
+    }
+}
+
+static DRWAV_INLINE void drwav__bswap_samples_ieee(void* pSamples, drwav_uint64 sampleCount, drwav_uint32 bytesPerSample)
+{
+    switch (bytesPerSample)
+    {
+    #if 0   /* Contributions welcome for f16 support. */
+        case 2: /* f16 */
+        {
+            drwav__bswap_samples_f16((drwav_float16*)pSamples, sampleCount);
+        } break;
+    #endif
+        case 4: /* f32 */
+        {
+            drwav__bswap_samples_f32((float*)pSamples, sampleCount);
+        } break;
+        case 8: /* f64 */
+        {
+            drwav__bswap_samples_f64((double*)pSamples, sampleCount);
+        } break;
+        default:
+        {
+            /* Unsupported format. */
+            DRWAV_ASSERT(DRWAV_FALSE);
+        } break;
+    }
+}
+
+static DRWAV_INLINE void drwav__bswap_samples(void* pSamples, drwav_uint64 sampleCount, drwav_uint32 bytesPerSample, drwav_uint16 format)
+{
+    switch (format)
+    {
+        case DR_WAVE_FORMAT_PCM:
+        {
+            drwav__bswap_samples_pcm(pSamples, sampleCount, bytesPerSample);
+        } break;
+
+        case DR_WAVE_FORMAT_IEEE_FLOAT:
+        {
+            drwav__bswap_samples_ieee(pSamples, sampleCount, bytesPerSample);
+        } break;
+
+        case DR_WAVE_FORMAT_ALAW:
+        case DR_WAVE_FORMAT_MULAW:
+        {
+            drwav__bswap_samples_s16((drwav_int16*)pSamples, sampleCount);
+        } break;
+
+        case DR_WAVE_FORMAT_ADPCM:
+        case DR_WAVE_FORMAT_DVI_ADPCM:
+        default:
+        {
+            /* Unsupported format. */
+            DRWAV_ASSERT(DRWAV_FALSE);
+        } break;
+    }
+}
+
+
+static void* drwav__malloc_default(size_t sz, void* pUserData)
+{
+    (void)pUserData;
+    return DRWAV_MALLOC(sz);
+}
+
+static void* drwav__realloc_default(void* p, size_t sz, void* pUserData)
+{
+    (void)pUserData;
+    return DRWAV_REALLOC(p, sz);
+}
+
+static void drwav__free_default(void* p, void* pUserData)
+{
+    (void)pUserData;
+    DRWAV_FREE(p);
+}
+
+
+static void* drwav__malloc_from_callbacks(size_t sz, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    if (pAllocationCallbacks == NULL) {
+        return NULL;
+    }
+
+    if (pAllocationCallbacks->onMalloc != NULL) {
+        return pAllocationCallbacks->onMalloc(sz, pAllocationCallbacks->pUserData);
+    }
+
+    /* Try using realloc(). */
+    if (pAllocationCallbacks->onRealloc != NULL) {
+        return pAllocationCallbacks->onRealloc(NULL, sz, pAllocationCallbacks->pUserData);
+    }
+
+    return NULL;
+}
+
+static void* drwav__realloc_from_callbacks(void* p, size_t szNew, size_t szOld, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    if (pAllocationCallbacks == NULL) {
+        return NULL;
+    }
+
+    if (pAllocationCallbacks->onRealloc != NULL) {
+        return pAllocationCallbacks->onRealloc(p, szNew, pAllocationCallbacks->pUserData);
+    }
+
+    /* Try emulating realloc() in terms of malloc()/free(). */
+    if (pAllocationCallbacks->onMalloc != NULL && pAllocationCallbacks->onFree != NULL) {
+        void* p2;
+
+        p2 = pAllocationCallbacks->onMalloc(szNew, pAllocationCallbacks->pUserData);
+        if (p2 == NULL) {
+            return NULL;
+        }
+
+        if (p != NULL) {
+            DRWAV_COPY_MEMORY(p2, p, szOld);
+            pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData);
+        }
+
+        return p2;
+    }
+
+    return NULL;
+}
+
+static void drwav__free_from_callbacks(void* p, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    if (p == NULL || pAllocationCallbacks == NULL) {
+        return;
+    }
+
+    if (pAllocationCallbacks->onFree != NULL) {
+        pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData);
+    }
+}
+
+
+static drwav_allocation_callbacks drwav_copy_allocation_callbacks_or_defaults(const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    if (pAllocationCallbacks != NULL) {
+        /* Copy. */
+        return *pAllocationCallbacks;
+    } else {
+        /* Defaults. */
+        drwav_allocation_callbacks allocationCallbacks;
+        allocationCallbacks.pUserData = NULL;
+        allocationCallbacks.onMalloc  = drwav__malloc_default;
+        allocationCallbacks.onRealloc = drwav__realloc_default;
+        allocationCallbacks.onFree    = drwav__free_default;
+        return allocationCallbacks;
+    }
+}
+
+
+static DRWAV_INLINE drwav_bool32 drwav__is_compressed_format_tag(drwav_uint16 formatTag)
+{
+    return
+        formatTag == DR_WAVE_FORMAT_ADPCM ||
+        formatTag == DR_WAVE_FORMAT_DVI_ADPCM;
+}
+
+static unsigned int drwav__chunk_padding_size_riff(drwav_uint64 chunkSize)
+{
+    return (unsigned int)(chunkSize % 2);
+}
+
+static unsigned int drwav__chunk_padding_size_w64(drwav_uint64 chunkSize)
+{
+    return (unsigned int)(chunkSize % 8);
+}
+
+static drwav_uint64 drwav_read_pcm_frames_s16__msadpcm(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut);
+static drwav_uint64 drwav_read_pcm_frames_s16__ima(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut);
+static drwav_bool32 drwav_init_write__internal(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount);
+
+static drwav_result drwav__read_chunk_header(drwav_read_proc onRead, void* pUserData, drwav_container container, drwav_uint64* pRunningBytesReadOut, drwav_chunk_header* pHeaderOut)
+{
+    if (container == drwav_container_riff || container == drwav_container_rf64) {
+        drwav_uint8 sizeInBytes[4];
+
+        if (onRead(pUserData, pHeaderOut->id.fourcc, 4) != 4) {
+            return DRWAV_AT_END;
+        }
+
+        if (onRead(pUserData, sizeInBytes, 4) != 4) {
+            return DRWAV_INVALID_FILE;
+        }
+
+        pHeaderOut->sizeInBytes = drwav__bytes_to_u32(sizeInBytes);
+        pHeaderOut->paddingSize = drwav__chunk_padding_size_riff(pHeaderOut->sizeInBytes);
+        *pRunningBytesReadOut += 8;
+    } else {
+        drwav_uint8 sizeInBytes[8];
+
+        if (onRead(pUserData, pHeaderOut->id.guid, 16) != 16) {
+            return DRWAV_AT_END;
+        }
+
+        if (onRead(pUserData, sizeInBytes, 8) != 8) {
+            return DRWAV_INVALID_FILE;
+        }
+
+        pHeaderOut->sizeInBytes = drwav__bytes_to_u64(sizeInBytes) - 24;    /* <-- Subtract 24 because w64 includes the size of the header. */
+        pHeaderOut->paddingSize = drwav__chunk_padding_size_w64(pHeaderOut->sizeInBytes);
+        *pRunningBytesReadOut += 24;
+    }
+
+    return DRWAV_SUCCESS;
+}
+
+static drwav_bool32 drwav__seek_forward(drwav_seek_proc onSeek, drwav_uint64 offset, void* pUserData)
+{
+    drwav_uint64 bytesRemainingToSeek = offset;
+    while (bytesRemainingToSeek > 0) {
+        if (bytesRemainingToSeek > 0x7FFFFFFF) {
+            if (!onSeek(pUserData, 0x7FFFFFFF, drwav_seek_origin_current)) {
+                return DRWAV_FALSE;
+            }
+            bytesRemainingToSeek -= 0x7FFFFFFF;
+        } else {
+            if (!onSeek(pUserData, (int)bytesRemainingToSeek, drwav_seek_origin_current)) {
+                return DRWAV_FALSE;
+            }
+            bytesRemainingToSeek = 0;
+        }
+    }
+
+    return DRWAV_TRUE;
+}
+
+static drwav_bool32 drwav__seek_from_start(drwav_seek_proc onSeek, drwav_uint64 offset, void* pUserData)
+{
+    if (offset <= 0x7FFFFFFF) {
+        return onSeek(pUserData, (int)offset, drwav_seek_origin_start);
+    }
+
+    /* Larger than 32-bit seek. */
+    if (!onSeek(pUserData, 0x7FFFFFFF, drwav_seek_origin_start)) {
+        return DRWAV_FALSE;
+    }
+    offset -= 0x7FFFFFFF;
+
+    for (;;) {
+        if (offset <= 0x7FFFFFFF) {
+            return onSeek(pUserData, (int)offset, drwav_seek_origin_current);
+        }
+
+        if (!onSeek(pUserData, 0x7FFFFFFF, drwav_seek_origin_current)) {
+            return DRWAV_FALSE;
+        }
+        offset -= 0x7FFFFFFF;
+    }
+
+    /* Should never get here. */
+    /*return DRWAV_TRUE; */
+}
+
+
+static drwav_bool32 drwav__read_fmt(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, drwav_container container, drwav_uint64* pRunningBytesReadOut, drwav_fmt* fmtOut)
+{
+    drwav_chunk_header header;
+    drwav_uint8 fmt[16];
+
+    if (drwav__read_chunk_header(onRead, pUserData, container, pRunningBytesReadOut, &header) != DRWAV_SUCCESS) {
+        return DRWAV_FALSE;
+    }
+
+
+    /* Skip non-fmt chunks. */
+    while (((container == drwav_container_riff || container == drwav_container_rf64) && !drwav__fourcc_equal(header.id.fourcc, "fmt ")) || (container == drwav_container_w64 && !drwav__guid_equal(header.id.guid, drwavGUID_W64_FMT))) {
+        if (!drwav__seek_forward(onSeek, header.sizeInBytes + header.paddingSize, pUserData)) {
+            return DRWAV_FALSE;
+        }
+        *pRunningBytesReadOut += header.sizeInBytes + header.paddingSize;
+
+        /* Try the next header. */
+        if (drwav__read_chunk_header(onRead, pUserData, container, pRunningBytesReadOut, &header) != DRWAV_SUCCESS) {
+            return DRWAV_FALSE;
+        }
+    }
+
+
+    /* Validation. */
+    if (container == drwav_container_riff || container == drwav_container_rf64) {
+        if (!drwav__fourcc_equal(header.id.fourcc, "fmt ")) {
+            return DRWAV_FALSE;
+        }
+    } else {
+        if (!drwav__guid_equal(header.id.guid, drwavGUID_W64_FMT)) {
+            return DRWAV_FALSE;
+        }
+    }
+
+
+    if (onRead(pUserData, fmt, sizeof(fmt)) != sizeof(fmt)) {
+        return DRWAV_FALSE;
+    }
+    *pRunningBytesReadOut += sizeof(fmt);
+
+    fmtOut->formatTag      = drwav__bytes_to_u16(fmt + 0);
+    fmtOut->channels       = drwav__bytes_to_u16(fmt + 2);
+    fmtOut->sampleRate     = drwav__bytes_to_u32(fmt + 4);
+    fmtOut->avgBytesPerSec = drwav__bytes_to_u32(fmt + 8);
+    fmtOut->blockAlign     = drwav__bytes_to_u16(fmt + 12);
+    fmtOut->bitsPerSample  = drwav__bytes_to_u16(fmt + 14);
+
+    fmtOut->extendedSize       = 0;
+    fmtOut->validBitsPerSample = 0;
+    fmtOut->channelMask        = 0;
+    memset(fmtOut->subFormat, 0, sizeof(fmtOut->subFormat));
+
+    if (header.sizeInBytes > 16) {
+        drwav_uint8 fmt_cbSize[2];
+        int bytesReadSoFar = 0;
+
+        if (onRead(pUserData, fmt_cbSize, sizeof(fmt_cbSize)) != sizeof(fmt_cbSize)) {
+            return DRWAV_FALSE;    /* Expecting more data. */
+        }
+        *pRunningBytesReadOut += sizeof(fmt_cbSize);
+
+        bytesReadSoFar = 18;
+
+        fmtOut->extendedSize = drwav__bytes_to_u16(fmt_cbSize);
+        if (fmtOut->extendedSize > 0) {
+            /* Simple validation. */
+            if (fmtOut->formatTag == DR_WAVE_FORMAT_EXTENSIBLE) {
+                if (fmtOut->extendedSize != 22) {
+                    return DRWAV_FALSE;
+                }
+            }
+
+            if (fmtOut->formatTag == DR_WAVE_FORMAT_EXTENSIBLE) {
+                drwav_uint8 fmtext[22];
+                if (onRead(pUserData, fmtext, fmtOut->extendedSize) != fmtOut->extendedSize) {
+                    return DRWAV_FALSE;    /* Expecting more data. */
+                }
+
+                fmtOut->validBitsPerSample = drwav__bytes_to_u16(fmtext + 0);
+                fmtOut->channelMask        = drwav__bytes_to_u32(fmtext + 2);
+                drwav__bytes_to_guid(fmtext + 6, fmtOut->subFormat);
+            } else {
+                if (!onSeek(pUserData, fmtOut->extendedSize, drwav_seek_origin_current)) {
+                    return DRWAV_FALSE;
+                }
+            }
+            *pRunningBytesReadOut += fmtOut->extendedSize;
+
+            bytesReadSoFar += fmtOut->extendedSize;
+        }
+
+        /* Seek past any leftover bytes. For w64 the leftover will be defined based on the chunk size. */
+        if (!onSeek(pUserData, (int)(header.sizeInBytes - bytesReadSoFar), drwav_seek_origin_current)) {
+            return DRWAV_FALSE;
+        }
+        *pRunningBytesReadOut += (header.sizeInBytes - bytesReadSoFar);
+    }
+
+    if (header.paddingSize > 0) {
+        if (!onSeek(pUserData, header.paddingSize, drwav_seek_origin_current)) {
+            return DRWAV_FALSE;
+        }
+        *pRunningBytesReadOut += header.paddingSize;
+    }
+
+    return DRWAV_TRUE;
+}
+
+
+static size_t drwav__on_read(drwav_read_proc onRead, void* pUserData, void* pBufferOut, size_t bytesToRead, drwav_uint64* pCursor)
+{
+    size_t bytesRead;
+
+    DRWAV_ASSERT(onRead != NULL);
+    DRWAV_ASSERT(pCursor != NULL);
+
+    bytesRead = onRead(pUserData, pBufferOut, bytesToRead);
+    *pCursor += bytesRead;
+    return bytesRead;
+}
+
+#if 0
+static drwav_bool32 drwav__on_seek(drwav_seek_proc onSeek, void* pUserData, int offset, drwav_seek_origin origin, drwav_uint64* pCursor)
+{
+    DRWAV_ASSERT(onSeek != NULL);
+    DRWAV_ASSERT(pCursor != NULL);
+
+    if (!onSeek(pUserData, offset, origin)) {
+        return DRWAV_FALSE;
+    }
+
+    if (origin == drwav_seek_origin_start) {
+        *pCursor = offset;
+    } else {
+        *pCursor += offset;
+    }
+
+    return DRWAV_TRUE;
+}
+#endif
+
+
+
+static drwav_uint32 drwav_get_bytes_per_pcm_frame(drwav* pWav)
+{
+    /*
+    The bytes per frame is a bit ambiguous. It can be either be based on the bits per sample, or the block align. The way I'm doing it here
+    is that if the bits per sample is a multiple of 8, use floor(bitsPerSample*channels/8), otherwise fall back to the block align.
+    */
+    if ((pWav->bitsPerSample & 0x7) == 0) {
+        /* Bits per sample is a multiple of 8. */
+        return (pWav->bitsPerSample * pWav->fmt.channels) >> 3;
+    } else {
+        return pWav->fmt.blockAlign;
+    }
+}
+
+DRWAV_API drwav_uint16 drwav_fmt_get_format(const drwav_fmt* pFMT)
+{
+    if (pFMT == NULL) {
+        return 0;
+    }
+
+    if (pFMT->formatTag != DR_WAVE_FORMAT_EXTENSIBLE) {
+        return pFMT->formatTag;
+    } else {
+        return drwav__bytes_to_u16(pFMT->subFormat);    /* Only the first two bytes are required. */
+    }
+}
+
+static drwav_bool32 drwav_preinit(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pReadSeekUserData, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    if (pWav == NULL || onRead == NULL || onSeek == NULL) {
+        return DRWAV_FALSE;
+    }
+
+    DRWAV_ZERO_MEMORY(pWav, sizeof(*pWav));
+    pWav->onRead    = onRead;
+    pWav->onSeek    = onSeek;
+    pWav->pUserData = pReadSeekUserData;
+    pWav->allocationCallbacks = drwav_copy_allocation_callbacks_or_defaults(pAllocationCallbacks);
+
+    if (pWav->allocationCallbacks.onFree == NULL || (pWav->allocationCallbacks.onMalloc == NULL && pWav->allocationCallbacks.onRealloc == NULL)) {
+        return DRWAV_FALSE;    /* Invalid allocation callbacks. */
+    }
+
+    return DRWAV_TRUE;
+}
+
+static drwav_bool32 drwav_init__internal(drwav* pWav, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags)
+{
+    /* This function assumes drwav_preinit() has been called beforehand. */
+
+    drwav_uint64 cursor;    /* <-- Keeps track of the byte position so we can seek to specific locations. */
+    drwav_bool32 sequential;
+    drwav_uint8 riff[4];
+    drwav_fmt fmt;
+    unsigned short translatedFormatTag;
+    drwav_bool32 foundDataChunk;
+    drwav_uint64 dataChunkSize = 0; /* <-- Important! Don't explicitly set this to 0 anywhere else. Calculation of the size of the data chunk is performed in different paths depending on the container. */
+    drwav_uint64 sampleCountFromFactChunk = 0;  /* Same as dataChunkSize - make sure this is the only place this is initialized to 0. */
+    drwav_uint64 chunkSize;
+
+    cursor = 0;
+    sequential = (flags & DRWAV_SEQUENTIAL) != 0;
+
+    /* The first 4 bytes should be the RIFF identifier. */
+    if (drwav__on_read(pWav->onRead, pWav->pUserData, riff, sizeof(riff), &cursor) != sizeof(riff)) {
+        return DRWAV_FALSE;
+    }
+
+    /*
+    The first 4 bytes can be used to identify the container. For RIFF files it will start with "RIFF" and for
+    w64 it will start with "riff".
+    */
+    if (drwav__fourcc_equal(riff, "RIFF")) {
+        pWav->container = drwav_container_riff;
+    } else if (drwav__fourcc_equal(riff, "riff")) {
+        int i;
+        drwav_uint8 riff2[12];
+
+        pWav->container = drwav_container_w64;
+
+        /* Check the rest of the GUID for validity. */
+        if (drwav__on_read(pWav->onRead, pWav->pUserData, riff2, sizeof(riff2), &cursor) != sizeof(riff2)) {
+            return DRWAV_FALSE;
+        }
+
+        for (i = 0; i < 12; ++i) {
+            if (riff2[i] != drwavGUID_W64_RIFF[i+4]) {
+                return DRWAV_FALSE;
+            }
+        }
+    } else if (drwav__fourcc_equal(riff, "RF64")) {
+        pWav->container = drwav_container_rf64;
+    } else {
+        return DRWAV_FALSE;   /* Unknown or unsupported container. */
+    }
+
+
+    if (pWav->container == drwav_container_riff || pWav->container == drwav_container_rf64) {
+        drwav_uint8 chunkSizeBytes[4];
+        drwav_uint8 wave[4];
+
+        /* RIFF/WAVE */
+        if (drwav__on_read(pWav->onRead, pWav->pUserData, chunkSizeBytes, sizeof(chunkSizeBytes), &cursor) != sizeof(chunkSizeBytes)) {
+            return DRWAV_FALSE;
+        }
+
+        if (pWav->container == drwav_container_riff) {
+            if (drwav__bytes_to_u32(chunkSizeBytes) < 36) {
+                return DRWAV_FALSE;    /* Chunk size should always be at least 36 bytes. */
+            }
+        } else {
+            if (drwav__bytes_to_u32(chunkSizeBytes) != 0xFFFFFFFF) {
+                return DRWAV_FALSE;    /* Chunk size should always be set to -1/0xFFFFFFFF for RF64. The actual size is retrieved later. */
+            }
+        }
+
+        if (drwav__on_read(pWav->onRead, pWav->pUserData, wave, sizeof(wave), &cursor) != sizeof(wave)) {
+            return DRWAV_FALSE;
+        }
+
+        if (!drwav__fourcc_equal(wave, "WAVE")) {
+            return DRWAV_FALSE;    /* Expecting "WAVE". */
+        }
+    } else {
+        drwav_uint8 chunkSizeBytes[8];
+        drwav_uint8 wave[16];
+
+        /* W64 */
+        if (drwav__on_read(pWav->onRead, pWav->pUserData, chunkSizeBytes, sizeof(chunkSizeBytes), &cursor) != sizeof(chunkSizeBytes)) {
+            return DRWAV_FALSE;
+        }
+
+        if (drwav__bytes_to_u64(chunkSizeBytes) < 80) {
+            return DRWAV_FALSE;
+        }
+
+        if (drwav__on_read(pWav->onRead, pWav->pUserData, wave, sizeof(wave), &cursor) != sizeof(wave)) {
+            return DRWAV_FALSE;
+        }
+
+        if (!drwav__guid_equal(wave, drwavGUID_W64_WAVE)) {
+            return DRWAV_FALSE;
+        }
+    }
+
+
+    /* For RF64, the "ds64" chunk must come next, before the "fmt " chunk. */
+    if (pWav->container == drwav_container_rf64) {
+        drwav_uint8 sizeBytes[8];
+        drwav_uint64 bytesRemainingInChunk;
+        drwav_chunk_header header;
+        drwav_result result = drwav__read_chunk_header(pWav->onRead, pWav->pUserData, pWav->container, &cursor, &header);
+        if (result != DRWAV_SUCCESS) {
+            return DRWAV_FALSE;
+        }
+
+        if (!drwav__fourcc_equal(header.id.fourcc, "ds64")) {
+            return DRWAV_FALSE; /* Expecting "ds64". */
+        }
+
+        bytesRemainingInChunk = header.sizeInBytes + header.paddingSize;
+
+        /* We don't care about the size of the RIFF chunk - skip it. */
+        if (!drwav__seek_forward(pWav->onSeek, 8, pWav->pUserData)) {
+            return DRWAV_FALSE;
+        }
+        bytesRemainingInChunk -= 8;
+        cursor += 8;
+
+
+        /* Next 8 bytes is the size of the "data" chunk. */
+        if (drwav__on_read(pWav->onRead, pWav->pUserData, sizeBytes, sizeof(sizeBytes), &cursor) != sizeof(sizeBytes)) {
+            return DRWAV_FALSE;
+        }
+        bytesRemainingInChunk -= 8;
+        dataChunkSize = drwav__bytes_to_u64(sizeBytes);
+
+
+        /* Next 8 bytes is the same count which we would usually derived from the FACT chunk if it was available. */
+        if (drwav__on_read(pWav->onRead, pWav->pUserData, sizeBytes, sizeof(sizeBytes), &cursor) != sizeof(sizeBytes)) {
+            return DRWAV_FALSE;
+        }
+        bytesRemainingInChunk -= 8;
+        sampleCountFromFactChunk = drwav__bytes_to_u64(sizeBytes);
+
+
+        /* Skip over everything else. */
+        if (!drwav__seek_forward(pWav->onSeek, bytesRemainingInChunk, pWav->pUserData)) {
+            return DRWAV_FALSE;
+        }
+        cursor += bytesRemainingInChunk;
+    }
+
+
+    /* The next bytes should be the "fmt " chunk. */
+    if (!drwav__read_fmt(pWav->onRead, pWav->onSeek, pWav->pUserData, pWav->container, &cursor, &fmt)) {
+        return DRWAV_FALSE;    /* Failed to read the "fmt " chunk. */
+    }
+
+    /* Basic validation. */
+    if ((fmt.sampleRate    == 0 || fmt.sampleRate    > DRWAV_MAX_SAMPLE_RATE)     ||
+        (fmt.channels      == 0 || fmt.channels      > DRWAV_MAX_CHANNELS)        ||
+        (fmt.bitsPerSample == 0 || fmt.bitsPerSample > DRWAV_MAX_BITS_PER_SAMPLE) ||
+        fmt.blockAlign == 0) {
+        return DRWAV_FALSE; /* Probably an invalid WAV file. */
+    }
+
+
+    /* Translate the internal format. */
+    translatedFormatTag = fmt.formatTag;
+    if (translatedFormatTag == DR_WAVE_FORMAT_EXTENSIBLE) {
+        translatedFormatTag = drwav__bytes_to_u16(fmt.subFormat + 0);
+    }
+
+
+    /*
+    We need to enumerate over each chunk for two reasons:
+      1) The "data" chunk may not be the next one
+      2) We may want to report each chunk back to the client
+    
+    In order to correctly report each chunk back to the client we will need to keep looping until the end of the file.
+    */
+    foundDataChunk = DRWAV_FALSE;
+
+    /* The next chunk we care about is the "data" chunk. This is not necessarily the next chunk so we'll need to loop. */
+    for (;;)
+    {
+        drwav_chunk_header header;
+        drwav_result result = drwav__read_chunk_header(pWav->onRead, pWav->pUserData, pWav->container, &cursor, &header);
+        if (result != DRWAV_SUCCESS) {
+            if (!foundDataChunk) {
+                return DRWAV_FALSE;
+            } else {
+                break;  /* Probably at the end of the file. Get out of the loop. */
+            }
+        }
+
+        /* Tell the client about this chunk. */
+        if (!sequential && onChunk != NULL) {
+            drwav_uint64 callbackBytesRead = onChunk(pChunkUserData, pWav->onRead, pWav->onSeek, pWav->pUserData, &header, pWav->container, &fmt);
+
+            /*
+            dr_wav may need to read the contents of the chunk, so we now need to seek back to the position before
+            we called the callback.
+            */
+            if (callbackBytesRead > 0) {
+                if (!drwav__seek_from_start(pWav->onSeek, cursor, pWav->pUserData)) {
+                    return DRWAV_FALSE;
+                }
+            }
+        }
+        
+
+        if (!foundDataChunk) {
+            pWav->dataChunkDataPos = cursor;
+        }
+
+        chunkSize = header.sizeInBytes;
+        if (pWav->container == drwav_container_riff || pWav->container == drwav_container_rf64) {
+            if (drwav__fourcc_equal(header.id.fourcc, "data")) {
+                foundDataChunk = DRWAV_TRUE;
+                if (pWav->container != drwav_container_rf64) {  /* The data chunk size for RF64 will always be set to 0xFFFFFFFF here. It was set to it's true value earlier. */
+                    dataChunkSize = chunkSize;
+                }
+            }
+        } else {
+            if (drwav__guid_equal(header.id.guid, drwavGUID_W64_DATA)) {
+                foundDataChunk = DRWAV_TRUE;
+                dataChunkSize = chunkSize;
+            }
+        }
+
+        /*
+        If at this point we have found the data chunk and we're running in sequential mode, we need to break out of this loop. The reason for
+        this is that we would otherwise require a backwards seek which sequential mode forbids.
+        */
+        if (foundDataChunk && sequential) {
+            break;
+        }
+
+        /* Optional. Get the total sample count from the FACT chunk. This is useful for compressed formats. */
+        if (pWav->container == drwav_container_riff) {
+            if (drwav__fourcc_equal(header.id.fourcc, "fact")) {
+                drwav_uint32 sampleCount;
+                if (drwav__on_read(pWav->onRead, pWav->pUserData, &sampleCount, 4, &cursor) != 4) {
+                    return DRWAV_FALSE;
+                }
+                chunkSize -= 4;
+
+                if (!foundDataChunk) {
+                    pWav->dataChunkDataPos = cursor;
+                }
+
+                /*
+                The sample count in the "fact" chunk is either unreliable, or I'm not understanding it properly. For now I am only enabling this
+                for Microsoft ADPCM formats.
+                */
+                if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
+                    sampleCountFromFactChunk = sampleCount;
+                } else {
+                    sampleCountFromFactChunk = 0;
+                }
+            }
+        } else if (pWav->container == drwav_container_w64) {
+            if (drwav__guid_equal(header.id.guid, drwavGUID_W64_FACT)) {
+                if (drwav__on_read(pWav->onRead, pWav->pUserData, &sampleCountFromFactChunk, 8, &cursor) != 8) {
+                    return DRWAV_FALSE;
+                }
+                chunkSize -= 8;
+
+                if (!foundDataChunk) {
+                    pWav->dataChunkDataPos = cursor;
+                }
+            }
+        } else if (pWav->container == drwav_container_rf64) {
+            /* We retrieved the sample count from the ds64 chunk earlier so no need to do that here. */
+        }
+
+        /* "smpl" chunk. */
+        if (pWav->container == drwav_container_riff || pWav->container == drwav_container_rf64) {
+            if (drwav__fourcc_equal(header.id.fourcc, "smpl")) {
+                drwav_uint8 smplHeaderData[36];    /* 36 = size of the smpl header section, not including the loop data. */
+                if (chunkSize >= sizeof(smplHeaderData)) {
+                    drwav_uint64 bytesJustRead = drwav__on_read(pWav->onRead, pWav->pUserData, smplHeaderData, sizeof(smplHeaderData), &cursor);
+                    chunkSize -= bytesJustRead;
+
+                    if (bytesJustRead == sizeof(smplHeaderData)) {
+                        drwav_uint32 iLoop;
+
+                        pWav->smpl.manufacturer      = drwav__bytes_to_u32(smplHeaderData+0);
+                        pWav->smpl.product           = drwav__bytes_to_u32(smplHeaderData+4);
+                        pWav->smpl.samplePeriod      = drwav__bytes_to_u32(smplHeaderData+8);
+                        pWav->smpl.midiUnityNotes    = drwav__bytes_to_u32(smplHeaderData+12);
+                        pWav->smpl.midiPitchFraction = drwav__bytes_to_u32(smplHeaderData+16);
+                        pWav->smpl.smpteFormat       = drwav__bytes_to_u32(smplHeaderData+20);
+                        pWav->smpl.smpteOffset       = drwav__bytes_to_u32(smplHeaderData+24);
+                        pWav->smpl.numSampleLoops    = drwav__bytes_to_u32(smplHeaderData+28);
+                        pWav->smpl.samplerData       = drwav__bytes_to_u32(smplHeaderData+32);
+
+                        for (iLoop = 0; iLoop < pWav->smpl.numSampleLoops && iLoop < drwav_countof(pWav->smpl.loops); ++iLoop) {
+                            drwav_uint8 smplLoopData[24];  /* 24 = size of a loop section in the smpl chunk. */
+                            bytesJustRead = drwav__on_read(pWav->onRead, pWav->pUserData, smplLoopData, sizeof(smplLoopData), &cursor);
+                            chunkSize -= bytesJustRead;
+
+                            if (bytesJustRead == sizeof(smplLoopData)) {
+                                pWav->smpl.loops[iLoop].cuePointId = drwav__bytes_to_u32(smplLoopData+0);
+                                pWav->smpl.loops[iLoop].type       = drwav__bytes_to_u32(smplLoopData+4);
+                                pWav->smpl.loops[iLoop].start      = drwav__bytes_to_u32(smplLoopData+8);
+                                pWav->smpl.loops[iLoop].end        = drwav__bytes_to_u32(smplLoopData+12);
+                                pWav->smpl.loops[iLoop].fraction   = drwav__bytes_to_u32(smplLoopData+16);
+                                pWav->smpl.loops[iLoop].playCount  = drwav__bytes_to_u32(smplLoopData+20);
+                            } else {
+                                break;  /* Break from the smpl loop for loop. */
+                            }
+                        }
+                    }
+                } else {
+                    /* Looks like invalid data. Ignore the chunk. */
+                }
+            }
+        } else {
+            if (drwav__guid_equal(header.id.guid, drwavGUID_W64_SMPL)) {
+                /*
+                This path will be hit when a W64 WAV file contains a smpl chunk. I don't have a sample file to test this path, so a contribution
+                is welcome to add support for this.
+                */
+            }
+        }
+
+        /* Make sure we seek past the padding. */
+        chunkSize += header.paddingSize;
+        if (!drwav__seek_forward(pWav->onSeek, chunkSize, pWav->pUserData)) {
+            break;
+        }
+        cursor += chunkSize;
+
+        if (!foundDataChunk) {
+            pWav->dataChunkDataPos = cursor;
+        }
+    }
+
+    /* If we haven't found a data chunk, return an error. */
+    if (!foundDataChunk) {
+        return DRWAV_FALSE;
+    }
+
+    /* We may have moved passed the data chunk. If so we need to move back. If running in sequential mode we can assume we are already sitting on the data chunk. */
+    if (!sequential) {
+        if (!drwav__seek_from_start(pWav->onSeek, pWav->dataChunkDataPos, pWav->pUserData)) {
+            return DRWAV_FALSE;
+        }
+        cursor = pWav->dataChunkDataPos;
+    }
+    
+
+    /* At this point we should be sitting on the first byte of the raw audio data. */
+
+    pWav->fmt                 = fmt;
+    pWav->sampleRate          = fmt.sampleRate;
+    pWav->channels            = fmt.channels;
+    pWav->bitsPerSample       = fmt.bitsPerSample;
+    pWav->bytesRemaining      = dataChunkSize;
+    pWav->translatedFormatTag = translatedFormatTag;
+    pWav->dataChunkDataSize   = dataChunkSize;
+
+    if (sampleCountFromFactChunk != 0) {
+        pWav->totalPCMFrameCount = sampleCountFromFactChunk;
+    } else {
+        pWav->totalPCMFrameCount = dataChunkSize / drwav_get_bytes_per_pcm_frame(pWav);
+
+        if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
+            drwav_uint64 totalBlockHeaderSizeInBytes;
+            drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign;
+
+            /* Make sure any trailing partial block is accounted for. */
+            if ((blockCount * fmt.blockAlign) < dataChunkSize) {
+                blockCount += 1;
+            }
+
+            /* We decode two samples per byte. There will be blockCount headers in the data chunk. This is enough to know how to calculate the total PCM frame count. */
+            totalBlockHeaderSizeInBytes = blockCount * (6*fmt.channels);
+            pWav->totalPCMFrameCount = ((dataChunkSize - totalBlockHeaderSizeInBytes) * 2) / fmt.channels;
+        }
+        if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
+            drwav_uint64 totalBlockHeaderSizeInBytes;
+            drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign;
+
+            /* Make sure any trailing partial block is accounted for. */
+            if ((blockCount * fmt.blockAlign) < dataChunkSize) {
+                blockCount += 1;
+            }
+
+            /* We decode two samples per byte. There will be blockCount headers in the data chunk. This is enough to know how to calculate the total PCM frame count. */
+            totalBlockHeaderSizeInBytes = blockCount * (4*fmt.channels);
+            pWav->totalPCMFrameCount = ((dataChunkSize - totalBlockHeaderSizeInBytes) * 2) / fmt.channels;
+
+            /* The header includes a decoded sample for each channel which acts as the initial predictor sample. */
+            pWav->totalPCMFrameCount += blockCount;
+        }
+    }
+
+    /* Some formats only support a certain number of channels. */
+    if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM || pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
+        if (pWav->channels > 2) {
+            return DRWAV_FALSE;
+        }
+    }
+
+#ifdef DR_WAV_LIBSNDFILE_COMPAT
+    /*
+    I use libsndfile as a benchmark for testing, however in the version I'm using (from the Windows installer on the libsndfile website),
+    it appears the total sample count libsndfile uses for MS-ADPCM is incorrect. It would seem they are computing the total sample count
+    from the number of blocks, however this results in the inclusion of extra silent samples at the end of the last block. The correct
+    way to know the total sample count is to inspect the "fact" chunk, which should always be present for compressed formats, and should
+    always include the sample count. This little block of code below is only used to emulate the libsndfile logic so I can properly run my
+    correctness tests against libsndfile, and is disabled by default.
+    */
+    if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
+        drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign;
+        pWav->totalPCMFrameCount = (((blockCount * (fmt.blockAlign - (6*pWav->channels))) * 2)) / fmt.channels;  /* x2 because two samples per byte. */
+    }
+    if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
+        drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign;
+        pWav->totalPCMFrameCount = (((blockCount * (fmt.blockAlign - (4*pWav->channels))) * 2) + (blockCount * pWav->channels)) / fmt.channels;
+    }
+#endif
+
+    return DRWAV_TRUE;
+}
+
+DRWAV_API drwav_bool32 drwav_init(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    return drwav_init_ex(pWav, onRead, onSeek, NULL, pUserData, NULL, 0, pAllocationCallbacks);
+}
+
+DRWAV_API drwav_bool32 drwav_init_ex(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, drwav_chunk_proc onChunk, void* pReadSeekUserData, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    if (!drwav_preinit(pWav, onRead, onSeek, pReadSeekUserData, pAllocationCallbacks)) {
+        return DRWAV_FALSE;
+    }
+
+    return drwav_init__internal(pWav, onChunk, pChunkUserData, flags);
+}
+
+
+static drwav_uint32 drwav__riff_chunk_size_riff(drwav_uint64 dataChunkSize)
+{
+    drwav_uint64 chunkSize = 4 + 24 + dataChunkSize + drwav__chunk_padding_size_riff(dataChunkSize); /* 4 = "WAVE". 24 = "fmt " chunk. */
+    if (chunkSize > 0xFFFFFFFFUL) {
+        chunkSize = 0xFFFFFFFFUL;
+    }
+
+    return (drwav_uint32)chunkSize; /* Safe cast due to the clamp above. */
+}
+
+static drwav_uint32 drwav__data_chunk_size_riff(drwav_uint64 dataChunkSize)
+{
+    if (dataChunkSize <= 0xFFFFFFFFUL) {
+        return (drwav_uint32)dataChunkSize;
+    } else {
+        return 0xFFFFFFFFUL;
+    }
+}
+
+static drwav_uint64 drwav__riff_chunk_size_w64(drwav_uint64 dataChunkSize)
+{
+    drwav_uint64 dataSubchunkPaddingSize = drwav__chunk_padding_size_w64(dataChunkSize);
+
+    return 80 + 24 + dataChunkSize + dataSubchunkPaddingSize;   /* +24 because W64 includes the size of the GUID and size fields. */
+}
+
+static drwav_uint64 drwav__data_chunk_size_w64(drwav_uint64 dataChunkSize)
+{
+    return 24 + dataChunkSize;        /* +24 because W64 includes the size of the GUID and size fields. */
+}
+
+static drwav_uint64 drwav__riff_chunk_size_rf64(drwav_uint64 dataChunkSize)
+{
+    drwav_uint64 chunkSize = 4 + 36 + 24 + dataChunkSize + drwav__chunk_padding_size_riff(dataChunkSize); /* 4 = "WAVE". 36 = "ds64" chunk. 24 = "fmt " chunk. */
+    if (chunkSize > 0xFFFFFFFFUL) {
+        chunkSize = 0xFFFFFFFFUL;
+    }
+
+    return chunkSize;
+}
+
+static drwav_uint64 drwav__data_chunk_size_rf64(drwav_uint64 dataChunkSize)
+{
+    return dataChunkSize;
+}
+
+
+static size_t drwav__write(drwav* pWav, const void* pData, size_t dataSize)
+{
+    DRWAV_ASSERT(pWav          != NULL);
+    DRWAV_ASSERT(pWav->onWrite != NULL);
+
+    /* Generic write. Assumes no byte reordering required. */
+    return pWav->onWrite(pWav->pUserData, pData, dataSize);
+}
+
+static size_t drwav__write_u16ne_to_le(drwav* pWav, drwav_uint16 value)
+{
+    DRWAV_ASSERT(pWav          != NULL);
+    DRWAV_ASSERT(pWav->onWrite != NULL);
+
+    if (!drwav__is_little_endian()) {
+        value = drwav__bswap16(value);
+    }
+
+    return drwav__write(pWav, &value, 2);
+}
+
+static size_t drwav__write_u32ne_to_le(drwav* pWav, drwav_uint32 value)
+{
+    DRWAV_ASSERT(pWav          != NULL);
+    DRWAV_ASSERT(pWav->onWrite != NULL);
+
+    if (!drwav__is_little_endian()) {
+        value = drwav__bswap32(value);
+    }
+
+    return drwav__write(pWav, &value, 4);
+}
+
+static size_t drwav__write_u64ne_to_le(drwav* pWav, drwav_uint64 value)
+{
+    DRWAV_ASSERT(pWav          != NULL);
+    DRWAV_ASSERT(pWav->onWrite != NULL);
+
+    if (!drwav__is_little_endian()) {
+        value = drwav__bswap64(value);
+    }
+
+    return drwav__write(pWav, &value, 8);
+}
+
+
+static drwav_bool32 drwav_preinit_write(drwav* pWav, const drwav_data_format* pFormat, drwav_bool32 isSequential, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    if (pWav == NULL || onWrite == NULL) {
+        return DRWAV_FALSE;
+    }
+
+    if (!isSequential && onSeek == NULL) {
+        return DRWAV_FALSE; /* <-- onSeek is required when in non-sequential mode. */
+    }
+
+    /* Not currently supporting compressed formats. Will need to add support for the "fact" chunk before we enable this. */
+    if (pFormat->format == DR_WAVE_FORMAT_EXTENSIBLE) {
+        return DRWAV_FALSE;
+    }
+    if (pFormat->format == DR_WAVE_FORMAT_ADPCM || pFormat->format == DR_WAVE_FORMAT_DVI_ADPCM) {
+        return DRWAV_FALSE;
+    }
+
+    DRWAV_ZERO_MEMORY(pWav, sizeof(*pWav));
+    pWav->onWrite   = onWrite;
+    pWav->onSeek    = onSeek;
+    pWav->pUserData = pUserData;
+    pWav->allocationCallbacks = drwav_copy_allocation_callbacks_or_defaults(pAllocationCallbacks);
+
+    if (pWav->allocationCallbacks.onFree == NULL || (pWav->allocationCallbacks.onMalloc == NULL && pWav->allocationCallbacks.onRealloc == NULL)) {
+        return DRWAV_FALSE;    /* Invalid allocation callbacks. */
+    }
+
+    pWav->fmt.formatTag = (drwav_uint16)pFormat->format;
+    pWav->fmt.channels = (drwav_uint16)pFormat->channels;
+    pWav->fmt.sampleRate = pFormat->sampleRate;
+    pWav->fmt.avgBytesPerSec = (drwav_uint32)((pFormat->bitsPerSample * pFormat->sampleRate * pFormat->channels) / 8);
+    pWav->fmt.blockAlign = (drwav_uint16)((pFormat->channels * pFormat->bitsPerSample) / 8);
+    pWav->fmt.bitsPerSample = (drwav_uint16)pFormat->bitsPerSample;
+    pWav->fmt.extendedSize = 0;
+    pWav->isSequentialWrite = isSequential;
+
+    return DRWAV_TRUE;
+}
+
+static drwav_bool32 drwav_init_write__internal(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount)
+{
+    /* The function assumes drwav_preinit_write() was called beforehand. */
+
+    size_t runningPos = 0;
+    drwav_uint64 initialDataChunkSize = 0;
+    drwav_uint64 chunkSizeFMT;
+
+    /*
+    The initial values for the "RIFF" and "data" chunks depends on whether or not we are initializing in sequential mode or not. In
+    sequential mode we set this to its final values straight away since they can be calculated from the total sample count. In non-
+    sequential mode we initialize it all to zero and fill it out in drwav_uninit() using a backwards seek.
+    */
+    if (pWav->isSequentialWrite) {
+        initialDataChunkSize = (totalSampleCount * pWav->fmt.bitsPerSample) / 8;
+
+        /*
+        The RIFF container has a limit on the number of samples. drwav is not allowing this. There's no practical limits for Wave64
+        so for the sake of simplicity I'm not doing any validation for that.
+        */
+        if (pFormat->container == drwav_container_riff) {
+            if (initialDataChunkSize > (0xFFFFFFFFUL - 36)) {
+                return DRWAV_FALSE; /* Not enough room to store every sample. */
+            }
+        }
+    }
+
+    pWav->dataChunkDataSizeTargetWrite = initialDataChunkSize;
+
+
+    /* "RIFF" chunk. */
+    if (pFormat->container == drwav_container_riff) {
+        drwav_uint32 chunkSizeRIFF = 28 + (drwav_uint32)initialDataChunkSize;   /* +28 = "WAVE" + [sizeof "fmt " chunk] */
+        runningPos += drwav__write(pWav, "RIFF", 4);
+        runningPos += drwav__write_u32ne_to_le(pWav, chunkSizeRIFF);
+        runningPos += drwav__write(pWav, "WAVE", 4);
+    } else if (pFormat->container == drwav_container_w64) {
+        drwav_uint64 chunkSizeRIFF = 80 + 24 + initialDataChunkSize;            /* +24 because W64 includes the size of the GUID and size fields. */
+        runningPos += drwav__write(pWav, drwavGUID_W64_RIFF, 16);
+        runningPos += drwav__write_u64ne_to_le(pWav, chunkSizeRIFF);
+        runningPos += drwav__write(pWav, drwavGUID_W64_WAVE, 16);
+    } else if (pFormat->container == drwav_container_rf64) {
+        runningPos += drwav__write(pWav, "RF64", 4);
+        runningPos += drwav__write_u32ne_to_le(pWav, 0xFFFFFFFF);               /* Always 0xFFFFFFFF for RF64. Set to a proper value in the "ds64" chunk. */
+        runningPos += drwav__write(pWav, "WAVE", 4);
+    }
+
+    
+    /* "ds64" chunk (RF64 only). */
+    if (pFormat->container == drwav_container_rf64) {
+        drwav_uint32 initialds64ChunkSize = 28;                                 /* 28 = [Size of RIFF (8 bytes)] + [Size of DATA (8 bytes)] + [Sample Count (8 bytes)] + [Table Length (4 bytes)]. Table length always set to 0. */
+        drwav_uint64 initialRiffChunkSize = 8 + initialds64ChunkSize + initialDataChunkSize;    /* +8 for the ds64 header. */
+
+        runningPos += drwav__write(pWav, "ds64", 4);
+        runningPos += drwav__write_u32ne_to_le(pWav, initialds64ChunkSize);     /* Size of ds64. */
+        runningPos += drwav__write_u64ne_to_le(pWav, initialRiffChunkSize);     /* Size of RIFF. Set to true value at the end. */
+        runningPos += drwav__write_u64ne_to_le(pWav, initialDataChunkSize);     /* Size of DATA. Set to true value at the end. */
+        runningPos += drwav__write_u64ne_to_le(pWav, totalSampleCount);         /* Sample count. */
+        runningPos += drwav__write_u32ne_to_le(pWav, 0);                        /* Table length. Always set to zero in our case since we're not doing any other chunks than "DATA". */
+    }
+
+
+    /* "fmt " chunk. */
+    if (pFormat->container == drwav_container_riff || pFormat->container == drwav_container_rf64) {
+        chunkSizeFMT = 16;
+        runningPos += drwav__write(pWav, "fmt ", 4);
+        runningPos += drwav__write_u32ne_to_le(pWav, (drwav_uint32)chunkSizeFMT);
+    } else if (pFormat->container == drwav_container_w64) {
+        chunkSizeFMT = 40;
+        runningPos += drwav__write(pWav, drwavGUID_W64_FMT, 16);
+        runningPos += drwav__write_u64ne_to_le(pWav, chunkSizeFMT);
+    }
+
+    runningPos += drwav__write_u16ne_to_le(pWav, pWav->fmt.formatTag);
+    runningPos += drwav__write_u16ne_to_le(pWav, pWav->fmt.channels);
+    runningPos += drwav__write_u32ne_to_le(pWav, pWav->fmt.sampleRate);
+    runningPos += drwav__write_u32ne_to_le(pWav, pWav->fmt.avgBytesPerSec);
+    runningPos += drwav__write_u16ne_to_le(pWav, pWav->fmt.blockAlign);
+    runningPos += drwav__write_u16ne_to_le(pWav, pWav->fmt.bitsPerSample);
+
+    pWav->dataChunkDataPos = runningPos;
+
+    /* "data" chunk. */
+    if (pFormat->container == drwav_container_riff) {
+        drwav_uint32 chunkSizeDATA = (drwav_uint32)initialDataChunkSize;
+        runningPos += drwav__write(pWav, "data", 4);
+        runningPos += drwav__write_u32ne_to_le(pWav, chunkSizeDATA);
+    } else if (pFormat->container == drwav_container_w64) {
+        drwav_uint64 chunkSizeDATA = 24 + initialDataChunkSize;     /* +24 because W64 includes the size of the GUID and size fields. */
+        runningPos += drwav__write(pWav, drwavGUID_W64_DATA, 16);
+        runningPos += drwav__write_u64ne_to_le(pWav, chunkSizeDATA);
+    } else if (pFormat->container == drwav_container_rf64) {
+        runningPos += drwav__write(pWav, "data", 4);
+        runningPos += drwav__write_u32ne_to_le(pWav, 0xFFFFFFFF);   /* Always set to 0xFFFFFFFF for RF64. The true size of the data chunk is specified in the ds64 chunk. */
+    }
+
+    /*
+    The runningPos variable is incremented in the section above but is left unused which is causing some static analysis tools to detect it
+    as a dead store. I'm leaving this as-is for safety just in case I want to expand this function later to include other tags and want to
+    keep track of the running position for whatever reason. The line below should silence the static analysis tools.
+    */
+    (void)runningPos;
+
+    /* Set some properties for the client's convenience. */
+    pWav->container = pFormat->container;
+    pWav->channels = (drwav_uint16)pFormat->channels;
+    pWav->sampleRate = pFormat->sampleRate;
+    pWav->bitsPerSample = (drwav_uint16)pFormat->bitsPerSample;
+    pWav->translatedFormatTag = (drwav_uint16)pFormat->format;
+
+    return DRWAV_TRUE;
+}
+
+
+DRWAV_API drwav_bool32 drwav_init_write(drwav* pWav, const drwav_data_format* pFormat, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    if (!drwav_preinit_write(pWav, pFormat, DRWAV_FALSE, onWrite, onSeek, pUserData, pAllocationCallbacks)) {
+        return DRWAV_FALSE;
+    }
+
+    return drwav_init_write__internal(pWav, pFormat, 0);               /* DRWAV_FALSE = Not Sequential */
+}
+
+DRWAV_API drwav_bool32 drwav_init_write_sequential(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    if (!drwav_preinit_write(pWav, pFormat, DRWAV_TRUE, onWrite, NULL, pUserData, pAllocationCallbacks)) {
+        return DRWAV_FALSE;
+    }
+
+    return drwav_init_write__internal(pWav, pFormat, totalSampleCount); /* DRWAV_TRUE = Sequential */
+}
+
+DRWAV_API drwav_bool32 drwav_init_write_sequential_pcm_frames(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    if (pFormat == NULL) {
+        return DRWAV_FALSE;
+    }
+
+    return drwav_init_write_sequential(pWav, pFormat, totalPCMFrameCount*pFormat->channels, onWrite, pUserData, pAllocationCallbacks);
+}
+
+DRWAV_API drwav_uint64 drwav_target_write_size_bytes(const drwav_data_format* pFormat, drwav_uint64 totalSampleCount)
+{
+    /* Casting totalSampleCount to drwav_int64 for VC6 compatibility. No issues in practice because nobody is going to exhaust the whole 63 bits. */
+    drwav_uint64 targetDataSizeBytes = (drwav_uint64)((drwav_int64)totalSampleCount * pFormat->channels * pFormat->bitsPerSample/8.0);
+    drwav_uint64 riffChunkSizeBytes;
+    drwav_uint64 fileSizeBytes = 0;
+
+    if (pFormat->container == drwav_container_riff) {
+        riffChunkSizeBytes = drwav__riff_chunk_size_riff(targetDataSizeBytes);
+        fileSizeBytes = (8 + riffChunkSizeBytes);   /* +8 because WAV doesn't include the size of the ChunkID and ChunkSize fields. */
+    } else if (pFormat->container == drwav_container_w64) {
+        riffChunkSizeBytes = drwav__riff_chunk_size_w64(targetDataSizeBytes);
+        fileSizeBytes = riffChunkSizeBytes;
+    } else if (pFormat->container == drwav_container_rf64) {
+        riffChunkSizeBytes = drwav__riff_chunk_size_rf64(targetDataSizeBytes);
+        fileSizeBytes = (8 + riffChunkSizeBytes);   /* +8 because WAV doesn't include the size of the ChunkID and ChunkSize fields. */
+    }
+
+    return fileSizeBytes;
+}
+
+
+#ifndef DR_WAV_NO_STDIO
+
+/* drwav_result_from_errno() is only used for fopen() and wfopen() so putting it inside DR_WAV_NO_STDIO for now. If something else needs this later we can move it out. */
+#include <errno.h>
+static drwav_result drwav_result_from_errno(int e)
+{
+    switch (e)
+    {
+        case 0: return DRWAV_SUCCESS;
+    #ifdef EPERM
+        case EPERM: return DRWAV_INVALID_OPERATION;
+    #endif
+    #ifdef ENOENT
+        case ENOENT: return DRWAV_DOES_NOT_EXIST;
+    #endif
+    #ifdef ESRCH
+        case ESRCH: return DRWAV_DOES_NOT_EXIST;
+    #endif
+    #ifdef EINTR
+        case EINTR: return DRWAV_INTERRUPT;
+    #endif
+    #ifdef EIO
+        case EIO: return DRWAV_IO_ERROR;
+    #endif
+    #ifdef ENXIO
+        case ENXIO: return DRWAV_DOES_NOT_EXIST;
+    #endif
+    #ifdef E2BIG
+        case E2BIG: return DRWAV_INVALID_ARGS;
+    #endif
+    #ifdef ENOEXEC
+        case ENOEXEC: return DRWAV_INVALID_FILE;
+    #endif
+    #ifdef EBADF
+        case EBADF: return DRWAV_INVALID_FILE;
+    #endif
+    #ifdef ECHILD
+        case ECHILD: return DRWAV_ERROR;
+    #endif
+    #ifdef EAGAIN
+        case EAGAIN: return DRWAV_UNAVAILABLE;
+    #endif
+    #ifdef ENOMEM
+        case ENOMEM: return DRWAV_OUT_OF_MEMORY;
+    #endif
+    #ifdef EACCES
+        case EACCES: return DRWAV_ACCESS_DENIED;
+    #endif
+    #ifdef EFAULT
+        case EFAULT: return DRWAV_BAD_ADDRESS;
+    #endif
+    #ifdef ENOTBLK
+        case ENOTBLK: return DRWAV_ERROR;
+    #endif
+    #ifdef EBUSY
+        case EBUSY: return DRWAV_BUSY;
+    #endif
+    #ifdef EEXIST
+        case EEXIST: return DRWAV_ALREADY_EXISTS;
+    #endif
+    #ifdef EXDEV
+        case EXDEV: return DRWAV_ERROR;
+    #endif
+    #ifdef ENODEV
+        case ENODEV: return DRWAV_DOES_NOT_EXIST;
+    #endif
+    #ifdef ENOTDIR
+        case ENOTDIR: return DRWAV_NOT_DIRECTORY;
+    #endif
+    #ifdef EISDIR
+        case EISDIR: return DRWAV_IS_DIRECTORY;
+    #endif
+    #ifdef EINVAL
+        case EINVAL: return DRWAV_INVALID_ARGS;
+    #endif
+    #ifdef ENFILE
+        case ENFILE: return DRWAV_TOO_MANY_OPEN_FILES;
+    #endif
+    #ifdef EMFILE
+        case EMFILE: return DRWAV_TOO_MANY_OPEN_FILES;
+    #endif
+    #ifdef ENOTTY
+        case ENOTTY: return DRWAV_INVALID_OPERATION;
+    #endif
+    #ifdef ETXTBSY
+        case ETXTBSY: return DRWAV_BUSY;
+    #endif
+    #ifdef EFBIG
+        case EFBIG: return DRWAV_TOO_BIG;
+    #endif
+    #ifdef ENOSPC
+        case ENOSPC: return DRWAV_NO_SPACE;
+    #endif
+    #ifdef ESPIPE
+        case ESPIPE: return DRWAV_BAD_SEEK;
+    #endif
+    #ifdef EROFS
+        case EROFS: return DRWAV_ACCESS_DENIED;
+    #endif
+    #ifdef EMLINK
+        case EMLINK: return DRWAV_TOO_MANY_LINKS;
+    #endif
+    #ifdef EPIPE
+        case EPIPE: return DRWAV_BAD_PIPE;
+    #endif
+    #ifdef EDOM
+        case EDOM: return DRWAV_OUT_OF_RANGE;
+    #endif
+    #ifdef ERANGE
+        case ERANGE: return DRWAV_OUT_OF_RANGE;
+    #endif
+    #ifdef EDEADLK
+        case EDEADLK: return DRWAV_DEADLOCK;
+    #endif
+    #ifdef ENAMETOOLONG
+        case ENAMETOOLONG: return DRWAV_PATH_TOO_LONG;
+    #endif
+    #ifdef ENOLCK
+        case ENOLCK: return DRWAV_ERROR;
+    #endif
+    #ifdef ENOSYS
+        case ENOSYS: return DRWAV_NOT_IMPLEMENTED;
+    #endif
+    #ifdef ENOTEMPTY
+        case ENOTEMPTY: return DRWAV_DIRECTORY_NOT_EMPTY;
+    #endif
+    #ifdef ELOOP
+        case ELOOP: return DRWAV_TOO_MANY_LINKS;
+    #endif
+    #ifdef ENOMSG
+        case ENOMSG: return DRWAV_NO_MESSAGE;
+    #endif
+    #ifdef EIDRM
+        case EIDRM: return DRWAV_ERROR;
+    #endif
+    #ifdef ECHRNG
+        case ECHRNG: return DRWAV_ERROR;
+    #endif
+    #ifdef EL2NSYNC
+        case EL2NSYNC: return DRWAV_ERROR;
+    #endif
+    #ifdef EL3HLT
+        case EL3HLT: return DRWAV_ERROR;
+    #endif
+    #ifdef EL3RST
+        case EL3RST: return DRWAV_ERROR;
+    #endif
+    #ifdef ELNRNG
+        case ELNRNG: return DRWAV_OUT_OF_RANGE;
+    #endif
+    #ifdef EUNATCH
+        case EUNATCH: return DRWAV_ERROR;
+    #endif
+    #ifdef ENOCSI
+        case ENOCSI: return DRWAV_ERROR;
+    #endif
+    #ifdef EL2HLT
+        case EL2HLT: return DRWAV_ERROR;
+    #endif
+    #ifdef EBADE
+        case EBADE: return DRWAV_ERROR;
+    #endif
+    #ifdef EBADR
+        case EBADR: return DRWAV_ERROR;
+    #endif
+    #ifdef EXFULL
+        case EXFULL: return DRWAV_ERROR;
+    #endif
+    #ifdef ENOANO
+        case ENOANO: return DRWAV_ERROR;
+    #endif
+    #ifdef EBADRQC
+        case EBADRQC: return DRWAV_ERROR;
+    #endif
+    #ifdef EBADSLT
+        case EBADSLT: return DRWAV_ERROR;
+    #endif
+    #ifdef EBFONT
+        case EBFONT: return DRWAV_INVALID_FILE;
+    #endif
+    #ifdef ENOSTR
+        case ENOSTR: return DRWAV_ERROR;
+    #endif
+    #ifdef ENODATA
+        case ENODATA: return DRWAV_NO_DATA_AVAILABLE;
+    #endif
+    #ifdef ETIME
+        case ETIME: return DRWAV_TIMEOUT;
+    #endif
+    #ifdef ENOSR
+        case ENOSR: return DRWAV_NO_DATA_AVAILABLE;
+    #endif
+    #ifdef ENONET
+        case ENONET: return DRWAV_NO_NETWORK;
+    #endif
+    #ifdef ENOPKG
+        case ENOPKG: return DRWAV_ERROR;
+    #endif
+    #ifdef EREMOTE
+        case EREMOTE: return DRWAV_ERROR;
+    #endif
+    #ifdef ENOLINK
+        case ENOLINK: return DRWAV_ERROR;
+    #endif
+    #ifdef EADV
+        case EADV: return DRWAV_ERROR;
+    #endif
+    #ifdef ESRMNT
+        case ESRMNT: return DRWAV_ERROR;
+    #endif
+    #ifdef ECOMM
+        case ECOMM: return DRWAV_ERROR;
+    #endif
+    #ifdef EPROTO
+        case EPROTO: return DRWAV_ERROR;
+    #endif
+    #ifdef EMULTIHOP
+        case EMULTIHOP: return DRWAV_ERROR;
+    #endif
+    #ifdef EDOTDOT
+        case EDOTDOT: return DRWAV_ERROR;
+    #endif
+    #ifdef EBADMSG
+        case EBADMSG: return DRWAV_BAD_MESSAGE;
+    #endif
+    #ifdef EOVERFLOW
+        case EOVERFLOW: return DRWAV_TOO_BIG;
+    #endif
+    #ifdef ENOTUNIQ
+        case ENOTUNIQ: return DRWAV_NOT_UNIQUE;
+    #endif
+    #ifdef EBADFD
+        case EBADFD: return DRWAV_ERROR;
+    #endif
+    #ifdef EREMCHG
+        case EREMCHG: return DRWAV_ERROR;
+    #endif
+    #ifdef ELIBACC
+        case ELIBACC: return DRWAV_ACCESS_DENIED;
+    #endif
+    #ifdef ELIBBAD
+        case ELIBBAD: return DRWAV_INVALID_FILE;
+    #endif
+    #ifdef ELIBSCN
+        case ELIBSCN: return DRWAV_INVALID_FILE;
+    #endif
+    #ifdef ELIBMAX
+        case ELIBMAX: return DRWAV_ERROR;
+    #endif
+    #ifdef ELIBEXEC
+        case ELIBEXEC: return DRWAV_ERROR;
+    #endif
+    #ifdef EILSEQ
+        case EILSEQ: return DRWAV_INVALID_DATA;
+    #endif
+    #ifdef ERESTART
+        case ERESTART: return DRWAV_ERROR;
+    #endif
+    #ifdef ESTRPIPE
+        case ESTRPIPE: return DRWAV_ERROR;
+    #endif
+    #ifdef EUSERS
+        case EUSERS: return DRWAV_ERROR;
+    #endif
+    #ifdef ENOTSOCK
+        case ENOTSOCK: return DRWAV_NOT_SOCKET;
+    #endif
+    #ifdef EDESTADDRREQ
+        case EDESTADDRREQ: return DRWAV_NO_ADDRESS;
+    #endif
+    #ifdef EMSGSIZE
+        case EMSGSIZE: return DRWAV_TOO_BIG;
+    #endif
+    #ifdef EPROTOTYPE
+        case EPROTOTYPE: return DRWAV_BAD_PROTOCOL;
+    #endif
+    #ifdef ENOPROTOOPT
+        case ENOPROTOOPT: return DRWAV_PROTOCOL_UNAVAILABLE;
+    #endif
+    #ifdef EPROTONOSUPPORT
+        case EPROTONOSUPPORT: return DRWAV_PROTOCOL_NOT_SUPPORTED;
+    #endif
+    #ifdef ESOCKTNOSUPPORT
+        case ESOCKTNOSUPPORT: return DRWAV_SOCKET_NOT_SUPPORTED;
+    #endif
+    #ifdef EOPNOTSUPP
+        case EOPNOTSUPP: return DRWAV_INVALID_OPERATION;
+    #endif
+    #ifdef EPFNOSUPPORT
+        case EPFNOSUPPORT: return DRWAV_PROTOCOL_FAMILY_NOT_SUPPORTED;
+    #endif
+    #ifdef EAFNOSUPPORT
+        case EAFNOSUPPORT: return DRWAV_ADDRESS_FAMILY_NOT_SUPPORTED;
+    #endif
+    #ifdef EADDRINUSE
+        case EADDRINUSE: return DRWAV_ALREADY_IN_USE;
+    #endif
+    #ifdef EADDRNOTAVAIL
+        case EADDRNOTAVAIL: return DRWAV_ERROR;
+    #endif
+    #ifdef ENETDOWN
+        case ENETDOWN: return DRWAV_NO_NETWORK;
+    #endif
+    #ifdef ENETUNREACH
+        case ENETUNREACH: return DRWAV_NO_NETWORK;
+    #endif
+    #ifdef ENETRESET
+        case ENETRESET: return DRWAV_NO_NETWORK;
+    #endif
+    #ifdef ECONNABORTED
+        case ECONNABORTED: return DRWAV_NO_NETWORK;
+    #endif
+    #ifdef ECONNRESET
+        case ECONNRESET: return DRWAV_CONNECTION_RESET;
+    #endif
+    #ifdef ENOBUFS
+        case ENOBUFS: return DRWAV_NO_SPACE;
+    #endif
+    #ifdef EISCONN
+        case EISCONN: return DRWAV_ALREADY_CONNECTED;
+    #endif
+    #ifdef ENOTCONN
+        case ENOTCONN: return DRWAV_NOT_CONNECTED;
+    #endif
+    #ifdef ESHUTDOWN
+        case ESHUTDOWN: return DRWAV_ERROR;
+    #endif
+    #ifdef ETOOMANYREFS
+        case ETOOMANYREFS: return DRWAV_ERROR;
+    #endif
+    #ifdef ETIMEDOUT
+        case ETIMEDOUT: return DRWAV_TIMEOUT;
+    #endif
+    #ifdef ECONNREFUSED
+        case ECONNREFUSED: return DRWAV_CONNECTION_REFUSED;
+    #endif
+    #ifdef EHOSTDOWN
+        case EHOSTDOWN: return DRWAV_NO_HOST;
+    #endif
+    #ifdef EHOSTUNREACH
+        case EHOSTUNREACH: return DRWAV_NO_HOST;
+    #endif
+    #ifdef EALREADY
+        case EALREADY: return DRWAV_IN_PROGRESS;
+    #endif
+    #ifdef EINPROGRESS
+        case EINPROGRESS: return DRWAV_IN_PROGRESS;
+    #endif
+    #ifdef ESTALE
+        case ESTALE: return DRWAV_INVALID_FILE;
+    #endif
+    #ifdef EUCLEAN
+        case EUCLEAN: return DRWAV_ERROR;
+    #endif
+    #ifdef ENOTNAM
+        case ENOTNAM: return DRWAV_ERROR;
+    #endif
+    #ifdef ENAVAIL
+        case ENAVAIL: return DRWAV_ERROR;
+    #endif
+    #ifdef EISNAM
+        case EISNAM: return DRWAV_ERROR;
+    #endif
+    #ifdef EREMOTEIO
+        case EREMOTEIO: return DRWAV_IO_ERROR;
+    #endif
+    #ifdef EDQUOT
+        case EDQUOT: return DRWAV_NO_SPACE;
+    #endif
+    #ifdef ENOMEDIUM
+        case ENOMEDIUM: return DRWAV_DOES_NOT_EXIST;
+    #endif
+    #ifdef EMEDIUMTYPE
+        case EMEDIUMTYPE: return DRWAV_ERROR;
+    #endif
+    #ifdef ECANCELED
+        case ECANCELED: return DRWAV_CANCELLED;
+    #endif
+    #ifdef ENOKEY
+        case ENOKEY: return DRWAV_ERROR;
+    #endif
+    #ifdef EKEYEXPIRED
+        case EKEYEXPIRED: return DRWAV_ERROR;
+    #endif
+    #ifdef EKEYREVOKED
+        case EKEYREVOKED: return DRWAV_ERROR;
+    #endif
+    #ifdef EKEYREJECTED
+        case EKEYREJECTED: return DRWAV_ERROR;
+    #endif
+    #ifdef EOWNERDEAD
+        case EOWNERDEAD: return DRWAV_ERROR;
+    #endif
+    #ifdef ENOTRECOVERABLE
+        case ENOTRECOVERABLE: return DRWAV_ERROR;
+    #endif
+    #ifdef ERFKILL
+        case ERFKILL: return DRWAV_ERROR;
+    #endif
+    #ifdef EHWPOISON
+        case EHWPOISON: return DRWAV_ERROR;
+    #endif
+        default: return DRWAV_ERROR;
+    }
+}
+
+static drwav_result drwav_fopen(FILE** ppFile, const char* pFilePath, const char* pOpenMode)
+{
+#if _MSC_VER && _MSC_VER >= 1400
+    errno_t err;
+#endif
+
+    if (ppFile != NULL) {
+        *ppFile = NULL;  /* Safety. */
+    }
+
+    if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) {
+        return DRWAV_INVALID_ARGS;
+    }
+
+#if _MSC_VER && _MSC_VER >= 1400
+    err = fopen_s(ppFile, pFilePath, pOpenMode);
+    if (err != 0) {
+        return drwav_result_from_errno(err);
+    }
+#else
+#if defined(_WIN32) || defined(__APPLE__)
+    *ppFile = fopen(pFilePath, pOpenMode);
+#else
+    #if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS == 64 && defined(_LARGEFILE64_SOURCE)
+        *ppFile = fopen64(pFilePath, pOpenMode);
+    #else
+        *ppFile = fopen(pFilePath, pOpenMode);
+    #endif
+#endif
+    if (*ppFile == NULL) {
+        drwav_result result = drwav_result_from_errno(errno);
+        if (result == DRWAV_SUCCESS) {
+            result = DRWAV_ERROR;   /* Just a safety check to make sure we never ever return success when pFile == NULL. */
+        }
+
+        return result;
+    }
+#endif
+
+    return DRWAV_SUCCESS;
+}
+
+/*
+_wfopen() isn't always available in all compilation environments.
+
+    * Windows only.
+    * MSVC seems to support it universally as far back as VC6 from what I can tell (haven't checked further back).
+    * MinGW-64 (both 32- and 64-bit) seems to support it.
+    * MinGW wraps it in !defined(__STRICT_ANSI__).
+    * OpenWatcom wraps it in !defined(_NO_EXT_KEYS).
+
+This can be reviewed as compatibility issues arise. The preference is to use _wfopen_s() and _wfopen() as opposed to the wcsrtombs()
+fallback, so if you notice your compiler not detecting this properly I'm happy to look at adding support.
+*/
+#if defined(_WIN32)
+    #if defined(_MSC_VER) || defined(__MINGW64__) || (!defined(__STRICT_ANSI__) && !defined(_NO_EXT_KEYS))
+        #define DRWAV_HAS_WFOPEN
+    #endif
+#endif
+
+static drwav_result drwav_wfopen(FILE** ppFile, const wchar_t* pFilePath, const wchar_t* pOpenMode, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    if (ppFile != NULL) {
+        *ppFile = NULL;  /* Safety. */
+    }
+
+    if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) {
+        return DRWAV_INVALID_ARGS;
+    }
+
+#if defined(DRWAV_HAS_WFOPEN)
+    {
+        /* Use _wfopen() on Windows. */
+    #if defined(_MSC_VER) && _MSC_VER >= 1400
+        errno_t err = _wfopen_s(ppFile, pFilePath, pOpenMode);
+        if (err != 0) {
+            return drwav_result_from_errno(err);
+        }
+    #else
+        *ppFile = _wfopen(pFilePath, pOpenMode);
+        if (*ppFile == NULL) {
+            return drwav_result_from_errno(errno);
+        }
+    #endif
+        (void)pAllocationCallbacks;
+    }
+#else
+    /*
+    Use fopen() on anything other than Windows. Requires a conversion. This is annoying because fopen() is locale specific. The only real way I can
+    think of to do this is with wcsrtombs(). Note that wcstombs() is apparently not thread-safe because it uses a static global mbstate_t object for
+    maintaining state. I've checked this with -std=c89 and it works, but if somebody get's a compiler error I'll look into improving compatibility.
+    */
+    {
+        mbstate_t mbs;
+        size_t lenMB;
+        const wchar_t* pFilePathTemp = pFilePath;
+        char* pFilePathMB = NULL;
+        char pOpenModeMB[32] = {0};
+
+        /* Get the length first. */
+        DRWAV_ZERO_OBJECT(&mbs);
+        lenMB = wcsrtombs(NULL, &pFilePathTemp, 0, &mbs);
+        if (lenMB == (size_t)-1) {
+            return drwav_result_from_errno(errno);
+        }
+
+        pFilePathMB = (char*)drwav__malloc_from_callbacks(lenMB + 1, pAllocationCallbacks);
+        if (pFilePathMB == NULL) {
+            return DRWAV_OUT_OF_MEMORY;
+        }
+
+        pFilePathTemp = pFilePath;
+        DRWAV_ZERO_OBJECT(&mbs);
+        wcsrtombs(pFilePathMB, &pFilePathTemp, lenMB + 1, &mbs);
+
+        /* The open mode should always consist of ASCII characters so we should be able to do a trivial conversion. */
+        {
+            size_t i = 0;
+            for (;;) {
+                if (pOpenMode[i] == 0) {
+                    pOpenModeMB[i] = '\0';
+                    break;
+                }
+
+                pOpenModeMB[i] = (char)pOpenMode[i];
+                i += 1;
+            }
+        }
+
+        *ppFile = fopen(pFilePathMB, pOpenModeMB);
+
+        drwav__free_from_callbacks(pFilePathMB, pAllocationCallbacks);
+    }
+
+    if (*ppFile == NULL) {
+        return DRWAV_ERROR;
+    }
+#endif
+
+    return DRWAV_SUCCESS;
+}
+
+
+static size_t drwav__on_read_stdio(void* pUserData, void* pBufferOut, size_t bytesToRead)
+{
+    return fread(pBufferOut, 1, bytesToRead, (FILE*)pUserData);
+}
+
+static size_t drwav__on_write_stdio(void* pUserData, const void* pData, size_t bytesToWrite)
+{
+    return fwrite(pData, 1, bytesToWrite, (FILE*)pUserData);
+}
+
+static drwav_bool32 drwav__on_seek_stdio(void* pUserData, int offset, drwav_seek_origin origin)
+{
+    return fseek((FILE*)pUserData, offset, (origin == drwav_seek_origin_current) ? SEEK_CUR : SEEK_SET) == 0;
+}
+
+DRWAV_API drwav_bool32 drwav_init_file(drwav* pWav, const char* filename, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    return drwav_init_file_ex(pWav, filename, NULL, NULL, 0, pAllocationCallbacks);
+}
+
+
+static drwav_bool32 drwav_init_file__internal_FILE(drwav* pWav, FILE* pFile, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    drwav_bool32 result;
+
+    result = drwav_preinit(pWav, drwav__on_read_stdio, drwav__on_seek_stdio, (void*)pFile, pAllocationCallbacks);
+    if (result != DRWAV_TRUE) {
+        fclose(pFile);
+        return result;
+    }
+
+    result = drwav_init__internal(pWav, onChunk, pChunkUserData, flags);
+    if (result != DRWAV_TRUE) {
+        fclose(pFile);
+        return result;
+    }
+
+    return DRWAV_TRUE;
+}
+
+DRWAV_API drwav_bool32 drwav_init_file_ex(drwav* pWav, const char* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    FILE* pFile;
+    if (drwav_fopen(&pFile, filename, "rb") != DRWAV_SUCCESS) {
+        return DRWAV_FALSE;
+    }
+
+    /* This takes ownership of the FILE* object. */
+    return drwav_init_file__internal_FILE(pWav, pFile, onChunk, pChunkUserData, flags, pAllocationCallbacks);
+}
+
+DRWAV_API drwav_bool32 drwav_init_file_w(drwav* pWav, const wchar_t* filename, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    return drwav_init_file_ex_w(pWav, filename, NULL, NULL, 0, pAllocationCallbacks);
+}
+
+DRWAV_API drwav_bool32 drwav_init_file_ex_w(drwav* pWav, const wchar_t* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    FILE* pFile;
+    if (drwav_wfopen(&pFile, filename, L"rb", pAllocationCallbacks) != DRWAV_SUCCESS) {
+        return DRWAV_FALSE;
+    }
+
+    /* This takes ownership of the FILE* object. */
+    return drwav_init_file__internal_FILE(pWav, pFile, onChunk, pChunkUserData, flags, pAllocationCallbacks);
+}
+
+
+static drwav_bool32 drwav_init_file_write__internal_FILE(drwav* pWav, FILE* pFile, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    drwav_bool32 result;
+
+    result = drwav_preinit_write(pWav, pFormat, isSequential, drwav__on_write_stdio, drwav__on_seek_stdio, (void*)pFile, pAllocationCallbacks);
+    if (result != DRWAV_TRUE) {
+        fclose(pFile);
+        return result;
+    }
+
+    result = drwav_init_write__internal(pWav, pFormat, totalSampleCount);
+    if (result != DRWAV_TRUE) {
+        fclose(pFile);
+        return result;
+    }
+
+    return DRWAV_TRUE;
+}
+
+static drwav_bool32 drwav_init_file_write__internal(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    FILE* pFile;
+    if (drwav_fopen(&pFile, filename, "wb") != DRWAV_SUCCESS) {
+        return DRWAV_FALSE;
+    }
+
+    /* This takes ownership of the FILE* object. */
+    return drwav_init_file_write__internal_FILE(pWav, pFile, pFormat, totalSampleCount, isSequential, pAllocationCallbacks);
+}
+
+static drwav_bool32 drwav_init_file_write_w__internal(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    FILE* pFile;
+    if (drwav_wfopen(&pFile, filename, L"wb", pAllocationCallbacks) != DRWAV_SUCCESS) {
+        return DRWAV_FALSE;
+    }
+
+    /* This takes ownership of the FILE* object. */
+    return drwav_init_file_write__internal_FILE(pWav, pFile, pFormat, totalSampleCount, isSequential, pAllocationCallbacks);
+}
+
+DRWAV_API drwav_bool32 drwav_init_file_write(drwav* pWav, const char* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    return drwav_init_file_write__internal(pWav, filename, pFormat, 0, DRWAV_FALSE, pAllocationCallbacks);
+}
+
+DRWAV_API drwav_bool32 drwav_init_file_write_sequential(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    return drwav_init_file_write__internal(pWav, filename, pFormat, totalSampleCount, DRWAV_TRUE, pAllocationCallbacks);
+}
+
+DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    if (pFormat == NULL) {
+        return DRWAV_FALSE;
+    }
+
+    return drwav_init_file_write_sequential(pWav, filename, pFormat, totalPCMFrameCount*pFormat->channels, pAllocationCallbacks);
+}
+
+DRWAV_API drwav_bool32 drwav_init_file_write_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    return drwav_init_file_write_w__internal(pWav, filename, pFormat, 0, DRWAV_FALSE, pAllocationCallbacks);
+}
+
+DRWAV_API drwav_bool32 drwav_init_file_write_sequential_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    return drwav_init_file_write_w__internal(pWav, filename, pFormat, totalSampleCount, DRWAV_TRUE, pAllocationCallbacks);
+}
+
+DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    if (pFormat == NULL) {
+        return DRWAV_FALSE;
+    }
+
+    return drwav_init_file_write_sequential_w(pWav, filename, pFormat, totalPCMFrameCount*pFormat->channels, pAllocationCallbacks);
+}
+#endif  /* DR_WAV_NO_STDIO */
+
+
+static size_t drwav__on_read_memory(void* pUserData, void* pBufferOut, size_t bytesToRead)
+{
+    drwav* pWav = (drwav*)pUserData;
+    size_t bytesRemaining;
+
+    DRWAV_ASSERT(pWav != NULL);
+    DRWAV_ASSERT(pWav->memoryStream.dataSize >= pWav->memoryStream.currentReadPos);
+
+    bytesRemaining = pWav->memoryStream.dataSize - pWav->memoryStream.currentReadPos;
+    if (bytesToRead > bytesRemaining) {
+        bytesToRead = bytesRemaining;
+    }
+
+    if (bytesToRead > 0) {
+        DRWAV_COPY_MEMORY(pBufferOut, pWav->memoryStream.data + pWav->memoryStream.currentReadPos, bytesToRead);
+        pWav->memoryStream.currentReadPos += bytesToRead;
+    }
+
+    return bytesToRead;
+}
+
+static drwav_bool32 drwav__on_seek_memory(void* pUserData, int offset, drwav_seek_origin origin)
+{
+    drwav* pWav = (drwav*)pUserData;
+    DRWAV_ASSERT(pWav != NULL);
+
+    if (origin == drwav_seek_origin_current) {
+        if (offset > 0) {
+            if (pWav->memoryStream.currentReadPos + offset > pWav->memoryStream.dataSize) {
+                return DRWAV_FALSE; /* Trying to seek too far forward. */
+            }
+        } else {
+            if (pWav->memoryStream.currentReadPos < (size_t)-offset) {
+                return DRWAV_FALSE; /* Trying to seek too far backwards. */
+            }
+        }
+
+        /* This will never underflow thanks to the clamps above. */
+        pWav->memoryStream.currentReadPos += offset;
+    } else {
+        if ((drwav_uint32)offset <= pWav->memoryStream.dataSize) {
+            pWav->memoryStream.currentReadPos = offset;
+        } else {
+            return DRWAV_FALSE; /* Trying to seek too far forward. */
+        }
+    }
+    
+    return DRWAV_TRUE;
+}
+
+static size_t drwav__on_write_memory(void* pUserData, const void* pDataIn, size_t bytesToWrite)
+{
+    drwav* pWav = (drwav*)pUserData;
+    size_t bytesRemaining;
+
+    DRWAV_ASSERT(pWav != NULL);
+    DRWAV_ASSERT(pWav->memoryStreamWrite.dataCapacity >= pWav->memoryStreamWrite.currentWritePos);
+
+    bytesRemaining = pWav->memoryStreamWrite.dataCapacity - pWav->memoryStreamWrite.currentWritePos;
+    if (bytesRemaining < bytesToWrite) {
+        /* Need to reallocate. */
+        void* pNewData;
+        size_t newDataCapacity = (pWav->memoryStreamWrite.dataCapacity == 0) ? 256 : pWav->memoryStreamWrite.dataCapacity * 2;
+
+        /* If doubling wasn't enough, just make it the minimum required size to write the data. */
+        if ((newDataCapacity - pWav->memoryStreamWrite.currentWritePos) < bytesToWrite) {
+            newDataCapacity = pWav->memoryStreamWrite.currentWritePos + bytesToWrite;
+        }
+
+        pNewData = drwav__realloc_from_callbacks(*pWav->memoryStreamWrite.ppData, newDataCapacity, pWav->memoryStreamWrite.dataCapacity, &pWav->allocationCallbacks);
+        if (pNewData == NULL) {
+            return 0;
+        }
+
+        *pWav->memoryStreamWrite.ppData = pNewData;
+        pWav->memoryStreamWrite.dataCapacity = newDataCapacity;
+    }
+
+    DRWAV_COPY_MEMORY(((drwav_uint8*)(*pWav->memoryStreamWrite.ppData)) + pWav->memoryStreamWrite.currentWritePos, pDataIn, bytesToWrite);
+
+    pWav->memoryStreamWrite.currentWritePos += bytesToWrite;
+    if (pWav->memoryStreamWrite.dataSize < pWav->memoryStreamWrite.currentWritePos) {
+        pWav->memoryStreamWrite.dataSize = pWav->memoryStreamWrite.currentWritePos;
+    }
+
+    *pWav->memoryStreamWrite.pDataSize = pWav->memoryStreamWrite.dataSize;
+
+    return bytesToWrite;
+}
+
+static drwav_bool32 drwav__on_seek_memory_write(void* pUserData, int offset, drwav_seek_origin origin)
+{
+    drwav* pWav = (drwav*)pUserData;
+    DRWAV_ASSERT(pWav != NULL);
+
+    if (origin == drwav_seek_origin_current) {
+        if (offset > 0) {
+            if (pWav->memoryStreamWrite.currentWritePos + offset > pWav->memoryStreamWrite.dataSize) {
+                offset = (int)(pWav->memoryStreamWrite.dataSize - pWav->memoryStreamWrite.currentWritePos);  /* Trying to seek too far forward. */
+            }
+        } else {
+            if (pWav->memoryStreamWrite.currentWritePos < (size_t)-offset) {
+                offset = -(int)pWav->memoryStreamWrite.currentWritePos;  /* Trying to seek too far backwards. */
+            }
+        }
+
+        /* This will never underflow thanks to the clamps above. */
+        pWav->memoryStreamWrite.currentWritePos += offset;
+    } else {
+        if ((drwav_uint32)offset <= pWav->memoryStreamWrite.dataSize) {
+            pWav->memoryStreamWrite.currentWritePos = offset;
+        } else {
+            pWav->memoryStreamWrite.currentWritePos = pWav->memoryStreamWrite.dataSize;  /* Trying to seek too far forward. */
+        }
+    }
+    
+    return DRWAV_TRUE;
+}
+
+DRWAV_API drwav_bool32 drwav_init_memory(drwav* pWav, const void* data, size_t dataSize, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    return drwav_init_memory_ex(pWav, data, dataSize, NULL, NULL, 0, pAllocationCallbacks);
+}
+
+DRWAV_API drwav_bool32 drwav_init_memory_ex(drwav* pWav, const void* data, size_t dataSize, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    if (data == NULL || dataSize == 0) {
+        return DRWAV_FALSE;
+    }
+
+    if (!drwav_preinit(pWav, drwav__on_read_memory, drwav__on_seek_memory, pWav, pAllocationCallbacks)) {
+        return DRWAV_FALSE;
+    }
+
+    pWav->memoryStream.data = (const drwav_uint8*)data;
+    pWav->memoryStream.dataSize = dataSize;
+    pWav->memoryStream.currentReadPos = 0;
+
+    return drwav_init__internal(pWav, onChunk, pChunkUserData, flags);
+}
+
+
+static drwav_bool32 drwav_init_memory_write__internal(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    if (ppData == NULL || pDataSize == NULL) {
+        return DRWAV_FALSE;
+    }
+
+    *ppData = NULL; /* Important because we're using realloc()! */
+    *pDataSize = 0;
+
+    if (!drwav_preinit_write(pWav, pFormat, isSequential, drwav__on_write_memory, drwav__on_seek_memory_write, pWav, pAllocationCallbacks)) {
+        return DRWAV_FALSE;
+    }
+
+    pWav->memoryStreamWrite.ppData = ppData;
+    pWav->memoryStreamWrite.pDataSize = pDataSize;
+    pWav->memoryStreamWrite.dataSize = 0;
+    pWav->memoryStreamWrite.dataCapacity = 0;
+    pWav->memoryStreamWrite.currentWritePos = 0;
+
+    return drwav_init_write__internal(pWav, pFormat, totalSampleCount);
+}
+
+DRWAV_API drwav_bool32 drwav_init_memory_write(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    return drwav_init_memory_write__internal(pWav, ppData, pDataSize, pFormat, 0, DRWAV_FALSE, pAllocationCallbacks);
+}
+
+DRWAV_API drwav_bool32 drwav_init_memory_write_sequential(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    return drwav_init_memory_write__internal(pWav, ppData, pDataSize, pFormat, totalSampleCount, DRWAV_TRUE, pAllocationCallbacks);
+}
+
+DRWAV_API drwav_bool32 drwav_init_memory_write_sequential_pcm_frames(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    if (pFormat == NULL) {
+        return DRWAV_FALSE;
+    }
+
+    return drwav_init_memory_write_sequential(pWav, ppData, pDataSize, pFormat, totalPCMFrameCount*pFormat->channels, pAllocationCallbacks);
+}
+
+
+
+DRWAV_API drwav_result drwav_uninit(drwav* pWav)
+{
+    drwav_result result = DRWAV_SUCCESS;
+
+    if (pWav == NULL) {
+        return DRWAV_INVALID_ARGS;
+    }
+
+    /*
+    If the drwav object was opened in write mode we'll need to finalize a few things:
+      - Make sure the "data" chunk is aligned to 16-bits for RIFF containers, or 64 bits for W64 containers.
+      - Set the size of the "data" chunk.
+    */
+    if (pWav->onWrite != NULL) {
+        drwav_uint32 paddingSize = 0;
+
+        /* Padding. Do not adjust pWav->dataChunkDataSize - this should not include the padding. */
+        if (pWav->container == drwav_container_riff || pWav->container == drwav_container_rf64) {
+            paddingSize = drwav__chunk_padding_size_riff(pWav->dataChunkDataSize);
+        } else {
+            paddingSize = drwav__chunk_padding_size_w64(pWav->dataChunkDataSize);
+        }
+        
+        if (paddingSize > 0) {
+            drwav_uint64 paddingData = 0;
+            drwav__write(pWav, &paddingData, paddingSize);  /* Byte order does not matter for this. */
+        }
+
+        /*
+        Chunk sizes. When using sequential mode, these will have been filled in at initialization time. We only need
+        to do this when using non-sequential mode.
+        */
+        if (pWav->onSeek && !pWav->isSequentialWrite) {
+            if (pWav->container == drwav_container_riff) {
+                /* The "RIFF" chunk size. */
+                if (pWav->onSeek(pWav->pUserData, 4, drwav_seek_origin_start)) {
+                    drwav_uint32 riffChunkSize = drwav__riff_chunk_size_riff(pWav->dataChunkDataSize);
+                    drwav__write_u32ne_to_le(pWav, riffChunkSize);
+                }
+
+                /* the "data" chunk size. */
+                if (pWav->onSeek(pWav->pUserData, (int)pWav->dataChunkDataPos + 4, drwav_seek_origin_start)) {
+                    drwav_uint32 dataChunkSize = drwav__data_chunk_size_riff(pWav->dataChunkDataSize);
+                    drwav__write_u32ne_to_le(pWav, dataChunkSize);
+                }
+            } else if (pWav->container == drwav_container_w64) {
+                /* The "RIFF" chunk size. */
+                if (pWav->onSeek(pWav->pUserData, 16, drwav_seek_origin_start)) {
+                    drwav_uint64 riffChunkSize = drwav__riff_chunk_size_w64(pWav->dataChunkDataSize);
+                    drwav__write_u64ne_to_le(pWav, riffChunkSize);
+                }
+
+                /* The "data" chunk size. */
+                if (pWav->onSeek(pWav->pUserData, (int)pWav->dataChunkDataPos + 16, drwav_seek_origin_start)) {
+                    drwav_uint64 dataChunkSize = drwav__data_chunk_size_w64(pWav->dataChunkDataSize);
+                    drwav__write_u64ne_to_le(pWav, dataChunkSize);
+                }
+            } else if (pWav->container == drwav_container_rf64) {
+                /* We only need to update the ds64 chunk. The "RIFF" and "data" chunks always have their sizes set to 0xFFFFFFFF for RF64. */
+                int ds64BodyPos = 12 + 8;
+
+                /* The "RIFF" chunk size. */
+                if (pWav->onSeek(pWav->pUserData, ds64BodyPos + 0, drwav_seek_origin_start)) {
+                    drwav_uint64 riffChunkSize = drwav__riff_chunk_size_rf64(pWav->dataChunkDataSize);
+                    drwav__write_u64ne_to_le(pWav, riffChunkSize);
+                }
+
+                /* The "data" chunk size. */
+                if (pWav->onSeek(pWav->pUserData, ds64BodyPos + 8, drwav_seek_origin_start)) {
+                    drwav_uint64 dataChunkSize = drwav__data_chunk_size_rf64(pWav->dataChunkDataSize);
+                    drwav__write_u64ne_to_le(pWav, dataChunkSize);
+                }
+            }
+        }
+
+        /* Validation for sequential mode. */
+        if (pWav->isSequentialWrite) {
+            if (pWav->dataChunkDataSize != pWav->dataChunkDataSizeTargetWrite) {
+                result = DRWAV_INVALID_FILE;
+            }
+        }
+    }
+
+#ifndef DR_WAV_NO_STDIO
+    /*
+    If we opened the file with drwav_open_file() we will want to close the file handle. We can know whether or not drwav_open_file()
+    was used by looking at the onRead and onSeek callbacks.
+    */
+    if (pWav->onRead == drwav__on_read_stdio || pWav->onWrite == drwav__on_write_stdio) {
+        fclose((FILE*)pWav->pUserData);
+    }
+#endif
+
+    return result;
+}
+
+
+
+DRWAV_API size_t drwav_read_raw(drwav* pWav, size_t bytesToRead, void* pBufferOut)
+{
+    size_t bytesRead;
+
+    if (pWav == NULL || bytesToRead == 0) {
+        return 0;
+    }
+
+    if (bytesToRead > pWav->bytesRemaining) {
+        bytesToRead = (size_t)pWav->bytesRemaining;
+    }
+
+    if (pBufferOut != NULL) {
+        bytesRead = pWav->onRead(pWav->pUserData, pBufferOut, bytesToRead);
+    } else {
+        /* We need to seek. If we fail, we need to read-and-discard to make sure we get a good byte count. */
+        bytesRead = 0;
+        while (bytesRead < bytesToRead) {
+            size_t bytesToSeek = (bytesToRead - bytesRead);
+            if (bytesToSeek > 0x7FFFFFFF) {
+                bytesToSeek = 0x7FFFFFFF;
+            }
+
+            if (pWav->onSeek(pWav->pUserData, (int)bytesToSeek, drwav_seek_origin_current) == DRWAV_FALSE) {
+                break;
+            }
+
+            bytesRead += bytesToSeek;
+        }
+
+        /* When we get here we may need to read-and-discard some data. */
+        while (bytesRead < bytesToRead) {
+            drwav_uint8 buffer[4096];
+            size_t bytesSeeked;
+            size_t bytesToSeek = (bytesToRead - bytesRead);
+            if (bytesToSeek > sizeof(buffer)) {
+                bytesToSeek = sizeof(buffer);
+            }
+
+            bytesSeeked = pWav->onRead(pWav->pUserData, buffer, bytesToSeek);
+            bytesRead += bytesSeeked;
+
+            if (bytesSeeked < bytesToSeek) {
+                break;  /* Reached the end. */
+            }
+        }
+    }
+
+    pWav->bytesRemaining -= bytesRead;
+    return bytesRead;
+}
+
+
+
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_le(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut)
+{
+    drwav_uint32 bytesPerFrame;
+    drwav_uint64 bytesToRead;   /* Intentionally uint64 instead of size_t so we can do a check that we're not reading too much on 32-bit builds. */
+
+    if (pWav == NULL || framesToRead == 0) {
+        return 0;
+    }
+
+    /* Cannot use this function for compressed formats. */
+    if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) {
+        return 0;
+    }
+
+    bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+    if (bytesPerFrame == 0) {
+        return 0;
+    }
+
+    /* Don't try to read more samples than can potentially fit in the output buffer. */
+    bytesToRead = framesToRead * bytesPerFrame;
+    if (bytesToRead > DRWAV_SIZE_MAX) {
+        bytesToRead = (DRWAV_SIZE_MAX / bytesPerFrame) * bytesPerFrame; /* Round the number of bytes to read to a clean frame boundary. */
+    }
+
+    /*
+    Doing an explicit check here just to make it clear that we don't want to be attempt to read anything if there's no bytes to read. There
+    *could* be a time where it evaluates to 0 due to overflowing.
+    */
+    if (bytesToRead == 0) {
+        return 0;
+    }
+
+    return drwav_read_raw(pWav, (size_t)bytesToRead, pBufferOut) / bytesPerFrame;
+}
+
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_be(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut)
+{
+    drwav_uint64 framesRead = drwav_read_pcm_frames_le(pWav, framesToRead, pBufferOut);
+
+    if (pBufferOut != NULL) {
+        drwav__bswap_samples(pBufferOut, framesRead*pWav->channels, drwav_get_bytes_per_pcm_frame(pWav)/pWav->channels, pWav->translatedFormatTag);
+    }
+
+    return framesRead;
+}
+
+DRWAV_API drwav_uint64 drwav_read_pcm_frames(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut)
+{
+    if (drwav__is_little_endian()) {
+        return drwav_read_pcm_frames_le(pWav, framesToRead, pBufferOut);
+    } else {
+        return drwav_read_pcm_frames_be(pWav, framesToRead, pBufferOut);
+    }
+}
+
+
+
+DRWAV_API drwav_bool32 drwav_seek_to_first_pcm_frame(drwav* pWav)
+{
+    if (pWav->onWrite != NULL) {
+        return DRWAV_FALSE; /* No seeking in write mode. */
+    }
+
+    if (!pWav->onSeek(pWav->pUserData, (int)pWav->dataChunkDataPos, drwav_seek_origin_start)) {
+        return DRWAV_FALSE;
+    }
+
+    if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) {
+        pWav->compressed.iCurrentPCMFrame = 0;
+
+        /* Cached data needs to be cleared for compressed formats. */
+        if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
+            DRWAV_ZERO_OBJECT(&pWav->msadpcm);
+        } else if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
+            DRWAV_ZERO_OBJECT(&pWav->ima);
+        } else {
+            DRWAV_ASSERT(DRWAV_FALSE);  /* If this assertion is triggered it means I've implemented a new compressed format but forgot to add a branch for it here. */
+        }
+    }
+    
+    pWav->bytesRemaining = pWav->dataChunkDataSize;
+    return DRWAV_TRUE;
+}
+
+DRWAV_API drwav_bool32 drwav_seek_to_pcm_frame(drwav* pWav, drwav_uint64 targetFrameIndex)
+{
+    /* Seeking should be compatible with wave files > 2GB. */
+
+    if (pWav == NULL || pWav->onSeek == NULL) {
+        return DRWAV_FALSE;
+    }
+
+    /* No seeking in write mode. */
+    if (pWav->onWrite != NULL) {
+        return DRWAV_FALSE;
+    }
+
+    /* If there are no samples, just return DRWAV_TRUE without doing anything. */
+    if (pWav->totalPCMFrameCount == 0) {
+        return DRWAV_TRUE;
+    }
+
+    /* Make sure the sample is clamped. */
+    if (targetFrameIndex >= pWav->totalPCMFrameCount) {
+        targetFrameIndex  = pWav->totalPCMFrameCount - 1;
+    }
+
+    /*
+    For compressed formats we just use a slow generic seek. If we are seeking forward we just seek forward. If we are going backwards we need
+    to seek back to the start.
+    */
+    if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) {
+        /* TODO: This can be optimized. */
+        
+        /*
+        If we're seeking forward it's simple - just keep reading samples until we hit the sample we're requesting. If we're seeking backwards,
+        we first need to seek back to the start and then just do the same thing as a forward seek.
+        */
+        if (targetFrameIndex < pWav->compressed.iCurrentPCMFrame) {
+            if (!drwav_seek_to_first_pcm_frame(pWav)) {
+                return DRWAV_FALSE;
+            }
+        }
+
+        if (targetFrameIndex > pWav->compressed.iCurrentPCMFrame) {
+            drwav_uint64 offsetInFrames = targetFrameIndex - pWav->compressed.iCurrentPCMFrame;
+
+            drwav_int16 devnull[2048];
+            while (offsetInFrames > 0) {
+                drwav_uint64 framesRead = 0;
+                drwav_uint64 framesToRead = offsetInFrames;
+                if (framesToRead > drwav_countof(devnull)/pWav->channels) {
+                    framesToRead = drwav_countof(devnull)/pWav->channels;
+                }
+
+                if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
+                    framesRead = drwav_read_pcm_frames_s16__msadpcm(pWav, framesToRead, devnull);
+                } else if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
+                    framesRead = drwav_read_pcm_frames_s16__ima(pWav, framesToRead, devnull);
+                } else {
+                    DRWAV_ASSERT(DRWAV_FALSE);  /* If this assertion is triggered it means I've implemented a new compressed format but forgot to add a branch for it here. */
+                }
+
+                if (framesRead != framesToRead) {
+                    return DRWAV_FALSE;
+                }
+
+                offsetInFrames -= framesRead;
+            }
+        }
+    } else {
+        drwav_uint64 totalSizeInBytes;
+        drwav_uint64 currentBytePos;
+        drwav_uint64 targetBytePos;
+        drwav_uint64 offset;
+
+        totalSizeInBytes = pWav->totalPCMFrameCount * drwav_get_bytes_per_pcm_frame(pWav);
+        DRWAV_ASSERT(totalSizeInBytes >= pWav->bytesRemaining);
+
+        currentBytePos = totalSizeInBytes - pWav->bytesRemaining;
+        targetBytePos  = targetFrameIndex * drwav_get_bytes_per_pcm_frame(pWav);
+
+        if (currentBytePos < targetBytePos) {
+            /* Offset forwards. */
+            offset = (targetBytePos - currentBytePos);
+        } else {
+            /* Offset backwards. */
+            if (!drwav_seek_to_first_pcm_frame(pWav)) {
+                return DRWAV_FALSE;
+            }
+            offset = targetBytePos;
+        }
+
+        while (offset > 0) {
+            int offset32 = ((offset > INT_MAX) ? INT_MAX : (int)offset);
+            if (!pWav->onSeek(pWav->pUserData, offset32, drwav_seek_origin_current)) {
+                return DRWAV_FALSE;
+            }
+
+            pWav->bytesRemaining -= offset32;
+            offset -= offset32;
+        }
+    }
+
+    return DRWAV_TRUE;
+}
+
+
+DRWAV_API size_t drwav_write_raw(drwav* pWav, size_t bytesToWrite, const void* pData)
+{
+    size_t bytesWritten;
+
+    if (pWav == NULL || bytesToWrite == 0 || pData == NULL) {
+        return 0;
+    }
+
+    bytesWritten = pWav->onWrite(pWav->pUserData, pData, bytesToWrite);
+    pWav->dataChunkDataSize += bytesWritten;
+
+    return bytesWritten;
+}
+
+
+DRWAV_API drwav_uint64 drwav_write_pcm_frames_le(drwav* pWav, drwav_uint64 framesToWrite, const void* pData)
+{
+    drwav_uint64 bytesToWrite;
+    drwav_uint64 bytesWritten;
+    const drwav_uint8* pRunningData;
+
+    if (pWav == NULL || framesToWrite == 0 || pData == NULL) {
+        return 0;
+    }
+
+    bytesToWrite = ((framesToWrite * pWav->channels * pWav->bitsPerSample) / 8);
+    if (bytesToWrite > DRWAV_SIZE_MAX) {
+        return 0;
+    }
+
+    bytesWritten = 0;
+    pRunningData = (const drwav_uint8*)pData;
+
+    while (bytesToWrite > 0) {
+        size_t bytesJustWritten;
+        drwav_uint64 bytesToWriteThisIteration;
+
+        bytesToWriteThisIteration = bytesToWrite;
+        DRWAV_ASSERT(bytesToWriteThisIteration <= DRWAV_SIZE_MAX);  /* <-- This is checked above. */
+
+        bytesJustWritten = drwav_write_raw(pWav, (size_t)bytesToWriteThisIteration, pRunningData);
+        if (bytesJustWritten == 0) {
+            break;
+        }
+
+        bytesToWrite -= bytesJustWritten;
+        bytesWritten += bytesJustWritten;
+        pRunningData += bytesJustWritten;
+    }
+
+    return (bytesWritten * 8) / pWav->bitsPerSample / pWav->channels;
+}
+
+DRWAV_API drwav_uint64 drwav_write_pcm_frames_be(drwav* pWav, drwav_uint64 framesToWrite, const void* pData)
+{
+    drwav_uint64 bytesToWrite;
+    drwav_uint64 bytesWritten;
+    drwav_uint32 bytesPerSample;
+    const drwav_uint8* pRunningData;
+
+    if (pWav == NULL || framesToWrite == 0 || pData == NULL) {
+        return 0;
+    }
+
+    bytesToWrite = ((framesToWrite * pWav->channels * pWav->bitsPerSample) / 8);
+    if (bytesToWrite > DRWAV_SIZE_MAX) {
+        return 0;
+    }
+
+    bytesWritten = 0;
+    pRunningData = (const drwav_uint8*)pData;
+
+    bytesPerSample = drwav_get_bytes_per_pcm_frame(pWav) / pWav->channels;
+    
+    while (bytesToWrite > 0) {
+        drwav_uint8 temp[4096];
+        drwav_uint32 sampleCount;
+        size_t bytesJustWritten;
+        drwav_uint64 bytesToWriteThisIteration;
+
+        bytesToWriteThisIteration = bytesToWrite;
+        DRWAV_ASSERT(bytesToWriteThisIteration <= DRWAV_SIZE_MAX);  /* <-- This is checked above. */
+
+        /*
+        WAV files are always little-endian. We need to byte swap on big-endian architectures. Since our input buffer is read-only we need
+        to use an intermediary buffer for the conversion.
+        */
+        sampleCount = sizeof(temp)/bytesPerSample;
+
+        if (bytesToWriteThisIteration > ((drwav_uint64)sampleCount)*bytesPerSample) {
+            bytesToWriteThisIteration = ((drwav_uint64)sampleCount)*bytesPerSample;
+        }
+
+        DRWAV_COPY_MEMORY(temp, pRunningData, (size_t)bytesToWriteThisIteration);
+        drwav__bswap_samples(temp, sampleCount, bytesPerSample, pWav->translatedFormatTag);
+
+        bytesJustWritten = drwav_write_raw(pWav, (size_t)bytesToWriteThisIteration, temp);
+        if (bytesJustWritten == 0) {
+            break;
+        }
+
+        bytesToWrite -= bytesJustWritten;
+        bytesWritten += bytesJustWritten;
+        pRunningData += bytesJustWritten;
+    }
+
+    return (bytesWritten * 8) / pWav->bitsPerSample / pWav->channels;
+}
+
+DRWAV_API drwav_uint64 drwav_write_pcm_frames(drwav* pWav, drwav_uint64 framesToWrite, const void* pData)
+{
+    if (drwav__is_little_endian()) {
+        return drwav_write_pcm_frames_le(pWav, framesToWrite, pData);
+    } else {
+        return drwav_write_pcm_frames_be(pWav, framesToWrite, pData);
+    }
+}
+
+
+static drwav_uint64 drwav_read_pcm_frames_s16__msadpcm(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
+{
+    drwav_uint64 totalFramesRead = 0;
+
+    DRWAV_ASSERT(pWav != NULL);
+    DRWAV_ASSERT(framesToRead > 0);
+
+    /* TODO: Lots of room for optimization here. */
+
+    while (framesToRead > 0 && pWav->compressed.iCurrentPCMFrame < pWav->totalPCMFrameCount) {
+        /* If there are no cached frames we need to load a new block. */
+        if (pWav->msadpcm.cachedFrameCount == 0 && pWav->msadpcm.bytesRemainingInBlock == 0) {
+            if (pWav->channels == 1) {
+                /* Mono. */
+                drwav_uint8 header[7];
+                if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) {
+                    return totalFramesRead;
+                }
+                pWav->msadpcm.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header);
+
+                pWav->msadpcm.predictor[0]     = header[0];
+                pWav->msadpcm.delta[0]         = drwav__bytes_to_s16(header + 1);
+                pWav->msadpcm.prevFrames[0][1] = (drwav_int32)drwav__bytes_to_s16(header + 3);
+                pWav->msadpcm.prevFrames[0][0] = (drwav_int32)drwav__bytes_to_s16(header + 5);
+                pWav->msadpcm.cachedFrames[2]  = pWav->msadpcm.prevFrames[0][0];
+                pWav->msadpcm.cachedFrames[3]  = pWav->msadpcm.prevFrames[0][1];
+                pWav->msadpcm.cachedFrameCount = 2;
+            } else {
+                /* Stereo. */
+                drwav_uint8 header[14];
+                if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) {
+                    return totalFramesRead;
+                }
+                pWav->msadpcm.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header);
+
+                pWav->msadpcm.predictor[0] = header[0];
+                pWav->msadpcm.predictor[1] = header[1];
+                pWav->msadpcm.delta[0] = drwav__bytes_to_s16(header + 2);
+                pWav->msadpcm.delta[1] = drwav__bytes_to_s16(header + 4);
+                pWav->msadpcm.prevFrames[0][1] = (drwav_int32)drwav__bytes_to_s16(header + 6);
+                pWav->msadpcm.prevFrames[1][1] = (drwav_int32)drwav__bytes_to_s16(header + 8);
+                pWav->msadpcm.prevFrames[0][0] = (drwav_int32)drwav__bytes_to_s16(header + 10);
+                pWav->msadpcm.prevFrames[1][0] = (drwav_int32)drwav__bytes_to_s16(header + 12);
+
+                pWav->msadpcm.cachedFrames[0] = pWav->msadpcm.prevFrames[0][0];
+                pWav->msadpcm.cachedFrames[1] = pWav->msadpcm.prevFrames[1][0];
+                pWav->msadpcm.cachedFrames[2] = pWav->msadpcm.prevFrames[0][1];
+                pWav->msadpcm.cachedFrames[3] = pWav->msadpcm.prevFrames[1][1];
+                pWav->msadpcm.cachedFrameCount = 2;
+            }
+        }
+
+        /* Output anything that's cached. */
+        while (framesToRead > 0 && pWav->msadpcm.cachedFrameCount > 0 && pWav->compressed.iCurrentPCMFrame < pWav->totalPCMFrameCount) {
+            if (pBufferOut != NULL) {
+                drwav_uint32 iSample = 0;
+                for (iSample = 0; iSample < pWav->channels; iSample += 1) {
+                    pBufferOut[iSample] = (drwav_int16)pWav->msadpcm.cachedFrames[(drwav_countof(pWav->msadpcm.cachedFrames) - (pWav->msadpcm.cachedFrameCount*pWav->channels)) + iSample];
+                }
+
+                pBufferOut += pWav->channels;
+            }
+
+            framesToRead    -= 1;
+            totalFramesRead += 1;
+            pWav->compressed.iCurrentPCMFrame += 1;
+            pWav->msadpcm.cachedFrameCount -= 1;
+        }
+
+        if (framesToRead == 0) {
+            return totalFramesRead;
+        }
+
+
+        /*
+        If there's nothing left in the cache, just go ahead and load more. If there's nothing left to load in the current block we just continue to the next
+        loop iteration which will trigger the loading of a new block.
+        */
+        if (pWav->msadpcm.cachedFrameCount == 0) {
+            if (pWav->msadpcm.bytesRemainingInBlock == 0) {
+                continue;
+            } else {
+                static drwav_int32 adaptationTable[] = { 
+                    230, 230, 230, 230, 307, 409, 512, 614, 
+                    768, 614, 512, 409, 307, 230, 230, 230 
+                };
+                static drwav_int32 coeff1Table[] = { 256, 512, 0, 192, 240, 460,  392 };
+                static drwav_int32 coeff2Table[] = { 0,  -256, 0, 64,  0,  -208, -232 };
+
+                drwav_uint8 nibbles;
+                drwav_int32 nibble0;
+                drwav_int32 nibble1;
+
+                if (pWav->onRead(pWav->pUserData, &nibbles, 1) != 1) {
+                    return totalFramesRead;
+                }
+                pWav->msadpcm.bytesRemainingInBlock -= 1;
+
+                /* TODO: Optimize away these if statements. */
+                nibble0 = ((nibbles & 0xF0) >> 4); if ((nibbles & 0x80)) { nibble0 |= 0xFFFFFFF0UL; }
+                nibble1 = ((nibbles & 0x0F) >> 0); if ((nibbles & 0x08)) { nibble1 |= 0xFFFFFFF0UL; }
+
+                if (pWav->channels == 1) {
+                    /* Mono. */
+                    drwav_int32 newSample0;
+                    drwav_int32 newSample1;
+
+                    newSample0  = ((pWav->msadpcm.prevFrames[0][1] * coeff1Table[pWav->msadpcm.predictor[0]]) + (pWav->msadpcm.prevFrames[0][0] * coeff2Table[pWav->msadpcm.predictor[0]])) >> 8;
+                    newSample0 += nibble0 * pWav->msadpcm.delta[0];
+                    newSample0  = drwav_clamp(newSample0, -32768, 32767);
+
+                    pWav->msadpcm.delta[0] = (adaptationTable[((nibbles & 0xF0) >> 4)] * pWav->msadpcm.delta[0]) >> 8;
+                    if (pWav->msadpcm.delta[0] < 16) {
+                        pWav->msadpcm.delta[0] = 16;
+                    }
+
+                    pWav->msadpcm.prevFrames[0][0] = pWav->msadpcm.prevFrames[0][1];
+                    pWav->msadpcm.prevFrames[0][1] = newSample0;
+
+
+                    newSample1  = ((pWav->msadpcm.prevFrames[0][1] * coeff1Table[pWav->msadpcm.predictor[0]]) + (pWav->msadpcm.prevFrames[0][0] * coeff2Table[pWav->msadpcm.predictor[0]])) >> 8;
+                    newSample1 += nibble1 * pWav->msadpcm.delta[0];
+                    newSample1  = drwav_clamp(newSample1, -32768, 32767);
+
+                    pWav->msadpcm.delta[0] = (adaptationTable[((nibbles & 0x0F) >> 0)] * pWav->msadpcm.delta[0]) >> 8;
+                    if (pWav->msadpcm.delta[0] < 16) {
+                        pWav->msadpcm.delta[0] = 16;
+                    }
+
+                    pWav->msadpcm.prevFrames[0][0] = pWav->msadpcm.prevFrames[0][1];
+                    pWav->msadpcm.prevFrames[0][1] = newSample1;
+
+
+                    pWav->msadpcm.cachedFrames[2] = newSample0;
+                    pWav->msadpcm.cachedFrames[3] = newSample1;
+                    pWav->msadpcm.cachedFrameCount = 2;
+                } else {
+                    /* Stereo. */
+                    drwav_int32 newSample0;
+                    drwav_int32 newSample1;
+
+                    /* Left. */
+                    newSample0  = ((pWav->msadpcm.prevFrames[0][1] * coeff1Table[pWav->msadpcm.predictor[0]]) + (pWav->msadpcm.prevFrames[0][0] * coeff2Table[pWav->msadpcm.predictor[0]])) >> 8;
+                    newSample0 += nibble0 * pWav->msadpcm.delta[0];
+                    newSample0  = drwav_clamp(newSample0, -32768, 32767);
+
+                    pWav->msadpcm.delta[0] = (adaptationTable[((nibbles & 0xF0) >> 4)] * pWav->msadpcm.delta[0]) >> 8;
+                    if (pWav->msadpcm.delta[0] < 16) {
+                        pWav->msadpcm.delta[0] = 16;
+                    }
+
+                    pWav->msadpcm.prevFrames[0][0] = pWav->msadpcm.prevFrames[0][1];
+                    pWav->msadpcm.prevFrames[0][1] = newSample0;
+
+
+                    /* Right. */
+                    newSample1  = ((pWav->msadpcm.prevFrames[1][1] * coeff1Table[pWav->msadpcm.predictor[1]]) + (pWav->msadpcm.prevFrames[1][0] * coeff2Table[pWav->msadpcm.predictor[1]])) >> 8;
+                    newSample1 += nibble1 * pWav->msadpcm.delta[1];
+                    newSample1  = drwav_clamp(newSample1, -32768, 32767);
+
+                    pWav->msadpcm.delta[1] = (adaptationTable[((nibbles & 0x0F) >> 0)] * pWav->msadpcm.delta[1]) >> 8;
+                    if (pWav->msadpcm.delta[1] < 16) {
+                        pWav->msadpcm.delta[1] = 16;
+                    }
+
+                    pWav->msadpcm.prevFrames[1][0] = pWav->msadpcm.prevFrames[1][1];
+                    pWav->msadpcm.prevFrames[1][1] = newSample1;
+
+                    pWav->msadpcm.cachedFrames[2] = newSample0;
+                    pWav->msadpcm.cachedFrames[3] = newSample1;
+                    pWav->msadpcm.cachedFrameCount = 1;
+                }
+            }
+        }
+    }
+
+    return totalFramesRead;
+}
+
+
+static drwav_uint64 drwav_read_pcm_frames_s16__ima(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
+{
+    drwav_uint64 totalFramesRead = 0;
+    drwav_uint32 iChannel;
+
+    static drwav_int32 indexTable[16] = {
+        -1, -1, -1, -1, 2, 4, 6, 8,
+        -1, -1, -1, -1, 2, 4, 6, 8
+    };
+
+    static drwav_int32 stepTable[89] = {
+        7,     8,     9,     10,    11,    12,    13,    14,    16,    17, 
+        19,    21,    23,    25,    28,    31,    34,    37,    41,    45, 
+        50,    55,    60,    66,    73,    80,    88,    97,    107,   118, 
+        130,   143,   157,   173,   190,   209,   230,   253,   279,   307,
+        337,   371,   408,   449,   494,   544,   598,   658,   724,   796,
+        876,   963,   1060,  1166,  1282,  1411,  1552,  1707,  1878,  2066, 
+        2272,  2499,  2749,  3024,  3327,  3660,  4026,  4428,  4871,  5358,
+        5894,  6484,  7132,  7845,  8630,  9493,  10442, 11487, 12635, 13899, 
+        15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767 
+    };
+
+    DRWAV_ASSERT(pWav != NULL);
+    DRWAV_ASSERT(framesToRead > 0);
+
+    /* TODO: Lots of room for optimization here. */
+
+    while (framesToRead > 0 && pWav->compressed.iCurrentPCMFrame < pWav->totalPCMFrameCount) {
+        /* If there are no cached samples we need to load a new block. */
+        if (pWav->ima.cachedFrameCount == 0 && pWav->ima.bytesRemainingInBlock == 0) {
+            if (pWav->channels == 1) {
+                /* Mono. */
+                drwav_uint8 header[4];
+                if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) {
+                    return totalFramesRead;
+                }
+                pWav->ima.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header);
+
+                if (header[2] >= drwav_countof(stepTable)) {
+                    pWav->onSeek(pWav->pUserData, pWav->ima.bytesRemainingInBlock, drwav_seek_origin_current);
+                    pWav->ima.bytesRemainingInBlock = 0;
+                    return totalFramesRead; /* Invalid data. */
+                }
+
+                pWav->ima.predictor[0] = drwav__bytes_to_s16(header + 0);
+                pWav->ima.stepIndex[0] = header[2];
+                pWav->ima.cachedFrames[drwav_countof(pWav->ima.cachedFrames) - 1] = pWav->ima.predictor[0];
+                pWav->ima.cachedFrameCount = 1;
+            } else {
+                /* Stereo. */
+                drwav_uint8 header[8];
+                if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) {
+                    return totalFramesRead;
+                }
+                pWav->ima.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header);
+
+                if (header[2] >= drwav_countof(stepTable) || header[6] >= drwav_countof(stepTable)) {
+                    pWav->onSeek(pWav->pUserData, pWav->ima.bytesRemainingInBlock, drwav_seek_origin_current);
+                    pWav->ima.bytesRemainingInBlock = 0;
+                    return totalFramesRead; /* Invalid data. */
+                }
+
+                pWav->ima.predictor[0] = drwav__bytes_to_s16(header + 0);
+                pWav->ima.stepIndex[0] = header[2];
+                pWav->ima.predictor[1] = drwav__bytes_to_s16(header + 4);
+                pWav->ima.stepIndex[1] = header[6];
+
+                pWav->ima.cachedFrames[drwav_countof(pWav->ima.cachedFrames) - 2] = pWav->ima.predictor[0];
+                pWav->ima.cachedFrames[drwav_countof(pWav->ima.cachedFrames) - 1] = pWav->ima.predictor[1];
+                pWav->ima.cachedFrameCount = 1;
+            }
+        }
+
+        /* Output anything that's cached. */
+        while (framesToRead > 0 && pWav->ima.cachedFrameCount > 0 && pWav->compressed.iCurrentPCMFrame < pWav->totalPCMFrameCount) {
+            if (pBufferOut != NULL) {
+                drwav_uint32 iSample;
+                for (iSample = 0; iSample < pWav->channels; iSample += 1) {
+                    pBufferOut[iSample] = (drwav_int16)pWav->ima.cachedFrames[(drwav_countof(pWav->ima.cachedFrames) - (pWav->ima.cachedFrameCount*pWav->channels)) + iSample];
+                }
+                pBufferOut += pWav->channels;
+            }
+
+            framesToRead    -= 1;
+            totalFramesRead += 1;
+            pWav->compressed.iCurrentPCMFrame += 1;
+            pWav->ima.cachedFrameCount -= 1;
+        }
+
+        if (framesToRead == 0) {
+            return totalFramesRead;
+        }
+
+        /*
+        If there's nothing left in the cache, just go ahead and load more. If there's nothing left to load in the current block we just continue to the next
+        loop iteration which will trigger the loading of a new block.
+        */
+        if (pWav->ima.cachedFrameCount == 0) {
+            if (pWav->ima.bytesRemainingInBlock == 0) {
+                continue;
+            } else {
+                /*
+                From what I can tell with stereo streams, it looks like every 4 bytes (8 samples) is for one channel. So it goes 4 bytes for the
+                left channel, 4 bytes for the right channel.
+                */
+                pWav->ima.cachedFrameCount = 8;
+                for (iChannel = 0; iChannel < pWav->channels; ++iChannel) {
+                    drwav_uint32 iByte;
+                    drwav_uint8 nibbles[4];
+                    if (pWav->onRead(pWav->pUserData, &nibbles, 4) != 4) {
+                        pWav->ima.cachedFrameCount = 0;
+                        return totalFramesRead;
+                    }
+                    pWav->ima.bytesRemainingInBlock -= 4;
+
+                    for (iByte = 0; iByte < 4; ++iByte) {
+                        drwav_uint8 nibble0 = ((nibbles[iByte] & 0x0F) >> 0);
+                        drwav_uint8 nibble1 = ((nibbles[iByte] & 0xF0) >> 4);
+
+                        drwav_int32 step      = stepTable[pWav->ima.stepIndex[iChannel]];
+                        drwav_int32 predictor = pWav->ima.predictor[iChannel];
+
+                        drwav_int32      diff  = step >> 3;
+                        if (nibble0 & 1) diff += step >> 2;
+                        if (nibble0 & 2) diff += step >> 1;
+                        if (nibble0 & 4) diff += step;
+                        if (nibble0 & 8) diff  = -diff;
+
+                        predictor = drwav_clamp(predictor + diff, -32768, 32767);
+                        pWav->ima.predictor[iChannel] = predictor;
+                        pWav->ima.stepIndex[iChannel] = drwav_clamp(pWav->ima.stepIndex[iChannel] + indexTable[nibble0], 0, (drwav_int32)drwav_countof(stepTable)-1);
+                        pWav->ima.cachedFrames[(drwav_countof(pWav->ima.cachedFrames) - (pWav->ima.cachedFrameCount*pWav->channels)) + (iByte*2+0)*pWav->channels + iChannel] = predictor;
+
+
+                        step      = stepTable[pWav->ima.stepIndex[iChannel]];
+                        predictor = pWav->ima.predictor[iChannel];
+
+                                         diff  = step >> 3;
+                        if (nibble1 & 1) diff += step >> 2;
+                        if (nibble1 & 2) diff += step >> 1;
+                        if (nibble1 & 4) diff += step;
+                        if (nibble1 & 8) diff  = -diff;
+
+                        predictor = drwav_clamp(predictor + diff, -32768, 32767);
+                        pWav->ima.predictor[iChannel] = predictor;
+                        pWav->ima.stepIndex[iChannel] = drwav_clamp(pWav->ima.stepIndex[iChannel] + indexTable[nibble1], 0, (drwav_int32)drwav_countof(stepTable)-1);
+                        pWav->ima.cachedFrames[(drwav_countof(pWav->ima.cachedFrames) - (pWav->ima.cachedFrameCount*pWav->channels)) + (iByte*2+1)*pWav->channels + iChannel] = predictor;
+                    }
+                }
+            }
+        }
+    }
+
+    return totalFramesRead;
+}
+
+
+#ifndef DR_WAV_NO_CONVERSION_API
+static unsigned short g_drwavAlawTable[256] = {
+    0xEA80, 0xEB80, 0xE880, 0xE980, 0xEE80, 0xEF80, 0xEC80, 0xED80, 0xE280, 0xE380, 0xE080, 0xE180, 0xE680, 0xE780, 0xE480, 0xE580, 
+    0xF540, 0xF5C0, 0xF440, 0xF4C0, 0xF740, 0xF7C0, 0xF640, 0xF6C0, 0xF140, 0xF1C0, 0xF040, 0xF0C0, 0xF340, 0xF3C0, 0xF240, 0xF2C0, 
+    0xAA00, 0xAE00, 0xA200, 0xA600, 0xBA00, 0xBE00, 0xB200, 0xB600, 0x8A00, 0x8E00, 0x8200, 0x8600, 0x9A00, 0x9E00, 0x9200, 0x9600, 
+    0xD500, 0xD700, 0xD100, 0xD300, 0xDD00, 0xDF00, 0xD900, 0xDB00, 0xC500, 0xC700, 0xC100, 0xC300, 0xCD00, 0xCF00, 0xC900, 0xCB00, 
+    0xFEA8, 0xFEB8, 0xFE88, 0xFE98, 0xFEE8, 0xFEF8, 0xFEC8, 0xFED8, 0xFE28, 0xFE38, 0xFE08, 0xFE18, 0xFE68, 0xFE78, 0xFE48, 0xFE58, 
+    0xFFA8, 0xFFB8, 0xFF88, 0xFF98, 0xFFE8, 0xFFF8, 0xFFC8, 0xFFD8, 0xFF28, 0xFF38, 0xFF08, 0xFF18, 0xFF68, 0xFF78, 0xFF48, 0xFF58, 
+    0xFAA0, 0xFAE0, 0xFA20, 0xFA60, 0xFBA0, 0xFBE0, 0xFB20, 0xFB60, 0xF8A0, 0xF8E0, 0xF820, 0xF860, 0xF9A0, 0xF9E0, 0xF920, 0xF960, 
+    0xFD50, 0xFD70, 0xFD10, 0xFD30, 0xFDD0, 0xFDF0, 0xFD90, 0xFDB0, 0xFC50, 0xFC70, 0xFC10, 0xFC30, 0xFCD0, 0xFCF0, 0xFC90, 0xFCB0, 
+    0x1580, 0x1480, 0x1780, 0x1680, 0x1180, 0x1080, 0x1380, 0x1280, 0x1D80, 0x1C80, 0x1F80, 0x1E80, 0x1980, 0x1880, 0x1B80, 0x1A80, 
+    0x0AC0, 0x0A40, 0x0BC0, 0x0B40, 0x08C0, 0x0840, 0x09C0, 0x0940, 0x0EC0, 0x0E40, 0x0FC0, 0x0F40, 0x0CC0, 0x0C40, 0x0DC0, 0x0D40, 
+    0x5600, 0x5200, 0x5E00, 0x5A00, 0x4600, 0x4200, 0x4E00, 0x4A00, 0x7600, 0x7200, 0x7E00, 0x7A00, 0x6600, 0x6200, 0x6E00, 0x6A00, 
+    0x2B00, 0x2900, 0x2F00, 0x2D00, 0x2300, 0x2100, 0x2700, 0x2500, 0x3B00, 0x3900, 0x3F00, 0x3D00, 0x3300, 0x3100, 0x3700, 0x3500, 
+    0x0158, 0x0148, 0x0178, 0x0168, 0x0118, 0x0108, 0x0138, 0x0128, 0x01D8, 0x01C8, 0x01F8, 0x01E8, 0x0198, 0x0188, 0x01B8, 0x01A8, 
+    0x0058, 0x0048, 0x0078, 0x0068, 0x0018, 0x0008, 0x0038, 0x0028, 0x00D8, 0x00C8, 0x00F8, 0x00E8, 0x0098, 0x0088, 0x00B8, 0x00A8, 
+    0x0560, 0x0520, 0x05E0, 0x05A0, 0x0460, 0x0420, 0x04E0, 0x04A0, 0x0760, 0x0720, 0x07E0, 0x07A0, 0x0660, 0x0620, 0x06E0, 0x06A0, 
+    0x02B0, 0x0290, 0x02F0, 0x02D0, 0x0230, 0x0210, 0x0270, 0x0250, 0x03B0, 0x0390, 0x03F0, 0x03D0, 0x0330, 0x0310, 0x0370, 0x0350
+};
+
+static unsigned short g_drwavMulawTable[256] = {
+    0x8284, 0x8684, 0x8A84, 0x8E84, 0x9284, 0x9684, 0x9A84, 0x9E84, 0xA284, 0xA684, 0xAA84, 0xAE84, 0xB284, 0xB684, 0xBA84, 0xBE84, 
+    0xC184, 0xC384, 0xC584, 0xC784, 0xC984, 0xCB84, 0xCD84, 0xCF84, 0xD184, 0xD384, 0xD584, 0xD784, 0xD984, 0xDB84, 0xDD84, 0xDF84, 
+    0xE104, 0xE204, 0xE304, 0xE404, 0xE504, 0xE604, 0xE704, 0xE804, 0xE904, 0xEA04, 0xEB04, 0xEC04, 0xED04, 0xEE04, 0xEF04, 0xF004, 
+    0xF0C4, 0xF144, 0xF1C4, 0xF244, 0xF2C4, 0xF344, 0xF3C4, 0xF444, 0xF4C4, 0xF544, 0xF5C4, 0xF644, 0xF6C4, 0xF744, 0xF7C4, 0xF844, 
+    0xF8A4, 0xF8E4, 0xF924, 0xF964, 0xF9A4, 0xF9E4, 0xFA24, 0xFA64, 0xFAA4, 0xFAE4, 0xFB24, 0xFB64, 0xFBA4, 0xFBE4, 0xFC24, 0xFC64, 
+    0xFC94, 0xFCB4, 0xFCD4, 0xFCF4, 0xFD14, 0xFD34, 0xFD54, 0xFD74, 0xFD94, 0xFDB4, 0xFDD4, 0xFDF4, 0xFE14, 0xFE34, 0xFE54, 0xFE74, 
+    0xFE8C, 0xFE9C, 0xFEAC, 0xFEBC, 0xFECC, 0xFEDC, 0xFEEC, 0xFEFC, 0xFF0C, 0xFF1C, 0xFF2C, 0xFF3C, 0xFF4C, 0xFF5C, 0xFF6C, 0xFF7C, 
+    0xFF88, 0xFF90, 0xFF98, 0xFFA0, 0xFFA8, 0xFFB0, 0xFFB8, 0xFFC0, 0xFFC8, 0xFFD0, 0xFFD8, 0xFFE0, 0xFFE8, 0xFFF0, 0xFFF8, 0x0000, 
+    0x7D7C, 0x797C, 0x757C, 0x717C, 0x6D7C, 0x697C, 0x657C, 0x617C, 0x5D7C, 0x597C, 0x557C, 0x517C, 0x4D7C, 0x497C, 0x457C, 0x417C, 
+    0x3E7C, 0x3C7C, 0x3A7C, 0x387C, 0x367C, 0x347C, 0x327C, 0x307C, 0x2E7C, 0x2C7C, 0x2A7C, 0x287C, 0x267C, 0x247C, 0x227C, 0x207C, 
+    0x1EFC, 0x1DFC, 0x1CFC, 0x1BFC, 0x1AFC, 0x19FC, 0x18FC, 0x17FC, 0x16FC, 0x15FC, 0x14FC, 0x13FC, 0x12FC, 0x11FC, 0x10FC, 0x0FFC, 
+    0x0F3C, 0x0EBC, 0x0E3C, 0x0DBC, 0x0D3C, 0x0CBC, 0x0C3C, 0x0BBC, 0x0B3C, 0x0ABC, 0x0A3C, 0x09BC, 0x093C, 0x08BC, 0x083C, 0x07BC, 
+    0x075C, 0x071C, 0x06DC, 0x069C, 0x065C, 0x061C, 0x05DC, 0x059C, 0x055C, 0x051C, 0x04DC, 0x049C, 0x045C, 0x041C, 0x03DC, 0x039C, 
+    0x036C, 0x034C, 0x032C, 0x030C, 0x02EC, 0x02CC, 0x02AC, 0x028C, 0x026C, 0x024C, 0x022C, 0x020C, 0x01EC, 0x01CC, 0x01AC, 0x018C, 
+    0x0174, 0x0164, 0x0154, 0x0144, 0x0134, 0x0124, 0x0114, 0x0104, 0x00F4, 0x00E4, 0x00D4, 0x00C4, 0x00B4, 0x00A4, 0x0094, 0x0084, 
+    0x0078, 0x0070, 0x0068, 0x0060, 0x0058, 0x0050, 0x0048, 0x0040, 0x0038, 0x0030, 0x0028, 0x0020, 0x0018, 0x0010, 0x0008, 0x0000
+};
+
+static DRWAV_INLINE drwav_int16 drwav__alaw_to_s16(drwav_uint8 sampleIn)
+{
+    return (short)g_drwavAlawTable[sampleIn];
+}
+
+static DRWAV_INLINE drwav_int16 drwav__mulaw_to_s16(drwav_uint8 sampleIn)
+{
+    return (short)g_drwavMulawTable[sampleIn];
+}
+
+
+
+static void drwav__pcm_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample)
+{
+    unsigned int i;
+
+    /* Special case for 8-bit sample data because it's treated as unsigned. */
+    if (bytesPerSample == 1) {
+        drwav_u8_to_s16(pOut, pIn, totalSampleCount);
+        return;
+    }
+
+
+    /* Slightly more optimal implementation for common formats. */
+    if (bytesPerSample == 2) {
+        for (i = 0; i < totalSampleCount; ++i) {
+           *pOut++ = ((const drwav_int16*)pIn)[i];
+        }
+        return;
+    }
+    if (bytesPerSample == 3) {
+        drwav_s24_to_s16(pOut, pIn, totalSampleCount);
+        return;
+    }
+    if (bytesPerSample == 4) {
+        drwav_s32_to_s16(pOut, (const drwav_int32*)pIn, totalSampleCount);
+        return;
+    }
+
+
+    /* Anything more than 64 bits per sample is not supported. */
+    if (bytesPerSample > 8) {
+        DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut));
+        return;
+    }
+
+
+    /* Generic, slow converter. */
+    for (i = 0; i < totalSampleCount; ++i) {
+        drwav_uint64 sample = 0;
+        unsigned int shift  = (8 - bytesPerSample) * 8;
+
+        unsigned int j;
+        for (j = 0; j < bytesPerSample; j += 1) {
+            DRWAV_ASSERT(j < 8);
+            sample |= (drwav_uint64)(pIn[j]) << shift;
+            shift  += 8;
+        }
+
+        pIn += j;
+        *pOut++ = (drwav_int16)((drwav_int64)sample >> 48);
+    }
+}
+
+static void drwav__ieee_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample)
+{
+    if (bytesPerSample == 4) {
+        drwav_f32_to_s16(pOut, (const float*)pIn, totalSampleCount);
+        return;
+    } else if (bytesPerSample == 8) {
+        drwav_f64_to_s16(pOut, (const double*)pIn, totalSampleCount);
+        return;
+    } else {
+        /* Only supporting 32- and 64-bit float. Output silence in all other cases. Contributions welcome for 16-bit float. */
+        DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut));
+        return;
+    }
+}
+
+static drwav_uint64 drwav_read_pcm_frames_s16__pcm(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
+{
+    drwav_uint32 bytesPerFrame;
+    drwav_uint64 totalFramesRead;
+    drwav_uint8 sampleData[4096];
+
+    /* Fast path. */
+    if ((pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM && pWav->bitsPerSample == 16) || pBufferOut == NULL) {
+        return drwav_read_pcm_frames(pWav, framesToRead, pBufferOut);
+    }
+    
+    bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+    if (bytesPerFrame == 0) {
+        return 0;
+    }
+
+    totalFramesRead = 0;
+    
+    while (framesToRead > 0) {
+        drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+        if (framesRead == 0) {
+            break;
+        }
+
+        drwav__pcm_to_s16(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels), bytesPerFrame/pWav->channels);
+
+        pBufferOut      += framesRead*pWav->channels;
+        framesToRead    -= framesRead;
+        totalFramesRead += framesRead;
+    }
+
+    return totalFramesRead;
+}
+
+static drwav_uint64 drwav_read_pcm_frames_s16__ieee(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
+{
+    drwav_uint64 totalFramesRead;
+    drwav_uint8 sampleData[4096];
+    drwav_uint32 bytesPerFrame;
+
+    if (pBufferOut == NULL) {
+        return drwav_read_pcm_frames(pWav, framesToRead, NULL);
+    }
+
+    bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+    if (bytesPerFrame == 0) {
+        return 0;
+    }
+
+    totalFramesRead = 0;
+    
+    while (framesToRead > 0) {
+        drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+        if (framesRead == 0) {
+            break;
+        }
+
+        drwav__ieee_to_s16(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels), bytesPerFrame/pWav->channels);
+
+        pBufferOut      += framesRead*pWav->channels;
+        framesToRead    -= framesRead;
+        totalFramesRead += framesRead;
+    }
+
+    return totalFramesRead;
+}
+
+static drwav_uint64 drwav_read_pcm_frames_s16__alaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
+{
+    drwav_uint64 totalFramesRead;
+    drwav_uint8 sampleData[4096];
+    drwav_uint32 bytesPerFrame;
+
+    if (pBufferOut == NULL) {
+        return drwav_read_pcm_frames(pWav, framesToRead, NULL);
+    }
+
+    bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+    if (bytesPerFrame == 0) {
+        return 0;
+    }
+
+    totalFramesRead = 0;
+    
+    while (framesToRead > 0) {
+        drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+        if (framesRead == 0) {
+            break;
+        }
+
+        drwav_alaw_to_s16(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels));
+
+        pBufferOut      += framesRead*pWav->channels;
+        framesToRead    -= framesRead;
+        totalFramesRead += framesRead;
+    }
+
+    return totalFramesRead;
+}
+
+static drwav_uint64 drwav_read_pcm_frames_s16__mulaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
+{
+    drwav_uint64 totalFramesRead;
+    drwav_uint8 sampleData[4096];
+    drwav_uint32 bytesPerFrame;
+
+    if (pBufferOut == NULL) {
+        return drwav_read_pcm_frames(pWav, framesToRead, NULL);
+    }
+
+    bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+    if (bytesPerFrame == 0) {
+        return 0;
+    }
+
+    totalFramesRead = 0;
+
+    while (framesToRead > 0) {
+        drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+        if (framesRead == 0) {
+            break;
+        }
+
+        drwav_mulaw_to_s16(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels));
+
+        pBufferOut      += framesRead*pWav->channels;
+        framesToRead    -= framesRead;
+        totalFramesRead += framesRead;
+    }
+
+    return totalFramesRead;
+}
+
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
+{
+    if (pWav == NULL || framesToRead == 0) {
+        return 0;
+    }
+
+    if (pBufferOut == NULL) {
+        return drwav_read_pcm_frames(pWav, framesToRead, NULL);
+    }
+
+    /* Don't try to read more samples than can potentially fit in the output buffer. */
+    if (framesToRead * pWav->channels * sizeof(drwav_int16) > DRWAV_SIZE_MAX) {
+        framesToRead = DRWAV_SIZE_MAX / sizeof(drwav_int16) / pWav->channels;
+    }
+
+    if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM) {
+        return drwav_read_pcm_frames_s16__pcm(pWav, framesToRead, pBufferOut);
+    }
+
+    if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT) {
+        return drwav_read_pcm_frames_s16__ieee(pWav, framesToRead, pBufferOut);
+    }
+
+    if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW) {
+        return drwav_read_pcm_frames_s16__alaw(pWav, framesToRead, pBufferOut);
+    }
+
+    if (pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) {
+        return drwav_read_pcm_frames_s16__mulaw(pWav, framesToRead, pBufferOut);
+    }
+
+    if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
+        return drwav_read_pcm_frames_s16__msadpcm(pWav, framesToRead, pBufferOut);
+    }
+
+    if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
+        return drwav_read_pcm_frames_s16__ima(pWav, framesToRead, pBufferOut);
+    }
+
+    return 0;
+}
+
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16le(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
+{
+    drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, framesToRead, pBufferOut);
+    if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_FALSE) {
+        drwav__bswap_samples_s16(pBufferOut, framesRead*pWav->channels);
+    }
+
+    return framesRead;
+}
+
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16be(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
+{
+    drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, framesToRead, pBufferOut);
+    if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_TRUE) {
+        drwav__bswap_samples_s16(pBufferOut, framesRead*pWav->channels);
+    }
+
+    return framesRead;
+}
+
+
+DRWAV_API void drwav_u8_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+    int r;
+    size_t i;
+    for (i = 0; i < sampleCount; ++i) {
+        int x = pIn[i];
+        r = x << 8;
+        r = r - 32768;
+        pOut[i] = (short)r;
+    }
+}
+
+DRWAV_API void drwav_s24_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+    int r;
+    size_t i;
+    for (i = 0; i < sampleCount; ++i) {
+        int x = ((int)(((unsigned int)(((const drwav_uint8*)pIn)[i*3+0]) << 8) | ((unsigned int)(((const drwav_uint8*)pIn)[i*3+1]) << 16) | ((unsigned int)(((const drwav_uint8*)pIn)[i*3+2])) << 24)) >> 8;
+        r = x >> 8;
+        pOut[i] = (short)r;
+    }
+}
+
+DRWAV_API void drwav_s32_to_s16(drwav_int16* pOut, const drwav_int32* pIn, size_t sampleCount)
+{
+    int r;
+    size_t i;
+    for (i = 0; i < sampleCount; ++i) {
+        int x = pIn[i];
+        r = x >> 16;
+        pOut[i] = (short)r;
+    }
+}
+
+DRWAV_API void drwav_f32_to_s16(drwav_int16* pOut, const float* pIn, size_t sampleCount)
+{
+    int r;
+    size_t i;
+    for (i = 0; i < sampleCount; ++i) {
+        float x = pIn[i];
+        float c;
+        c = ((x < -1) ? -1 : ((x > 1) ? 1 : x));
+        c = c + 1;
+        r = (int)(c * 32767.5f);
+        r = r - 32768;
+        pOut[i] = (short)r;
+    }
+}
+
+DRWAV_API void drwav_f64_to_s16(drwav_int16* pOut, const double* pIn, size_t sampleCount)
+{
+    int r;
+    size_t i;
+    for (i = 0; i < sampleCount; ++i) {
+        double x = pIn[i];
+        double c;
+        c = ((x < -1) ? -1 : ((x > 1) ? 1 : x));
+        c = c + 1;
+        r = (int)(c * 32767.5);
+        r = r - 32768;
+        pOut[i] = (short)r;
+    }
+}
+
+DRWAV_API void drwav_alaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+    size_t i;
+    for (i = 0; i < sampleCount; ++i) {
+        pOut[i] = drwav__alaw_to_s16(pIn[i]);
+    }
+}
+
+DRWAV_API void drwav_mulaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+    size_t i;
+    for (i = 0; i < sampleCount; ++i) {
+        pOut[i] = drwav__mulaw_to_s16(pIn[i]);
+    }
+}
+
+
+
+static void drwav__pcm_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount, unsigned int bytesPerSample)
+{
+    unsigned int i;
+
+    /* Special case for 8-bit sample data because it's treated as unsigned. */
+    if (bytesPerSample == 1) {
+        drwav_u8_to_f32(pOut, pIn, sampleCount);
+        return;
+    }
+
+    /* Slightly more optimal implementation for common formats. */
+    if (bytesPerSample == 2) {
+        drwav_s16_to_f32(pOut, (const drwav_int16*)pIn, sampleCount);
+        return;
+    }
+    if (bytesPerSample == 3) {
+        drwav_s24_to_f32(pOut, pIn, sampleCount);
+        return;
+    }
+    if (bytesPerSample == 4) {
+        drwav_s32_to_f32(pOut, (const drwav_int32*)pIn, sampleCount);
+        return;
+    }
+
+
+    /* Anything more than 64 bits per sample is not supported. */
+    if (bytesPerSample > 8) {
+        DRWAV_ZERO_MEMORY(pOut, sampleCount * sizeof(*pOut));
+        return;
+    }
+
+
+    /* Generic, slow converter. */
+    for (i = 0; i < sampleCount; ++i) {
+        drwav_uint64 sample = 0;
+        unsigned int shift  = (8 - bytesPerSample) * 8;
+
+        unsigned int j;
+        for (j = 0; j < bytesPerSample; j += 1) {
+            DRWAV_ASSERT(j < 8);
+            sample |= (drwav_uint64)(pIn[j]) << shift;
+            shift  += 8;
+        }
+
+        pIn += j;
+        *pOut++ = (float)((drwav_int64)sample / 9223372036854775807.0);
+    }
+}
+
+static void drwav__ieee_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount, unsigned int bytesPerSample)
+{
+    if (bytesPerSample == 4) {
+        unsigned int i;
+        for (i = 0; i < sampleCount; ++i) {
+            *pOut++ = ((const float*)pIn)[i];
+        }
+        return;
+    } else if (bytesPerSample == 8) {
+        drwav_f64_to_f32(pOut, (const double*)pIn, sampleCount);
+        return;
+    } else {
+        /* Only supporting 32- and 64-bit float. Output silence in all other cases. Contributions welcome for 16-bit float. */
+        DRWAV_ZERO_MEMORY(pOut, sampleCount * sizeof(*pOut));
+        return;
+    }
+}
+
+
+static drwav_uint64 drwav_read_pcm_frames_f32__pcm(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
+{
+    drwav_uint64 totalFramesRead;
+    drwav_uint8 sampleData[4096];
+
+    drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+    if (bytesPerFrame == 0) {
+        return 0;
+    }
+
+    totalFramesRead = 0;
+
+    while (framesToRead > 0) {
+        drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+        if (framesRead == 0) {
+            break;
+        }
+
+        drwav__pcm_to_f32(pBufferOut, sampleData, (size_t)framesRead*pWav->channels, bytesPerFrame/pWav->channels);
+
+        pBufferOut      += framesRead*pWav->channels;
+        framesToRead    -= framesRead;
+        totalFramesRead += framesRead;
+    }
+
+    return totalFramesRead;
+}
+
+static drwav_uint64 drwav_read_pcm_frames_f32__msadpcm(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
+{
+    /*
+    We're just going to borrow the implementation from the drwav_read_s16() since ADPCM is a little bit more complicated than other formats and I don't
+    want to duplicate that code.
+    */
+    drwav_uint64 totalFramesRead = 0;
+    drwav_int16 samples16[2048];
+    while (framesToRead > 0) {
+        drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, drwav_min(framesToRead, drwav_countof(samples16)/pWav->channels), samples16);
+        if (framesRead == 0) {
+            break;
+        }
+
+        drwav_s16_to_f32(pBufferOut, samples16, (size_t)(framesRead*pWav->channels));   /* <-- Safe cast because we're clamping to 2048. */
+
+        pBufferOut      += framesRead*pWav->channels;
+        framesToRead    -= framesRead;
+        totalFramesRead += framesRead;
+    }
+
+    return totalFramesRead;
+}
+
+static drwav_uint64 drwav_read_pcm_frames_f32__ima(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
+{
+    /*
+    We're just going to borrow the implementation from the drwav_read_s16() since IMA-ADPCM is a little bit more complicated than other formats and I don't
+    want to duplicate that code.
+    */
+    drwav_uint64 totalFramesRead = 0;
+    drwav_int16 samples16[2048];
+    while (framesToRead > 0) {
+        drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, drwav_min(framesToRead, drwav_countof(samples16)/pWav->channels), samples16);
+        if (framesRead == 0) {
+            break;
+        }
+
+        drwav_s16_to_f32(pBufferOut, samples16, (size_t)(framesRead*pWav->channels));   /* <-- Safe cast because we're clamping to 2048. */
+
+        pBufferOut      += framesRead*pWav->channels;
+        framesToRead    -= framesRead;
+        totalFramesRead += framesRead;
+    }
+
+    return totalFramesRead;
+}
+
+static drwav_uint64 drwav_read_pcm_frames_f32__ieee(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
+{
+    drwav_uint64 totalFramesRead;
+    drwav_uint8 sampleData[4096];
+    drwav_uint32 bytesPerFrame;
+
+    /* Fast path. */
+    if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT && pWav->bitsPerSample == 32) {
+        return drwav_read_pcm_frames(pWav, framesToRead, pBufferOut);
+    }
+    
+    bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+    if (bytesPerFrame == 0) {
+        return 0;
+    }
+
+    totalFramesRead = 0;
+
+    while (framesToRead > 0) {
+        drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+        if (framesRead == 0) {
+            break;
+        }
+
+        drwav__ieee_to_f32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels), bytesPerFrame/pWav->channels);
+
+        pBufferOut      += framesRead*pWav->channels;
+        framesToRead    -= framesRead;
+        totalFramesRead += framesRead;
+    }
+
+    return totalFramesRead;
+}
+
+static drwav_uint64 drwav_read_pcm_frames_f32__alaw(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
+{
+    drwav_uint64 totalFramesRead;
+    drwav_uint8 sampleData[4096];
+    drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+    if (bytesPerFrame == 0) {
+        return 0;
+    }
+
+    totalFramesRead = 0;
+
+    while (framesToRead > 0) {
+        drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+        if (framesRead == 0) {
+            break;
+        }
+
+        drwav_alaw_to_f32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels));
+
+        pBufferOut      += framesRead*pWav->channels;
+        framesToRead    -= framesRead;
+        totalFramesRead += framesRead;
+    }
+
+    return totalFramesRead;
+}
+
+static drwav_uint64 drwav_read_pcm_frames_f32__mulaw(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
+{
+    drwav_uint64 totalFramesRead;
+    drwav_uint8 sampleData[4096];
+
+    drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+    if (bytesPerFrame == 0) {
+        return 0;
+    }
+
+    totalFramesRead = 0;
+
+    while (framesToRead > 0) {
+        drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+        if (framesRead == 0) {
+            break;
+        }
+
+        drwav_mulaw_to_f32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels));
+
+        pBufferOut      += framesRead*pWav->channels;
+        framesToRead    -= framesRead;
+        totalFramesRead += framesRead;
+    }
+
+    return totalFramesRead;
+}
+
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
+{
+    if (pWav == NULL || framesToRead == 0) {
+        return 0;
+    }
+
+    if (pBufferOut == NULL) {
+        return drwav_read_pcm_frames(pWav, framesToRead, NULL);
+    }
+
+    /* Don't try to read more samples than can potentially fit in the output buffer. */
+    if (framesToRead * pWav->channels * sizeof(float) > DRWAV_SIZE_MAX) {
+        framesToRead = DRWAV_SIZE_MAX / sizeof(float) / pWav->channels;
+    }
+
+    if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM) {
+        return drwav_read_pcm_frames_f32__pcm(pWav, framesToRead, pBufferOut);
+    }
+
+    if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
+        return drwav_read_pcm_frames_f32__msadpcm(pWav, framesToRead, pBufferOut);
+    }
+
+    if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT) {
+        return drwav_read_pcm_frames_f32__ieee(pWav, framesToRead, pBufferOut);
+    }
+
+    if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW) {
+        return drwav_read_pcm_frames_f32__alaw(pWav, framesToRead, pBufferOut);
+    }
+
+    if (pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) {
+        return drwav_read_pcm_frames_f32__mulaw(pWav, framesToRead, pBufferOut);
+    }
+
+    if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
+        return drwav_read_pcm_frames_f32__ima(pWav, framesToRead, pBufferOut);
+    }
+
+    return 0;
+}
+
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32le(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
+{
+    drwav_uint64 framesRead = drwav_read_pcm_frames_f32(pWav, framesToRead, pBufferOut);
+    if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_FALSE) {
+        drwav__bswap_samples_f32(pBufferOut, framesRead*pWav->channels);
+    }
+
+    return framesRead;
+}
+
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32be(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
+{
+    drwav_uint64 framesRead = drwav_read_pcm_frames_f32(pWav, framesToRead, pBufferOut);
+    if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_TRUE) {
+        drwav__bswap_samples_f32(pBufferOut, framesRead*pWav->channels);
+    }
+
+    return framesRead;
+}
+
+
+DRWAV_API void drwav_u8_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+    size_t i;
+
+    if (pOut == NULL || pIn == NULL) {
+        return;
+    }
+
+#ifdef DR_WAV_LIBSNDFILE_COMPAT
+    /*
+    It appears libsndfile uses slightly different logic for the u8 -> f32 conversion to dr_wav, which in my opinion is incorrect. It appears
+    libsndfile performs the conversion something like "f32 = (u8 / 256) * 2 - 1", however I think it should be "f32 = (u8 / 255) * 2 - 1" (note
+    the divisor of 256 vs 255). I use libsndfile as a benchmark for testing, so I'm therefore leaving this block here just for my automated
+    correctness testing. This is disabled by default.
+    */
+    for (i = 0; i < sampleCount; ++i) {
+        *pOut++ = (pIn[i] / 256.0f) * 2 - 1;
+    }
+#else
+    for (i = 0; i < sampleCount; ++i) {
+        float x = pIn[i];
+        x = x * 0.00784313725490196078f;    /* 0..255 to 0..2 */
+        x = x - 1;                          /* 0..2 to -1..1 */
+
+        *pOut++ = x;
+    }
+#endif
+}
+
+DRWAV_API void drwav_s16_to_f32(float* pOut, const drwav_int16* pIn, size_t sampleCount)
+{
+    size_t i;
+
+    if (pOut == NULL || pIn == NULL) {
+        return;
+    }
+
+    for (i = 0; i < sampleCount; ++i) {
+        *pOut++ = pIn[i] * 0.000030517578125f;
+    }
+}
+
+DRWAV_API void drwav_s24_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+    size_t i;
+
+    if (pOut == NULL || pIn == NULL) {
+        return;
+    }
+
+    for (i = 0; i < sampleCount; ++i) {
+        double x;
+        drwav_uint32 a = ((drwav_uint32)(pIn[i*3+0]) <<  8);
+        drwav_uint32 b = ((drwav_uint32)(pIn[i*3+1]) << 16);
+        drwav_uint32 c = ((drwav_uint32)(pIn[i*3+2]) << 24);
+
+        x = (double)((drwav_int32)(a | b | c) >> 8);
+        *pOut++ = (float)(x * 0.00000011920928955078125);
+    }
+}
+
+DRWAV_API void drwav_s32_to_f32(float* pOut, const drwav_int32* pIn, size_t sampleCount)
+{
+    size_t i;
+    if (pOut == NULL || pIn == NULL) {
+        return;
+    }
+
+    for (i = 0; i < sampleCount; ++i) {
+        *pOut++ = (float)(pIn[i] / 2147483648.0);
+    }
+}
+
+DRWAV_API void drwav_f64_to_f32(float* pOut, const double* pIn, size_t sampleCount)
+{
+    size_t i;
+
+    if (pOut == NULL || pIn == NULL) {
+        return;
+    }
+
+    for (i = 0; i < sampleCount; ++i) {
+        *pOut++ = (float)pIn[i];
+    }
+}
+
+DRWAV_API void drwav_alaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+    size_t i;
+
+    if (pOut == NULL || pIn == NULL) {
+        return;
+    }
+
+    for (i = 0; i < sampleCount; ++i) {
+        *pOut++ = drwav__alaw_to_s16(pIn[i]) / 32768.0f;
+    }
+}
+
+DRWAV_API void drwav_mulaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+    size_t i;
+
+    if (pOut == NULL || pIn == NULL) {
+        return;
+    }
+
+    for (i = 0; i < sampleCount; ++i) {
+        *pOut++ = drwav__mulaw_to_s16(pIn[i]) / 32768.0f;
+    }
+}
+
+
+
+static void drwav__pcm_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample)
+{
+    unsigned int i;
+
+    /* Special case for 8-bit sample data because it's treated as unsigned. */
+    if (bytesPerSample == 1) {
+        drwav_u8_to_s32(pOut, pIn, totalSampleCount);
+        return;
+    }
+
+    /* Slightly more optimal implementation for common formats. */
+    if (bytesPerSample == 2) {
+        drwav_s16_to_s32(pOut, (const drwav_int16*)pIn, totalSampleCount);
+        return;
+    }
+    if (bytesPerSample == 3) {
+        drwav_s24_to_s32(pOut, pIn, totalSampleCount);
+        return;
+    }
+    if (bytesPerSample == 4) {
+        for (i = 0; i < totalSampleCount; ++i) {
+           *pOut++ = ((const drwav_int32*)pIn)[i];
+        }
+        return;
+    }
+
+
+    /* Anything more than 64 bits per sample is not supported. */
+    if (bytesPerSample > 8) {
+        DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut));
+        return;
+    }
+
+
+    /* Generic, slow converter. */
+    for (i = 0; i < totalSampleCount; ++i) {
+        drwav_uint64 sample = 0;
+        unsigned int shift  = (8 - bytesPerSample) * 8;
+
+        unsigned int j;
+        for (j = 0; j < bytesPerSample; j += 1) {
+            DRWAV_ASSERT(j < 8);
+            sample |= (drwav_uint64)(pIn[j]) << shift;
+            shift  += 8;
+        }
+
+        pIn += j;
+        *pOut++ = (drwav_int32)((drwav_int64)sample >> 32);
+    }
+}
+
+static void drwav__ieee_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample)
+{
+    if (bytesPerSample == 4) {
+        drwav_f32_to_s32(pOut, (const float*)pIn, totalSampleCount);
+        return;
+    } else if (bytesPerSample == 8) {
+        drwav_f64_to_s32(pOut, (const double*)pIn, totalSampleCount);
+        return;
+    } else {
+        /* Only supporting 32- and 64-bit float. Output silence in all other cases. Contributions welcome for 16-bit float. */
+        DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut));
+        return;
+    }
+}
+
+
+static drwav_uint64 drwav_read_pcm_frames_s32__pcm(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
+{
+    drwav_uint64 totalFramesRead;
+    drwav_uint8 sampleData[4096];
+    drwav_uint32 bytesPerFrame;
+
+    /* Fast path. */
+    if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM && pWav->bitsPerSample == 32) {
+        return drwav_read_pcm_frames(pWav, framesToRead, pBufferOut);
+    }
+    
+    bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+    if (bytesPerFrame == 0) {
+        return 0;
+    }
+
+    totalFramesRead = 0;
+
+    while (framesToRead > 0) {
+        drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+        if (framesRead == 0) {
+            break;
+        }
+
+        drwav__pcm_to_s32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels), bytesPerFrame/pWav->channels);
+
+        pBufferOut      += framesRead*pWav->channels;
+        framesToRead    -= framesRead;
+        totalFramesRead += framesRead;
+    }
+
+    return totalFramesRead;
+}
+
+static drwav_uint64 drwav_read_pcm_frames_s32__msadpcm(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
+{
+    /*
+    We're just going to borrow the implementation from the drwav_read_s16() since ADPCM is a little bit more complicated than other formats and I don't
+    want to duplicate that code.
+    */
+    drwav_uint64 totalFramesRead = 0;
+    drwav_int16 samples16[2048];
+    while (framesToRead > 0) {
+        drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, drwav_min(framesToRead, drwav_countof(samples16)/pWav->channels), samples16);
+        if (framesRead == 0) {
+            break;
+        }
+
+        drwav_s16_to_s32(pBufferOut, samples16, (size_t)(framesRead*pWav->channels));   /* <-- Safe cast because we're clamping to 2048. */
+
+        pBufferOut      += framesRead*pWav->channels;
+        framesToRead    -= framesRead;
+        totalFramesRead += framesRead;
+    }
+
+    return totalFramesRead;
+}
+
+static drwav_uint64 drwav_read_pcm_frames_s32__ima(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
+{
+    /*
+    We're just going to borrow the implementation from the drwav_read_s16() since IMA-ADPCM is a little bit more complicated than other formats and I don't
+    want to duplicate that code.
+    */
+    drwav_uint64 totalFramesRead = 0;
+    drwav_int16 samples16[2048];
+    while (framesToRead > 0) {
+        drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, drwav_min(framesToRead, drwav_countof(samples16)/pWav->channels), samples16);
+        if (framesRead == 0) {
+            break;
+        }
+
+        drwav_s16_to_s32(pBufferOut, samples16, (size_t)(framesRead*pWav->channels));   /* <-- Safe cast because we're clamping to 2048. */
+
+        pBufferOut      += framesRead*pWav->channels;
+        framesToRead    -= framesRead;
+        totalFramesRead += framesRead;
+    }
+
+    return totalFramesRead;
+}
+
+static drwav_uint64 drwav_read_pcm_frames_s32__ieee(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
+{
+    drwav_uint64 totalFramesRead;
+    drwav_uint8 sampleData[4096];
+
+    drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+    if (bytesPerFrame == 0) {
+        return 0;
+    }
+
+    totalFramesRead = 0;
+
+    while (framesToRead > 0) {
+        drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+        if (framesRead == 0) {
+            break;
+        }
+
+        drwav__ieee_to_s32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels), bytesPerFrame/pWav->channels);
+
+        pBufferOut      += framesRead*pWav->channels;
+        framesToRead    -= framesRead;
+        totalFramesRead += framesRead;
+    }
+
+    return totalFramesRead;
+}
+
+static drwav_uint64 drwav_read_pcm_frames_s32__alaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
+{
+    drwav_uint64 totalFramesRead;
+    drwav_uint8 sampleData[4096];
+
+    drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+    if (bytesPerFrame == 0) {
+        return 0;
+    }
+
+    totalFramesRead = 0;
+
+    while (framesToRead > 0) {
+        drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+        if (framesRead == 0) {
+            break;
+        }
+
+        drwav_alaw_to_s32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels));
+
+        pBufferOut      += framesRead*pWav->channels;
+        framesToRead    -= framesRead;
+        totalFramesRead += framesRead;
+    }
+
+    return totalFramesRead;
+}
+
+static drwav_uint64 drwav_read_pcm_frames_s32__mulaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
+{
+    drwav_uint64 totalFramesRead;
+    drwav_uint8 sampleData[4096];
+
+    drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
+    if (bytesPerFrame == 0) {
+        return 0;
+    }
+
+    totalFramesRead = 0;
+
+    while (framesToRead > 0) {
+        drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
+        if (framesRead == 0) {
+            break;
+        }
+
+        drwav_mulaw_to_s32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels));
+
+        pBufferOut      += framesRead*pWav->channels;
+        framesToRead    -= framesRead;
+        totalFramesRead += framesRead;
+    }
+
+    return totalFramesRead;
+}
+
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
+{
+    if (pWav == NULL || framesToRead == 0) {
+        return 0;
+    }
+
+    if (pBufferOut == NULL) {
+        return drwav_read_pcm_frames(pWav, framesToRead, NULL);
+    }
+
+    /* Don't try to read more samples than can potentially fit in the output buffer. */
+    if (framesToRead * pWav->channels * sizeof(drwav_int32) > DRWAV_SIZE_MAX) {
+        framesToRead = DRWAV_SIZE_MAX / sizeof(drwav_int32) / pWav->channels;
+    }
+
+    if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM) {
+        return drwav_read_pcm_frames_s32__pcm(pWav, framesToRead, pBufferOut);
+    }
+
+    if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
+        return drwav_read_pcm_frames_s32__msadpcm(pWav, framesToRead, pBufferOut);
+    }
+
+    if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT) {
+        return drwav_read_pcm_frames_s32__ieee(pWav, framesToRead, pBufferOut);
+    }
+
+    if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW) {
+        return drwav_read_pcm_frames_s32__alaw(pWav, framesToRead, pBufferOut);
+    }
+
+    if (pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) {
+        return drwav_read_pcm_frames_s32__mulaw(pWav, framesToRead, pBufferOut);
+    }
+
+    if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
+        return drwav_read_pcm_frames_s32__ima(pWav, framesToRead, pBufferOut);
+    }
+
+    return 0;
+}
+
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32le(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
+{
+    drwav_uint64 framesRead = drwav_read_pcm_frames_s32(pWav, framesToRead, pBufferOut);
+    if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_FALSE) {
+        drwav__bswap_samples_s32(pBufferOut, framesRead*pWav->channels);
+    }
+
+    return framesRead;
+}
+
+DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32be(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
+{
+    drwav_uint64 framesRead = drwav_read_pcm_frames_s32(pWav, framesToRead, pBufferOut);
+    if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_TRUE) {
+        drwav__bswap_samples_s32(pBufferOut, framesRead*pWav->channels);
+    }
+
+    return framesRead;
+}
+
+
+DRWAV_API void drwav_u8_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+    size_t i;
+
+    if (pOut == NULL || pIn == NULL) {
+        return;
+    }
+
+    for (i = 0; i < sampleCount; ++i) {
+        *pOut++ = ((int)pIn[i] - 128) << 24;
+    }
+}
+
+DRWAV_API void drwav_s16_to_s32(drwav_int32* pOut, const drwav_int16* pIn, size_t sampleCount)
+{
+    size_t i;
+
+    if (pOut == NULL || pIn == NULL) {
+        return;
+    }
+
+    for (i = 0; i < sampleCount; ++i) {
+        *pOut++ = pIn[i] << 16;
+    }
+}
+
+DRWAV_API void drwav_s24_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+    size_t i;
+
+    if (pOut == NULL || pIn == NULL) {
+        return;
+    }
+
+    for (i = 0; i < sampleCount; ++i) {
+        unsigned int s0 = pIn[i*3 + 0];
+        unsigned int s1 = pIn[i*3 + 1];
+        unsigned int s2 = pIn[i*3 + 2];
+
+        drwav_int32 sample32 = (drwav_int32)((s0 << 8) | (s1 << 16) | (s2 << 24));
+        *pOut++ = sample32;
+    }
+}
+
+DRWAV_API void drwav_f32_to_s32(drwav_int32* pOut, const float* pIn, size_t sampleCount)
+{
+    size_t i;
+
+    if (pOut == NULL || pIn == NULL) {
+        return;
+    }
+
+    for (i = 0; i < sampleCount; ++i) {
+        *pOut++ = (drwav_int32)(2147483648.0 * pIn[i]);
+    }
+}
+
+DRWAV_API void drwav_f64_to_s32(drwav_int32* pOut, const double* pIn, size_t sampleCount)
+{
+    size_t i;
+
+    if (pOut == NULL || pIn == NULL) {
+        return;
+    }
+
+    for (i = 0; i < sampleCount; ++i) {
+        *pOut++ = (drwav_int32)(2147483648.0 * pIn[i]);
+    }
+}
+
+DRWAV_API void drwav_alaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+    size_t i;
+
+    if (pOut == NULL || pIn == NULL) {
+        return;
+    }
+
+    for (i = 0; i < sampleCount; ++i) {
+        *pOut++ = ((drwav_int32)drwav__alaw_to_s16(pIn[i])) << 16;
+    }
+}
+
+DRWAV_API void drwav_mulaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount)
+{
+    size_t i;
+
+    if (pOut == NULL || pIn == NULL) {
+        return;
+    }
+
+    for (i= 0; i < sampleCount; ++i) {
+        *pOut++ = ((drwav_int32)drwav__mulaw_to_s16(pIn[i])) << 16;
+    }
+}
+
+
+
+static drwav_int16* drwav__read_pcm_frames_and_close_s16(drwav* pWav, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalFrameCount)
+{
+    drwav_uint64 sampleDataSize;
+    drwav_int16* pSampleData;
+    drwav_uint64 framesRead;
+
+    DRWAV_ASSERT(pWav != NULL);
+
+    sampleDataSize = pWav->totalPCMFrameCount * pWav->channels * sizeof(drwav_int16);
+    if (sampleDataSize > DRWAV_SIZE_MAX) {
+        drwav_uninit(pWav);
+        return NULL;    /* File's too big. */
+    }
+
+    pSampleData = (drwav_int16*)drwav__malloc_from_callbacks((size_t)sampleDataSize, &pWav->allocationCallbacks); /* <-- Safe cast due to the check above. */
+    if (pSampleData == NULL) {
+        drwav_uninit(pWav);
+        return NULL;    /* Failed to allocate memory. */
+    }
+
+    framesRead = drwav_read_pcm_frames_s16(pWav, (size_t)pWav->totalPCMFrameCount, pSampleData);
+    if (framesRead != pWav->totalPCMFrameCount) {
+        drwav__free_from_callbacks(pSampleData, &pWav->allocationCallbacks);
+        drwav_uninit(pWav);
+        return NULL;    /* There was an error reading the samples. */
+    }
+
+    drwav_uninit(pWav);
+
+    if (sampleRate) {
+        *sampleRate = pWav->sampleRate;
+    }
+    if (channels) {
+        *channels = pWav->channels;
+    }
+    if (totalFrameCount) {
+        *totalFrameCount = pWav->totalPCMFrameCount;
+    }
+
+    return pSampleData;
+}
+
+static float* drwav__read_pcm_frames_and_close_f32(drwav* pWav, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalFrameCount)
+{
+    drwav_uint64 sampleDataSize;
+    float* pSampleData;
+    drwav_uint64 framesRead;
+
+    DRWAV_ASSERT(pWav != NULL);
+
+    sampleDataSize = pWav->totalPCMFrameCount * pWav->channels * sizeof(float);
+    if (sampleDataSize > DRWAV_SIZE_MAX) {
+        drwav_uninit(pWav);
+        return NULL;    /* File's too big. */
+    }
+
+    pSampleData = (float*)drwav__malloc_from_callbacks((size_t)sampleDataSize, &pWav->allocationCallbacks); /* <-- Safe cast due to the check above. */
+    if (pSampleData == NULL) {
+        drwav_uninit(pWav);
+        return NULL;    /* Failed to allocate memory. */
+    }
+
+    framesRead = drwav_read_pcm_frames_f32(pWav, (size_t)pWav->totalPCMFrameCount, pSampleData);
+    if (framesRead != pWav->totalPCMFrameCount) {
+        drwav__free_from_callbacks(pSampleData, &pWav->allocationCallbacks);
+        drwav_uninit(pWav);
+        return NULL;    /* There was an error reading the samples. */
+    }
+
+    drwav_uninit(pWav);
+
+    if (sampleRate) {
+        *sampleRate = pWav->sampleRate;
+    }
+    if (channels) {
+        *channels = pWav->channels;
+    }
+    if (totalFrameCount) {
+        *totalFrameCount = pWav->totalPCMFrameCount;
+    }
+
+    return pSampleData;
+}
+
+static drwav_int32* drwav__read_pcm_frames_and_close_s32(drwav* pWav, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalFrameCount)
+{
+    drwav_uint64 sampleDataSize;
+    drwav_int32* pSampleData;
+    drwav_uint64 framesRead;
+
+    DRWAV_ASSERT(pWav != NULL);
+
+    sampleDataSize = pWav->totalPCMFrameCount * pWav->channels * sizeof(drwav_int32);
+    if (sampleDataSize > DRWAV_SIZE_MAX) {
+        drwav_uninit(pWav);
+        return NULL;    /* File's too big. */
+    }
+
+    pSampleData = (drwav_int32*)drwav__malloc_from_callbacks((size_t)sampleDataSize, &pWav->allocationCallbacks); /* <-- Safe cast due to the check above. */
+    if (pSampleData == NULL) {
+        drwav_uninit(pWav);
+        return NULL;    /* Failed to allocate memory. */
+    }
+
+    framesRead = drwav_read_pcm_frames_s32(pWav, (size_t)pWav->totalPCMFrameCount, pSampleData);
+    if (framesRead != pWav->totalPCMFrameCount) {
+        drwav__free_from_callbacks(pSampleData, &pWav->allocationCallbacks);
+        drwav_uninit(pWav);
+        return NULL;    /* There was an error reading the samples. */
+    }
+
+    drwav_uninit(pWav);
+
+    if (sampleRate) {
+        *sampleRate = pWav->sampleRate;
+    }
+    if (channels) {
+        *channels = pWav->channels;
+    }
+    if (totalFrameCount) {
+        *totalFrameCount = pWav->totalPCMFrameCount;
+    }
+
+    return pSampleData;
+}
+
+
+
+DRWAV_API drwav_int16* drwav_open_and_read_pcm_frames_s16(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    drwav wav;
+
+    if (channelsOut) {
+        *channelsOut = 0;
+    }
+    if (sampleRateOut) {
+        *sampleRateOut = 0;
+    }
+    if (totalFrameCountOut) {
+        *totalFrameCountOut = 0;
+    }
+
+    if (!drwav_init(&wav, onRead, onSeek, pUserData, pAllocationCallbacks)) {
+        return NULL;
+    }
+
+    return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+
+DRWAV_API float* drwav_open_and_read_pcm_frames_f32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    drwav wav;
+
+    if (channelsOut) {
+        *channelsOut = 0;
+    }
+    if (sampleRateOut) {
+        *sampleRateOut = 0;
+    }
+    if (totalFrameCountOut) {
+        *totalFrameCountOut = 0;
+    }
+
+    if (!drwav_init(&wav, onRead, onSeek, pUserData, pAllocationCallbacks)) {
+        return NULL;
+    }
+
+    return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+
+DRWAV_API drwav_int32* drwav_open_and_read_pcm_frames_s32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    drwav wav;
+
+    if (channelsOut) {
+        *channelsOut = 0;
+    }
+    if (sampleRateOut) {
+        *sampleRateOut = 0;
+    }
+    if (totalFrameCountOut) {
+        *totalFrameCountOut = 0;
+    }
+
+    if (!drwav_init(&wav, onRead, onSeek, pUserData, pAllocationCallbacks)) {
+        return NULL;
+    }
+
+    return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+
+#ifndef DR_WAV_NO_STDIO
+DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    drwav wav;
+
+    if (channelsOut) {
+        *channelsOut = 0;
+    }
+    if (sampleRateOut) {
+        *sampleRateOut = 0;
+    }
+    if (totalFrameCountOut) {
+        *totalFrameCountOut = 0;
+    }
+
+    if (!drwav_init_file(&wav, filename, pAllocationCallbacks)) {
+        return NULL;
+    }
+
+    return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+
+DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    drwav wav;
+
+    if (channelsOut) {
+        *channelsOut = 0;
+    }
+    if (sampleRateOut) {
+        *sampleRateOut = 0;
+    }
+    if (totalFrameCountOut) {
+        *totalFrameCountOut = 0;
+    }
+
+    if (!drwav_init_file(&wav, filename, pAllocationCallbacks)) {
+        return NULL;
+    }
+
+    return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+
+DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    drwav wav;
+
+    if (channelsOut) {
+        *channelsOut = 0;
+    }
+    if (sampleRateOut) {
+        *sampleRateOut = 0;
+    }
+    if (totalFrameCountOut) {
+        *totalFrameCountOut = 0;
+    }
+
+    if (!drwav_init_file(&wav, filename, pAllocationCallbacks)) {
+        return NULL;
+    }
+
+    return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+
+
+DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    drwav wav;
+
+    if (sampleRateOut) {
+        *sampleRateOut = 0;
+    }
+    if (channelsOut) {
+        *channelsOut = 0;
+    }
+    if (totalFrameCountOut) {
+        *totalFrameCountOut = 0;
+    }
+
+    if (!drwav_init_file_w(&wav, filename, pAllocationCallbacks)) {
+        return NULL;
+    }
+
+    return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+
+DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    drwav wav;
+
+    if (sampleRateOut) {
+        *sampleRateOut = 0;
+    }
+    if (channelsOut) {
+        *channelsOut = 0;
+    }
+    if (totalFrameCountOut) {
+        *totalFrameCountOut = 0;
+    }
+
+    if (!drwav_init_file_w(&wav, filename, pAllocationCallbacks)) {
+        return NULL;
+    }
+
+    return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+
+DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    drwav wav;
+
+    if (sampleRateOut) {
+        *sampleRateOut = 0;
+    }
+    if (channelsOut) {
+        *channelsOut = 0;
+    }
+    if (totalFrameCountOut) {
+        *totalFrameCountOut = 0;
+    }
+
+    if (!drwav_init_file_w(&wav, filename, pAllocationCallbacks)) {
+        return NULL;
+    }
+
+    return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+#endif
+
+DRWAV_API drwav_int16* drwav_open_memory_and_read_pcm_frames_s16(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    drwav wav;
+
+    if (channelsOut) {
+        *channelsOut = 0;
+    }
+    if (sampleRateOut) {
+        *sampleRateOut = 0;
+    }
+    if (totalFrameCountOut) {
+        *totalFrameCountOut = 0;
+    }
+
+    if (!drwav_init_memory(&wav, data, dataSize, pAllocationCallbacks)) {
+        return NULL;
+    }
+
+    return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+
+DRWAV_API float* drwav_open_memory_and_read_pcm_frames_f32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    drwav wav;
+
+    if (channelsOut) {
+        *channelsOut = 0;
+    }
+    if (sampleRateOut) {
+        *sampleRateOut = 0;
+    }
+    if (totalFrameCountOut) {
+        *totalFrameCountOut = 0;
+    }
+
+    if (!drwav_init_memory(&wav, data, dataSize, pAllocationCallbacks)) {
+        return NULL;
+    }
+
+    return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+
+DRWAV_API drwav_int32* drwav_open_memory_and_read_pcm_frames_s32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    drwav wav;
+
+    if (channelsOut) {
+        *channelsOut = 0;
+    }
+    if (sampleRateOut) {
+        *sampleRateOut = 0;
+    }
+    if (totalFrameCountOut) {
+        *totalFrameCountOut = 0;
+    }
+
+    if (!drwav_init_memory(&wav, data, dataSize, pAllocationCallbacks)) {
+        return NULL;
+    }
+
+    return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
+}
+#endif  /* DR_WAV_NO_CONVERSION_API */
+
+
+DRWAV_API void drwav_free(void* p, const drwav_allocation_callbacks* pAllocationCallbacks)
+{
+    if (pAllocationCallbacks != NULL) {
+        drwav__free_from_callbacks(p, pAllocationCallbacks);
+    } else {
+        drwav__free_default(p, NULL);
+    }
+}
+
+DRWAV_API drwav_uint16 drwav_bytes_to_u16(const drwav_uint8* data)
+{
+    return drwav__bytes_to_u16(data);
+}
+
+DRWAV_API drwav_int16 drwav_bytes_to_s16(const drwav_uint8* data)
+{
+    return drwav__bytes_to_s16(data);
+}
+
+DRWAV_API drwav_uint32 drwav_bytes_to_u32(const drwav_uint8* data)
+{
+    return drwav__bytes_to_u32(data);
+}
+
+DRWAV_API drwav_int32 drwav_bytes_to_s32(const drwav_uint8* data)
+{
+    return drwav__bytes_to_s32(data);
+}
+
+DRWAV_API drwav_uint64 drwav_bytes_to_u64(const drwav_uint8* data)
+{
+    return drwav__bytes_to_u64(data);
+}
+
+DRWAV_API drwav_int64 drwav_bytes_to_s64(const drwav_uint8* data)
+{
+    return drwav__bytes_to_s64(data);
+}
+
+
+DRWAV_API drwav_bool32 drwav_guid_equal(const drwav_uint8 a[16], const drwav_uint8 b[16])
+{
+    return drwav__guid_equal(a, b);
+}
+
+DRWAV_API drwav_bool32 drwav_fourcc_equal(const drwav_uint8* a, const char* b)
+{
+    return drwav__fourcc_equal(a, b);
+}
+
+#endif  /* dr_wav_c */
+#endif  /* DR_WAV_IMPLEMENTATION */
+
+/*
+RELEASE NOTES - v0.11.0
+=======================
+Version 0.11.0 has breaking API changes.
+
+Improved Client-Defined Memory Allocation
+-----------------------------------------
+The main change with this release is the addition of a more flexible way of implementing custom memory allocation routines. The
+existing system of DRWAV_MALLOC, DRWAV_REALLOC and DRWAV_FREE are still in place and will be used by default when no custom
+allocation callbacks are specified.
+
+To use the new system, you pass in a pointer to a drwav_allocation_callbacks object to drwav_init() and family, like this:
+
+    void* my_malloc(size_t sz, void* pUserData)
+    {
+        return malloc(sz);
+    }
+    void* my_realloc(void* p, size_t sz, void* pUserData)
+    {
+        return realloc(p, sz);
+    }
+    void my_free(void* p, void* pUserData)
+    {
+        free(p);
+    }
+
+    ...
+
+    drwav_allocation_callbacks allocationCallbacks;
+    allocationCallbacks.pUserData = &myData;
+    allocationCallbacks.onMalloc  = my_malloc;
+    allocationCallbacks.onRealloc = my_realloc;
+    allocationCallbacks.onFree    = my_free;
+    drwav_init_file(&wav, "my_file.wav", &allocationCallbacks);
+
+The advantage of this new system is that it allows you to specify user data which will be passed in to the allocation routines.
+
+Passing in null for the allocation callbacks object will cause dr_wav to use defaults which is the same as DRWAV_MALLOC,
+DRWAV_REALLOC and DRWAV_FREE and the equivalent of how it worked in previous versions.
+
+Every API that opens a drwav object now takes this extra parameter. These include the following:
+
+    drwav_init()
+    drwav_init_ex()
+    drwav_init_file()
+    drwav_init_file_ex()
+    drwav_init_file_w()
+    drwav_init_file_w_ex()
+    drwav_init_memory()
+    drwav_init_memory_ex()
+    drwav_init_write()
+    drwav_init_write_sequential()
+    drwav_init_write_sequential_pcm_frames()
+    drwav_init_file_write()
+    drwav_init_file_write_sequential()
+    drwav_init_file_write_sequential_pcm_frames()
+    drwav_init_file_write_w()
+    drwav_init_file_write_sequential_w()
+    drwav_init_file_write_sequential_pcm_frames_w()
+    drwav_init_memory_write()
+    drwav_init_memory_write_sequential()
+    drwav_init_memory_write_sequential_pcm_frames()
+    drwav_open_and_read_pcm_frames_s16()
+    drwav_open_and_read_pcm_frames_f32()
+    drwav_open_and_read_pcm_frames_s32()
+    drwav_open_file_and_read_pcm_frames_s16()
+    drwav_open_file_and_read_pcm_frames_f32()
+    drwav_open_file_and_read_pcm_frames_s32()
+    drwav_open_file_and_read_pcm_frames_s16_w()
+    drwav_open_file_and_read_pcm_frames_f32_w()
+    drwav_open_file_and_read_pcm_frames_s32_w()
+    drwav_open_memory_and_read_pcm_frames_s16()
+    drwav_open_memory_and_read_pcm_frames_f32()
+    drwav_open_memory_and_read_pcm_frames_s32()
+
+Endian Improvements
+-------------------
+Previously, the following APIs returned little-endian audio data. These now return native-endian data. This improves compatibility
+on big-endian architectures.
+
+    drwav_read_pcm_frames()
+    drwav_read_pcm_frames_s16()
+    drwav_read_pcm_frames_s32()
+    drwav_read_pcm_frames_f32()
+    drwav_open_and_read_pcm_frames_s16()
+    drwav_open_and_read_pcm_frames_s32()
+    drwav_open_and_read_pcm_frames_f32()
+    drwav_open_file_and_read_pcm_frames_s16()
+    drwav_open_file_and_read_pcm_frames_s32()
+    drwav_open_file_and_read_pcm_frames_f32()
+    drwav_open_file_and_read_pcm_frames_s16_w()
+    drwav_open_file_and_read_pcm_frames_s32_w()
+    drwav_open_file_and_read_pcm_frames_f32_w()
+    drwav_open_memory_and_read_pcm_frames_s16()
+    drwav_open_memory_and_read_pcm_frames_s32()
+    drwav_open_memory_and_read_pcm_frames_f32()
+
+APIs have been added to give you explicit control over whether or not audio data is read or written in big- or little-endian byte
+order:
+
+    drwav_read_pcm_frames_le()
+    drwav_read_pcm_frames_be()
+    drwav_read_pcm_frames_s16le()
+    drwav_read_pcm_frames_s16be()
+    drwav_read_pcm_frames_f32le()
+    drwav_read_pcm_frames_f32be()
+    drwav_read_pcm_frames_s32le()
+    drwav_read_pcm_frames_s32be()
+    drwav_write_pcm_frames_le()
+    drwav_write_pcm_frames_be()
+
+Removed APIs
+------------
+The following APIs were deprecated in version 0.10.0 and have now been removed:
+
+    drwav_open()
+    drwav_open_ex()
+    drwav_open_write()
+    drwav_open_write_sequential()
+    drwav_open_file()
+    drwav_open_file_ex()
+    drwav_open_file_write()
+    drwav_open_file_write_sequential()
+    drwav_open_memory()
+    drwav_open_memory_ex()
+    drwav_open_memory_write()
+    drwav_open_memory_write_sequential()
+    drwav_close()
+
+
+
+RELEASE NOTES - v0.10.0
+=======================
+Version 0.10.0 has breaking API changes. There are no significant bug fixes in this release, so if you are affected you do
+not need to upgrade.
+
+Removed APIs
+------------
+The following APIs were deprecated in version 0.9.0 and have been completely removed in version 0.10.0:
+
+    drwav_read()
+    drwav_read_s16()
+    drwav_read_f32()
+    drwav_read_s32()
+    drwav_seek_to_sample()
+    drwav_write()
+    drwav_open_and_read_s16()
+    drwav_open_and_read_f32()
+    drwav_open_and_read_s32()
+    drwav_open_file_and_read_s16()
+    drwav_open_file_and_read_f32()
+    drwav_open_file_and_read_s32()
+    drwav_open_memory_and_read_s16()
+    drwav_open_memory_and_read_f32()
+    drwav_open_memory_and_read_s32()
+    drwav::totalSampleCount
+
+See release notes for version 0.9.0 at the bottom of this file for replacement APIs.
+
+Deprecated APIs
+---------------
+The following APIs have been deprecated. There is a confusing and completely arbitrary difference between drwav_init*() and
+drwav_open*(), where drwav_init*() initializes a pre-allocated drwav object, whereas drwav_open*() will first allocated a
+drwav object on the heap and then initialize it. drwav_open*() has been deprecated which means you must now use a pre-
+allocated drwav object with drwav_init*(). If you need the previous functionality, you can just do a malloc() followed by
+a called to one of the drwav_init*() APIs.
+
+    drwav_open()
+    drwav_open_ex()
+    drwav_open_write()
+    drwav_open_write_sequential()
+    drwav_open_file()
+    drwav_open_file_ex()
+    drwav_open_file_write()
+    drwav_open_file_write_sequential()
+    drwav_open_memory()
+    drwav_open_memory_ex()
+    drwav_open_memory_write()
+    drwav_open_memory_write_sequential()
+    drwav_close()
+
+These APIs will be removed completely in a future version. The rationale for this change is to remove confusion between the
+two different ways to initialize a drwav object.
+*/
+
+/*
+REVISION HISTORY
+================
+v0.12.16 - 2020-12-02
+  - Fix a bug when trying to read more bytes than can fit in a size_t.
+
+v0.12.15 - 2020-11-21
+  - Fix compilation with OpenWatcom.
+
+v0.12.14 - 2020-11-13
+  - Minor code clean up.
+
+v0.12.13 - 2020-11-01
+  - Improve compiler support for older versions of GCC.
+
+v0.12.12 - 2020-09-28
+  - Add support for RF64.
+  - Fix a bug in writing mode where the size of the RIFF chunk incorrectly includes the header section.
+
+v0.12.11 - 2020-09-08
+  - Fix a compilation error on older compilers.
+
+v0.12.10 - 2020-08-24
+  - Fix a bug when seeking with ADPCM formats.
+
+v0.12.9 - 2020-08-02
+  - Simplify sized types.
+
+v0.12.8 - 2020-07-25
+  - Fix a compilation warning.
+
+v0.12.7 - 2020-07-15
+  - Fix some bugs on big-endian architectures.
+  - Fix an error in s24 to f32 conversion.
+
+v0.12.6 - 2020-06-23
+  - Change drwav_read_*() to allow NULL to be passed in as the output buffer which is equivalent to a forward seek.
+  - Fix a buffer overflow when trying to decode invalid IMA-ADPCM files.
+  - Add include guard for the implementation section.
+
+v0.12.5 - 2020-05-27
+  - Minor documentation fix.
+
+v0.12.4 - 2020-05-16
+  - Replace assert() with DRWAV_ASSERT().
+  - Add compile-time and run-time version querying.
+    - DRWAV_VERSION_MINOR
+    - DRWAV_VERSION_MAJOR
+    - DRWAV_VERSION_REVISION
+    - DRWAV_VERSION_STRING
+    - drwav_version()
+    - drwav_version_string()
+
+v0.12.3 - 2020-04-30
+  - Fix compilation errors with VC6.
+
+v0.12.2 - 2020-04-21
+  - Fix a bug where drwav_init_file() does not close the file handle after attempting to load an erroneous file.
+
+v0.12.1 - 2020-04-13
+  - Fix some pedantic warnings.
+
+v0.12.0 - 2020-04-04
+  - API CHANGE: Add container and format parameters to the chunk callback.
+  - Minor documentation updates.
+
+v0.11.5 - 2020-03-07
+  - Fix compilation error with Visual Studio .NET 2003.
+
+v0.11.4 - 2020-01-29
+  - Fix some static analysis warnings.
+  - Fix a bug when reading f32 samples from an A-law encoded stream.
+
+v0.11.3 - 2020-01-12
+  - Minor changes to some f32 format conversion routines.
+  - Minor bug fix for ADPCM conversion when end of file is reached.
+
+v0.11.2 - 2019-12-02
+  - Fix a possible crash when using custom memory allocators without a custom realloc() implementation.
+  - Fix an integer overflow bug.
+  - Fix a null pointer dereference bug.
+  - Add limits to sample rate, channels and bits per sample to tighten up some validation.
+
+v0.11.1 - 2019-10-07
+  - Internal code clean up.
+
+v0.11.0 - 2019-10-06
+  - API CHANGE: Add support for user defined memory allocation routines. This system allows the program to specify their own memory allocation
+    routines with a user data pointer for client-specific contextual data. This adds an extra parameter to the end of the following APIs:
+    - drwav_init()
+    - drwav_init_ex()
+    - drwav_init_file()
+    - drwav_init_file_ex()
+    - drwav_init_file_w()
+    - drwav_init_file_w_ex()
+    - drwav_init_memory()
+    - drwav_init_memory_ex()
+    - drwav_init_write()
+    - drwav_init_write_sequential()
+    - drwav_init_write_sequential_pcm_frames()
+    - drwav_init_file_write()
+    - drwav_init_file_write_sequential()
+    - drwav_init_file_write_sequential_pcm_frames()
+    - drwav_init_file_write_w()
+    - drwav_init_file_write_sequential_w()
+    - drwav_init_file_write_sequential_pcm_frames_w()
+    - drwav_init_memory_write()
+    - drwav_init_memory_write_sequential()
+    - drwav_init_memory_write_sequential_pcm_frames()
+    - drwav_open_and_read_pcm_frames_s16()
+    - drwav_open_and_read_pcm_frames_f32()
+    - drwav_open_and_read_pcm_frames_s32()
+    - drwav_open_file_and_read_pcm_frames_s16()
+    - drwav_open_file_and_read_pcm_frames_f32()
+    - drwav_open_file_and_read_pcm_frames_s32()
+    - drwav_open_file_and_read_pcm_frames_s16_w()
+    - drwav_open_file_and_read_pcm_frames_f32_w()
+    - drwav_open_file_and_read_pcm_frames_s32_w()
+    - drwav_open_memory_and_read_pcm_frames_s16()
+    - drwav_open_memory_and_read_pcm_frames_f32()
+    - drwav_open_memory_and_read_pcm_frames_s32()
+    Set this extra parameter to NULL to use defaults which is the same as the previous behaviour. Setting this NULL will use
+    DRWAV_MALLOC, DRWAV_REALLOC and DRWAV_FREE.
+  - Add support for reading and writing PCM frames in an explicit endianness. New APIs:
+    - drwav_read_pcm_frames_le()
+    - drwav_read_pcm_frames_be()
+    - drwav_read_pcm_frames_s16le()
+    - drwav_read_pcm_frames_s16be()
+    - drwav_read_pcm_frames_f32le()
+    - drwav_read_pcm_frames_f32be()
+    - drwav_read_pcm_frames_s32le()
+    - drwav_read_pcm_frames_s32be()
+    - drwav_write_pcm_frames_le()
+    - drwav_write_pcm_frames_be()
+  - Remove deprecated APIs.
+  - API CHANGE: The following APIs now return native-endian data. Previously they returned little-endian data.
+    - drwav_read_pcm_frames()
+    - drwav_read_pcm_frames_s16()
+    - drwav_read_pcm_frames_s32()
+    - drwav_read_pcm_frames_f32()
+    - drwav_open_and_read_pcm_frames_s16()
+    - drwav_open_and_read_pcm_frames_s32()
+    - drwav_open_and_read_pcm_frames_f32()
+    - drwav_open_file_and_read_pcm_frames_s16()
+    - drwav_open_file_and_read_pcm_frames_s32()
+    - drwav_open_file_and_read_pcm_frames_f32()
+    - drwav_open_file_and_read_pcm_frames_s16_w()
+    - drwav_open_file_and_read_pcm_frames_s32_w()
+    - drwav_open_file_and_read_pcm_frames_f32_w()
+    - drwav_open_memory_and_read_pcm_frames_s16()
+    - drwav_open_memory_and_read_pcm_frames_s32()
+    - drwav_open_memory_and_read_pcm_frames_f32()
+
+v0.10.1 - 2019-08-31
+  - Correctly handle partial trailing ADPCM blocks.
+
+v0.10.0 - 2019-08-04
+  - Remove deprecated APIs.
+  - Add wchar_t variants for file loading APIs:
+      drwav_init_file_w()
+      drwav_init_file_ex_w()
+      drwav_init_file_write_w()
+      drwav_init_file_write_sequential_w()
+  - Add drwav_target_write_size_bytes() which calculates the total size in bytes of a WAV file given a format and sample count.
+  - Add APIs for specifying the PCM frame count instead of the sample count when opening in sequential write mode:
+      drwav_init_write_sequential_pcm_frames()
+      drwav_init_file_write_sequential_pcm_frames()
+      drwav_init_file_write_sequential_pcm_frames_w()
+      drwav_init_memory_write_sequential_pcm_frames()
+  - Deprecate drwav_open*() and drwav_close():
+      drwav_open()
+      drwav_open_ex()
+      drwav_open_write()
+      drwav_open_write_sequential()
+      drwav_open_file()
+      drwav_open_file_ex()
+      drwav_open_file_write()
+      drwav_open_file_write_sequential()
+      drwav_open_memory()
+      drwav_open_memory_ex()
+      drwav_open_memory_write()
+      drwav_open_memory_write_sequential()
+      drwav_close()
+  - Minor documentation updates.
+
+v0.9.2 - 2019-05-21
+  - Fix warnings.
+
+v0.9.1 - 2019-05-05
+  - Add support for C89.
+  - Change license to choice of public domain or MIT-0.
+
+v0.9.0 - 2018-12-16
+  - API CHANGE: Add new reading APIs for reading by PCM frames instead of samples. Old APIs have been deprecated and
+    will be removed in v0.10.0. Deprecated APIs and their replacements:
+      drwav_read()                     -> drwav_read_pcm_frames()
+      drwav_read_s16()                 -> drwav_read_pcm_frames_s16()
+      drwav_read_f32()                 -> drwav_read_pcm_frames_f32()
+      drwav_read_s32()                 -> drwav_read_pcm_frames_s32()
+      drwav_seek_to_sample()           -> drwav_seek_to_pcm_frame()
+      drwav_write()                    -> drwav_write_pcm_frames()
+      drwav_open_and_read_s16()        -> drwav_open_and_read_pcm_frames_s16()
+      drwav_open_and_read_f32()        -> drwav_open_and_read_pcm_frames_f32()
+      drwav_open_and_read_s32()        -> drwav_open_and_read_pcm_frames_s32()
+      drwav_open_file_and_read_s16()   -> drwav_open_file_and_read_pcm_frames_s16()
+      drwav_open_file_and_read_f32()   -> drwav_open_file_and_read_pcm_frames_f32()
+      drwav_open_file_and_read_s32()   -> drwav_open_file_and_read_pcm_frames_s32()
+      drwav_open_memory_and_read_s16() -> drwav_open_memory_and_read_pcm_frames_s16()
+      drwav_open_memory_and_read_f32() -> drwav_open_memory_and_read_pcm_frames_f32()
+      drwav_open_memory_and_read_s32() -> drwav_open_memory_and_read_pcm_frames_s32()
+      drwav::totalSampleCount          -> drwav::totalPCMFrameCount
+  - API CHANGE: Rename drwav_open_and_read_file_*() to drwav_open_file_and_read_*().
+  - API CHANGE: Rename drwav_open_and_read_memory_*() to drwav_open_memory_and_read_*().
+  - Add built-in support for smpl chunks.
+  - Add support for firing a callback for each chunk in the file at initialization time.
+    - This is enabled through the drwav_init_ex(), etc. family of APIs.
+  - Handle invalid FMT chunks more robustly.
+
+v0.8.5 - 2018-09-11
+  - Const correctness.
+  - Fix a potential stack overflow.
+
+v0.8.4 - 2018-08-07
+  - Improve 64-bit detection.
+
+v0.8.3 - 2018-08-05
+  - Fix C++ build on older versions of GCC.
+
+v0.8.2 - 2018-08-02
+  - Fix some big-endian bugs.
+
+v0.8.1 - 2018-06-29
+  - Add support for sequential writing APIs.
+  - Disable seeking in write mode.
+  - Fix bugs with Wave64.
+  - Fix typos.
+
+v0.8 - 2018-04-27
+  - Bug fix.
+  - Start using major.minor.revision versioning.
+
+v0.7f - 2018-02-05
+  - Restrict ADPCM formats to a maximum of 2 channels.
+
+v0.7e - 2018-02-02
+  - Fix a crash.
+
+v0.7d - 2018-02-01
+  - Fix a crash.
+
+v0.7c - 2018-02-01
+  - Set drwav.bytesPerSample to 0 for all compressed formats.
+  - Fix a crash when reading 16-bit floating point WAV files. In this case dr_wav will output silence for
+    all format conversion reading APIs (*_s16, *_s32, *_f32 APIs).
+  - Fix some divide-by-zero errors.
+
+v0.7b - 2018-01-22
+  - Fix errors with seeking of compressed formats.
+  - Fix compilation error when DR_WAV_NO_CONVERSION_API
+
+v0.7a - 2017-11-17
+  - Fix some GCC warnings.
+
+v0.7 - 2017-11-04
+  - Add writing APIs.
+
+v0.6 - 2017-08-16
+  - API CHANGE: Rename dr_* types to drwav_*.
+  - Add support for custom implementations of malloc(), realloc(), etc.
+  - Add support for Microsoft ADPCM.
+  - Add support for IMA ADPCM (DVI, format code 0x11).
+  - Optimizations to drwav_read_s16().
+  - Bug fixes.
+
+v0.5g - 2017-07-16
+  - Change underlying type for booleans to unsigned.
+
+v0.5f - 2017-04-04
+  - Fix a minor bug with drwav_open_and_read_s16() and family.
+
+v0.5e - 2016-12-29
+  - Added support for reading samples as signed 16-bit integers. Use the _s16() family of APIs for this.
+  - Minor fixes to documentation.
+
+v0.5d - 2016-12-28
+  - Use drwav_int* and drwav_uint* sized types to improve compiler support.
+
+v0.5c - 2016-11-11
+  - Properly handle JUNK chunks that come before the FMT chunk.
+
+v0.5b - 2016-10-23
+  - A minor change to drwav_bool8 and drwav_bool32 types.
+
+v0.5a - 2016-10-11
+  - Fixed a bug with drwav_open_and_read() and family due to incorrect argument ordering.
+  - Improve A-law and mu-law efficiency.
+
+v0.5 - 2016-09-29
+  - API CHANGE. Swap the order of "channels" and "sampleRate" parameters in drwav_open_and_read*(). Rationale for this is to
+    keep it consistent with dr_audio and dr_flac.
+
+v0.4b - 2016-09-18
+  - Fixed a typo in documentation.
+
+v0.4a - 2016-09-18
+  - Fixed a typo.
+  - Change date format to ISO 8601 (YYYY-MM-DD)
+
+v0.4 - 2016-07-13
+  - API CHANGE. Make onSeek consistent with dr_flac.
+  - API CHANGE. Rename drwav_seek() to drwav_seek_to_sample() for clarity and consistency with dr_flac.
+  - Added support for Sony Wave64.
+
+v0.3a - 2016-05-28
+  - API CHANGE. Return drwav_bool32 instead of int in onSeek callback.
+  - Fixed a memory leak.
+
+v0.3 - 2016-05-22
+  - Lots of API changes for consistency.
+
+v0.2a - 2016-05-16
+  - Fixed Linux/GCC build.
+
+v0.2 - 2016-05-11
+  - Added support for reading data as signed 32-bit PCM for consistency with dr_flac.
+
+v0.1a - 2016-05-07
+  - Fixed a bug in drwav_open_file() where the file handle would not be closed if the loader failed to initialize.
+
+v0.1 - 2016-05-04
+  - Initial versioned release.
+*/
+
+/*
+This software is available as a choice of the following licenses. Choose
+whichever you prefer.
+
+===============================================================================
+ALTERNATIVE 1 - Public Domain (www.unlicense.org)
+===============================================================================
+This is free and unencumbered software released into the public domain.
+
+Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
+software, either in source code form or as a compiled binary, for any purpose,
+commercial or non-commercial, and by any means.
+
+In jurisdictions that recognize copyright laws, the author or authors of this
+software dedicate any and all copyright interest in the software to the public
+domain. We make this dedication for the benefit of the public at large and to
+the detriment of our heirs and successors. We intend this dedication to be an
+overt act of relinquishment in perpetuity of all present and future rights to
+this software under copyright law.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+For more information, please refer to <http://unlicense.org/>
+
+===============================================================================
+ALTERNATIVE 2 - MIT No Attribution
+===============================================================================
+Copyright 2020 David Reid
+
+Permission is hereby granted, free of charge, to any person obtaining a copy of
+this software and associated documentation files (the "Software"), to deal in
+the Software without restriction, including without limitation the rights to
+use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
+of the Software, and to permit persons to whom the Software is furnished to do
+so.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
+*/
index b515685151ddcc81579881ceb2bfc66b58f71217..8a35af5189c07ac713f61e3d02119d98f59dadd2 100644 (file)
@@ -366,8 +366,6 @@ bool gpt2_eval(
     const int n_head  = hparams.n_head;
     const int n_vocab = hparams.n_vocab;
 
-    const int d_key = n_embd/n_head;
-
     static size_t buf_size = 256u*1024*1024;
     static void * buf = malloc(buf_size);
 
@@ -474,6 +472,18 @@ bool gpt2_eval(
                             n_embd/n_head, n_head, n_past + N),
                         0, 2, 1, 3);
 
+            // GG: flash attention
+            //struct ggml_tensor * V =
+            //    ggml_cpy(ctx0,
+            //            ggml_permute(ctx0,
+            //                ggml_reshape_3d(ctx0,
+            //                    ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
+            //                    n_embd/n_head, n_head, n_past + N),
+            //                1, 2, 0, 3),
+            //            ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_past + N, n_embd/n_head, n_head));
+
+            //struct ggml_tensor * KQV = ggml_flash_attn(ctx0, Q, K, V, true);
+
             // K * Q
             // [n_past + N, N, 12]
             struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
@@ -616,7 +626,7 @@ bool gpt2_eval(
     // [ 768, N]     - inpL
     inpL = ggml_mul_mat(ctx0, model.wte, inpL);
 
-    // to logits
+    // logits -> probs
     inpL = ggml_soft_max(ctx0, inpL);
 
     // run the computation
index 1e724daccf2360ffc87f1c93df648fcd095ede3e..c55157dc53fb7a785572ce03c2a11ead194acc92 100644 (file)
@@ -558,7 +558,7 @@ bool gptj_eval(
                 inpL);
     }
 
-    // to logits
+    // logits -> probs
     inpL = ggml_soft_max(ctx0, inpL);
 
     // run the computation
index fbd9ab47ffe8176670588bbb9ac73edc213e2f53..1cd59d90353a7115bdebeec1c399ea9744dc7278 100644 (file)
@@ -57,6 +57,25 @@ void gpt_print_usage(int argc, char ** argv, const gpt_params & params) {
     fprintf(stderr, "\n");
 }
 
+std::string gpt_random_prompt(std::mt19937 & rng) {
+    const int r = rng() % 10;
+    switch (r) {
+        case 0: return "So";
+        case 1: return "Once upon a time";
+        case 2: return "When";
+        case 3: return "The";
+        case 4: return "After";
+        case 5: return "If";
+        case 6: return "import";
+        case 7: return "He";
+        case 8: return "She";
+        case 9: return "They";
+        default: return "To";
+    }
+
+    return "The";
+}
+
 void replace(std::string & str, const std::string & needle, const std::string & replacement) {
     size_t pos = 0;
     while ((pos = str.find(needle, pos)) != std::string::npos) {
@@ -65,7 +84,6 @@ void replace(std::string & str, const std::string & needle, const std::string &
     }
 }
 
-// poor-man's JSON parsing
 std::map<std::string, int32_t> json_parse(const std::string & fname) {
     std::map<std::string, int32_t> result;
 
@@ -157,25 +175,6 @@ std::map<std::string, int32_t> json_parse(const std::string & fname) {
     return result;
 }
 
-std::string gpt_random_prompt(std::mt19937 & rng) {
-    const int r = rng() % 10;
-    switch (r) {
-        case 0: return "So";
-        case 1: return "Once upon a time";
-        case 2: return "When";
-        case 3: return "The";
-        case 4: return "After";
-        case 5: return "If";
-        case 6: return "import";
-        case 7: return "He";
-        case 8: return "She";
-        case 9: return "They";
-        default: return "To";
-    }
-
-    return "The";
-}
-
 std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
     std::vector<std::string> words;
 
index 92ce0f25815a0a84257a1ff57ffdd19ed3f93d4b..d091d3db16a0da5102f1de2292d69d6cb957024f 100644 (file)
@@ -28,10 +28,10 @@ struct gpt_params {
     std::string prompt;
 };
 
-void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
-
 bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
 
+void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
+
 std::string gpt_random_prompt(std::mt19937 & rng);
 
 //
diff --git a/examples/whisper/CMakeLists.txt b/examples/whisper/CMakeLists.txt
new file mode 100644 (file)
index 0000000..919d102
--- /dev/null
@@ -0,0 +1,6 @@
+#
+# whisper
+
+set(TEST_TARGET whisper)
+add_executable(${TEST_TARGET} main.cpp)
+target_link_libraries(${TEST_TARGET} PRIVATE ggml ggml_utils)
diff --git a/examples/whisper/README.md b/examples/whisper/README.md
new file mode 100644 (file)
index 0000000..68bc4bc
--- /dev/null
@@ -0,0 +1,29 @@
+# whisper
+
+Port of [OpenAI's Whisper](https://github.com/openai/whisper) ASR model in C/C++ using
+[ggml](https://github.com/ggerganov/ggml)
+
+## More info
+
+Checkout https://github.com/ggerganov/whisper.cpp
+
+## Memory usage
+
+| Model | Mem |
+| ---   | --- |
+| tiny.en | ~460 MB |
+| base.en | ~620 MB |
+| small.en | ~1.3 GB |
+| medium.en | ~2.8 GB |
+| large | ~4.9 GB |
+
+## ggml format
+
+The original models are converted to a custom binary format. This allows to pack everything needed into a single file:
+
+- model parameters
+- mel filters
+- vocabulary
+- weights
+
+For more details, see the conversion script [convert-pt-to-ggml.py](convert-pt-to-ggml.py)
diff --git a/examples/whisper/convert-pt-to-ggml.py b/examples/whisper/convert-pt-to-ggml.py
new file mode 100644 (file)
index 0000000..22bd12e
--- /dev/null
@@ -0,0 +1,328 @@
+# Convert Whisper transformer model from PyTorch to ggml format
+#
+# Usage: python convert-pt-to-ggml.py ~/.cache/whisper/medium.pt ~/path/to/repo/whisper/ ./models/whisper-medium
+#
+# You need to clone the original repo in ~/path/to/repo/whisper/
+#
+#  git clone https://github.com/openai/whisper ~/path/to/repo/whisper/
+#
+# It is used to various assets needed by the algorithm:
+#
+#  - tokenizer
+#  - mel filters
+#
+# Also, you need to have the original models in ~/.cache/whisper/
+# See the original repo for more details.
+#
+# This script loads the specified model and whisper assets and saves them in ggml format.
+# The output is a single binary file containing the following information:
+#
+#  - hparams
+#  - mel filters
+#  - tokenizer vocab
+#  - model variables
+#
+# For each variable, write the following:
+#
+#  - Number of dimensions (int)
+#  - Name length (int)
+#  - Dimensions (int[n_dims])
+#  - Name (char[name_length])
+#  - Data (float[n_dims])
+#
+
+import io
+import os
+import sys
+import struct
+import json
+import code
+import torch
+import numpy as np
+
+from transformers import GPTJForCausalLM
+from transformers import GPT2TokenizerFast
+
+# ref: https://github.com/openai/whisper/blob/8cf36f3508c9acd341a45eb2364239a3d81458b9/whisper/tokenizer.py#L10-L110
+LANGUAGES = {
+    "en": "english",
+    "zh": "chinese",
+    "de": "german",
+    "es": "spanish",
+    "ru": "russian",
+    "ko": "korean",
+    "fr": "french",
+    "ja": "japanese",
+    "pt": "portuguese",
+    "tr": "turkish",
+    "pl": "polish",
+    "ca": "catalan",
+    "nl": "dutch",
+    "ar": "arabic",
+    "sv": "swedish",
+    "it": "italian",
+    "id": "indonesian",
+    "hi": "hindi",
+    "fi": "finnish",
+    "vi": "vietnamese",
+    "iw": "hebrew",
+    "uk": "ukrainian",
+    "el": "greek",
+    "ms": "malay",
+    "cs": "czech",
+    "ro": "romanian",
+    "da": "danish",
+    "hu": "hungarian",
+    "ta": "tamil",
+    "no": "norwegian",
+    "th": "thai",
+    "ur": "urdu",
+    "hr": "croatian",
+    "bg": "bulgarian",
+    "lt": "lithuanian",
+    "la": "latin",
+    "mi": "maori",
+    "ml": "malayalam",
+    "cy": "welsh",
+    "sk": "slovak",
+    "te": "telugu",
+    "fa": "persian",
+    "lv": "latvian",
+    "bn": "bengali",
+    "sr": "serbian",
+    "az": "azerbaijani",
+    "sl": "slovenian",
+    "kn": "kannada",
+    "et": "estonian",
+    "mk": "macedonian",
+    "br": "breton",
+    "eu": "basque",
+    "is": "icelandic",
+    "hy": "armenian",
+    "ne": "nepali",
+    "mn": "mongolian",
+    "bs": "bosnian",
+    "kk": "kazakh",
+    "sq": "albanian",
+    "sw": "swahili",
+    "gl": "galician",
+    "mr": "marathi",
+    "pa": "punjabi",
+    "si": "sinhala",
+    "km": "khmer",
+    "sn": "shona",
+    "yo": "yoruba",
+    "so": "somali",
+    "af": "afrikaans",
+    "oc": "occitan",
+    "ka": "georgian",
+    "be": "belarusian",
+    "tg": "tajik",
+    "sd": "sindhi",
+    "gu": "gujarati",
+    "am": "amharic",
+    "yi": "yiddish",
+    "lo": "lao",
+    "uz": "uzbek",
+    "fo": "faroese",
+    "ht": "haitian creole",
+    "ps": "pashto",
+    "tk": "turkmen",
+    "nn": "nynorsk",
+    "mt": "maltese",
+    "sa": "sanskrit",
+    "lb": "luxembourgish",
+    "my": "myanmar",
+    "bo": "tibetan",
+    "tl": "tagalog",
+    "mg": "malagasy",
+    "as": "assamese",
+    "tt": "tatar",
+    "haw": "hawaiian",
+    "ln": "lingala",
+    "ha": "hausa",
+    "ba": "bashkir",
+    "jw": "javanese",
+    "su": "sundanese",
+}
+
+# ref: https://github.com/openai/whisper/blob/8cf36f3508c9acd341a45eb2364239a3d81458b9/whisper/tokenizer.py#L273-L292
+def build_tokenizer(path_to_whisper_repo: str, name: str = "gpt2"):
+    os.environ["TOKENIZERS_PARALLELISM"] = "false"
+    path = os.path.join(path_to_whisper_repo, "whisper/assets", name)
+    tokenizer = GPT2TokenizerFast.from_pretrained(path)
+
+    specials = [
+        "<|startoftranscript|>",
+        *[f"<|{lang}|>" for lang in LANGUAGES.keys()],
+        "<|translate|>",
+        "<|transcribe|>",
+        "<|startoflm|>",
+        "<|startofprev|>",
+        "<|nocaptions|>",
+        "<|notimestamps|>",
+    ]
+
+    tokenizer.add_special_tokens(dict(additional_special_tokens=specials))
+    return tokenizer
+
+# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
+def bytes_to_unicode():
+    """
+    Returns list of utf-8 byte and a corresponding list of unicode strings.
+    The reversible bpe codes work on unicode strings.
+    This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
+    When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
+    This is a signficant percentage of your normal, say, 32K bpe vocab.
+    To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
+    And avoids mapping to whitespace/control characters the bpe code barfs on.
+    """
+    bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
+    cs = bs[:]
+    n = 0
+    for b in range(2**8):
+        if b not in bs:
+            bs.append(b)
+            cs.append(2**8+n)
+            n += 1
+    cs = [chr(n) for n in cs]
+    return dict(zip(bs, cs))
+
+
+if len(sys.argv) < 4:
+    print("Usage: convert-pt-to-ggml.py model.pt path-to-whisper-repo dir-output [use-f32]\n")
+    sys.exit(1)
+
+fname_inp   = sys.argv[1]
+dir_whisper = sys.argv[2]
+dir_out     = sys.argv[3]
+
+# try to load PyTorch binary data
+try:
+    model_bytes = open(fname_inp, "rb").read()
+    with io.BytesIO(model_bytes) as fp:
+        checkpoint = torch.load(fp, map_location="cpu")
+except:
+    print("Error: failed to load PyTorch model file: %s" % fname_inp)
+    sys.exit(1)
+
+hparams = checkpoint["dims"]
+print("hparams:", hparams)
+
+list_vars = checkpoint["model_state_dict"]
+
+#print(list_vars['encoder.positional_embedding'])
+#print(list_vars['encoder.conv1.weight'])
+#print(list_vars['encoder.conv1.weight'].shape)
+
+# load mel filters
+n_mels = hparams["n_mels"]
+with np.load(os.path.join(dir_whisper, "whisper/assets", "mel_filters.npz")) as f:
+    filters = torch.from_numpy(f[f"mel_{n_mels}"])
+    #print (filters)
+
+#code.interact(local=locals())
+
+multilingual = hparams["n_vocab"] == 51865
+tokenizer = build_tokenizer(dir_whisper, multilingual and "multilingual" or "gpt2")
+
+#print(tokenizer)
+#print(tokenizer.name_or_path)
+#print(len(tokenizer.additional_special_tokens))
+dir_tokenizer = tokenizer.name_or_path
+
+# output in the same directory as the model
+fname_out = dir_out + "/ggml-model.bin"
+
+with open(dir_tokenizer + "/vocab.json", "r") as f:
+    tokens = json.load(f)
+
+# use 16-bit or 32-bit floats
+use_f16 = True
+if len(sys.argv) > 4:
+    use_f16 = False
+    fname_out = dir_out + "/ggml-model-f32.bin"
+
+fout = open(fname_out, "wb")
+
+fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
+fout.write(struct.pack("i", hparams["n_vocab"]))
+fout.write(struct.pack("i", hparams["n_audio_ctx"]))
+fout.write(struct.pack("i", hparams["n_audio_state"]))
+fout.write(struct.pack("i", hparams["n_audio_head"]))
+fout.write(struct.pack("i", hparams["n_audio_layer"]))
+fout.write(struct.pack("i", hparams["n_text_ctx"]))
+fout.write(struct.pack("i", hparams["n_text_state"]))
+fout.write(struct.pack("i", hparams["n_text_head"]))
+fout.write(struct.pack("i", hparams["n_text_layer"]))
+fout.write(struct.pack("i", hparams["n_mels"]))
+fout.write(struct.pack("i", use_f16))
+
+# write mel filters
+fout.write(struct.pack("i", filters.shape[0]))
+fout.write(struct.pack("i", filters.shape[1]))
+for i in range(filters.shape[0]):
+    for j in range(filters.shape[1]):
+        fout.write(struct.pack("f", filters[i][j]))
+
+byte_encoder = bytes_to_unicode()
+byte_decoder = {v:k for k, v in byte_encoder.items()}
+
+fout.write(struct.pack("i", len(tokens)))
+
+for key in tokens:
+    text = bytearray([byte_decoder[c] for c in key]).decode('utf-8', errors='replace').encode('utf-8')
+    fout.write(struct.pack("i", len(text)))
+    fout.write(text)
+
+for name in list_vars.keys():
+    data = list_vars[name].squeeze().numpy()
+    print("Processing variable: " + name + " with shape: ", data.shape)
+
+    # reshape conv bias from [n] to [n, 1]
+    if name == "encoder.conv1.bias" or \
+       name == "encoder.conv2.bias":
+        data = data.reshape(data.shape[0], 1)
+        print("  Reshaped variable: " + name + " to shape: ", data.shape)
+
+    n_dims = len(data.shape);
+
+    # looks like the whisper models are in f16 by default
+    # so we need to convert the small tensors to f32 until we fully support f16 in ggml
+    # ftype == 0 -> float32, ftype == 1 -> float16
+    ftype = 1;
+    if use_f16:
+        if n_dims < 2 or \
+                name == "encoder.conv1.bias"   or \
+                name == "encoder.conv2.bias"   or \
+                name == "encoder.positional_embedding" or \
+                name == "decoder.positional_embedding":
+            ftype = 0
+            data = data.astype(np.float32)
+            print("  Converting to float32")
+            data = data.astype(np.float32)
+            ftype = 0
+    else:
+        data = data.astype(np.float32)
+        ftype = 0
+
+    #if name.startswith("encoder"):
+    #    if name.endswith("mlp.0.weight") or \
+    #       name.endswith("mlp.2.weight"):
+    #        print("  Transposing")
+    #        data = data.transpose()
+
+    # header
+    str = name.encode('utf-8')
+    fout.write(struct.pack("iii", n_dims, len(str), ftype))
+    for i in range(n_dims):
+        fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
+    fout.write(str);
+
+    # data
+    data.tofile(fout)
+
+fout.close()
+
+print("Done. Output file: " + fname_out)
+print("")
diff --git a/examples/whisper/main.cpp b/examples/whisper/main.cpp
new file mode 100644 (file)
index 0000000..326a8a7
--- /dev/null
@@ -0,0 +1,2292 @@
+#include "ggml.h"
+
+#define USE_FLASH_ATTN
+#define USE_FLASH_FF
+
+// third-party utilities
+// use your favorite implementations
+#define DR_WAV_IMPLEMENTATION
+#include "dr_wav.h"
+
+#include <algorithm>
+#include <cassert>
+#include <cmath>
+#include <cstdio>
+#include <cstring>
+#include <fstream>
+#include <map>
+#include <string>
+#include <thread>
+#include <vector>
+
+// available whisper models
+enum e_model {
+    MODEL_UNKNOWN,
+    MODEL_TINY,
+    MODEL_BASE,
+    MODEL_SMALL,
+    MODEL_MEDIUM,
+    MODEL_LARGE,
+};
+
+const std::map<std::string, std::pair<int, std::string>> g_lang = {
+    { "en",  { 0,  "english",         } },
+    { "zh",  { 1,  "chinese",         } },
+    { "de",  { 2,  "german",          } },
+    { "es",  { 3,  "spanish",         } },
+    { "ru",  { 4,  "russian",         } },
+    { "ko",  { 5,  "korean",          } },
+    { "fr",  { 6,  "french",          } },
+    { "ja",  { 7,  "japanese",        } },
+    { "pt",  { 8,  "portuguese",      } },
+    { "tr",  { 9,  "turkish",         } },
+    { "pl",  { 10, "polish",          } },
+    { "ca",  { 11,  "catalan",        } },
+    { "nl",  { 12,  "dutch",          } },
+    { "ar",  { 13,  "arabic",         } },
+    { "sv",  { 14,  "swedish",        } },
+    { "it",  { 15,  "italian",        } },
+    { "id",  { 16,  "indonesian",     } },
+    { "hi",  { 17,  "hindi",          } },
+    { "fi",  { 18,  "finnish",        } },
+    { "vi",  { 19,  "vietnamese",     } },
+    { "iw",  { 20,  "hebrew",         } },
+    { "uk",  { 21,  "ukrainian",      } },
+    { "el",  { 22,  "greek",          } },
+    { "ms",  { 23,  "malay",          } },
+    { "cs",  { 24,  "czech",          } },
+    { "ro",  { 25,  "romanian",       } },
+    { "da",  { 26,  "danish",         } },
+    { "hu",  { 27,  "hungarian",      } },
+    { "ta",  { 28,  "tamil",          } },
+    { "no",  { 29,  "norwegian",      } },
+    { "th",  { 30,  "thai",           } },
+    { "ur",  { 31,  "urdu",           } },
+    { "hr",  { 32,  "croatian",       } },
+    { "bg",  { 33,  "bulgarian",      } },
+    { "lt",  { 34,  "lithuanian",     } },
+    { "la",  { 35,  "latin",          } },
+    { "mi",  { 36,  "maori",          } },
+    { "ml",  { 37,  "malayalam",      } },
+    { "cy",  { 38,  "welsh",          } },
+    { "sk",  { 39,  "slovak",         } },
+    { "te",  { 40,  "telugu",         } },
+    { "fa",  { 41,  "persian",        } },
+    { "lv",  { 42,  "latvian",        } },
+    { "bn",  { 43,  "bengali",        } },
+    { "sr",  { 44,  "serbian",        } },
+    { "az",  { 45,  "azerbaijani",    } },
+    { "sl",  { 46,  "slovenian",      } },
+    { "kn",  { 47,  "kannada",        } },
+    { "et",  { 48,  "estonian",       } },
+    { "mk",  { 49,  "macedonian",     } },
+    { "br",  { 50,  "breton",         } },
+    { "eu",  { 51,  "basque",         } },
+    { "is",  { 52,  "icelandic",      } },
+    { "hy",  { 53,  "armenian",       } },
+    { "ne",  { 54,  "nepali",         } },
+    { "mn",  { 55,  "mongolian",      } },
+    { "bs",  { 56,  "bosnian",        } },
+    { "kk",  { 57,  "kazakh",         } },
+    { "sq",  { 58,  "albanian",       } },
+    { "sw",  { 59,  "swahili",        } },
+    { "gl",  { 60,  "galician",       } },
+    { "mr",  { 61,  "marathi",        } },
+    { "pa",  { 62,  "punjabi",        } },
+    { "si",  { 63,  "sinhala",        } },
+    { "km",  { 64,  "khmer",          } },
+    { "sn",  { 65,  "shona",          } },
+    { "yo",  { 66,  "yoruba",         } },
+    { "so",  { 67,  "somali",         } },
+    { "af",  { 68,  "afrikaans",      } },
+    { "oc",  { 69,  "occitan",        } },
+    { "ka",  { 70,  "georgian",       } },
+    { "be",  { 71,  "belarusian",     } },
+    { "tg",  { 72,  "tajik",          } },
+    { "sd",  { 73,  "sindhi",         } },
+    { "gu",  { 74,  "gujarati",       } },
+    { "am",  { 75,  "amharic",        } },
+    { "yi",  { 76,  "yiddish",        } },
+    { "lo",  { 77,  "lao",            } },
+    { "uz",  { 78,  "uzbek",          } },
+    { "fo",  { 79,  "faroese",        } },
+    { "ht",  { 80,  "haitian creole", } },
+    { "ps",  { 81,  "pashto",         } },
+    { "tk",  { 82,  "turkmen",        } },
+    { "nn",  { 83,  "nynorsk",        } },
+    { "mt",  { 84,  "maltese",        } },
+    { "sa",  { 85,  "sanskrit",       } },
+    { "lb",  { 86,  "luxembourgish",  } },
+    { "my",  { 87,  "myanmar",        } },
+    { "bo",  { 88,  "tibetan",        } },
+    { "tl",  { 89,  "tagalog",        } },
+    { "mg",  { 90,  "malagasy",       } },
+    { "as",  { 91,  "assamese",       } },
+    { "tt",  { 92,  "tatar",          } },
+    { "haw", { 93,  "hawaiian",       } },
+    { "ln",  { 94,  "lingala",        } },
+    { "ha",  { 95,  "hausa",          } },
+    { "ba",  { 96,  "bashkir",        } },
+    { "jw",  { 97,  "javanese",       } },
+    { "su",  { 98,  "sundanese",      } },
+};
+
+const size_t MB = 1024*1024;
+
+const std::map<e_model, size_t> MEM_REQ_MODEL = {
+    { MODEL_TINY,     86ull*MB },
+    { MODEL_BASE,    165ull*MB },
+    { MODEL_SMALL,   540ull*MB },
+    { MODEL_MEDIUM, 1650ull*MB },
+    { MODEL_LARGE,  3260ull*MB },
+};
+
+const std::map<e_model, size_t> MEM_REQ_ENCODE = {
+    { MODEL_TINY,     80ull*MB },
+    { MODEL_BASE,    128ull*MB },
+    { MODEL_SMALL,   300ull*MB },
+    { MODEL_MEDIUM,  680ull*MB },
+    { MODEL_LARGE,  1100ull*MB },
+};
+
+const std::map<e_model, size_t> MEM_REQ_ENCODE_LAYER = {
+    { MODEL_TINY,     64ull*MB },
+    { MODEL_BASE,     84ull*MB },
+    { MODEL_SMALL,   128ull*MB },
+    { MODEL_MEDIUM,  172ull*MB },
+    { MODEL_LARGE,   216ull*MB },
+};
+
+const std::map<e_model, size_t> MEM_REQ_DECODE = {
+    { MODEL_TINY,    190ull*MB },
+    { MODEL_BASE,    190ull*MB },
+    { MODEL_SMALL,   190ull*MB },
+    { MODEL_MEDIUM,  200ull*MB },
+    { MODEL_LARGE,   200ull*MB },
+};
+
+const std::map<e_model, size_t> MEM_REQ_DECODE_LAYER = {
+    { MODEL_TINY,     32ull*MB },
+    { MODEL_BASE,     44ull*MB },
+    { MODEL_SMALL,    64ull*MB },
+    { MODEL_MEDIUM,   84ull*MB },
+    { MODEL_LARGE,   110ull*MB },
+};
+
+const int SAMPLE_RATE = 16000;
+const int N_FFT       = 400;
+const int N_MEL       = 80;
+const int HOP_LENGTH  = 160;
+const int CHUNK_SIZE  = 30; // seconds
+
+struct whisper_mel {
+    int n_len;
+    int n_mel;
+
+    std::vector<float> data;
+};
+
+struct whisper_filters {
+    int32_t n_mel;
+    int32_t n_fft;
+
+    std::vector<float> data;
+};
+
+struct whisper_vocab {
+    using id    = int32_t;
+    using token = std::string;
+
+    int n_vocab = 51864;
+
+    std::map<token, id> token_to_id;
+    std::map<id, token> id_to_token;
+
+    id token_eot  = 50256;
+    id token_sot  = 50257;
+    id token_prev = 50360;
+    id token_solm = 50361; // ??
+    id token_beg  = 50363;
+
+    // available tasks
+    const id token_translate  = 50358;
+    const id token_transcribe = 50359;
+
+    bool is_multilingual() const {
+        return n_vocab == 51865;
+    }
+};
+
+// command-line parameters
+struct whisper_params {
+    int32_t seed      = -1; // RNG seed, not used currently
+    int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
+
+    // sampling parameter - used for the greedy strategy
+    int32_t max_tokens_per_iter = 64;
+
+    bool verbose              = false;
+    bool translate            = false;
+    bool print_special_tokens = false;
+
+    std::string language  = "en";
+    std::string model     = "models/ggml-base.en.bin";
+    std::string fname_inp = "samples/jfk.wav";
+};
+
+void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
+
+bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
+    for (int i = 1; i < argc; i++) {
+        std::string arg = argv[i];
+
+        if (arg == "-s" || arg == "--seed") {
+            params.seed = std::stoi(argv[++i]);
+        } else if (arg == "-t" || arg == "--threads") {
+            params.n_threads = std::stoi(argv[++i]);
+        } else if (arg == "-T" || arg == "--tokens") {
+            params.max_tokens_per_iter = std::stoi(argv[++i]);
+        } else if (arg == "-v" || arg == "--verbose") {
+            params.verbose = true;
+        } else if (arg == "--translate") {
+            params.translate = true;
+        } else if (arg == "-l" || arg == "--language") {
+            params.language = argv[++i];
+            if (g_lang.find(params.language) == g_lang.end()) {
+                fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
+                whisper_print_usage(argc, argv, params);
+                exit(0);
+            }
+        } else if (arg == "-ps" || arg == "--print_special") {
+            params.print_special_tokens = true;
+        } else if (arg == "-m" || arg == "--model") {
+            params.model = argv[++i];
+        } else if (arg == "-f" || arg == "--file") {
+            params.fname_inp = argv[++i];
+        } else if (arg == "-h" || arg == "--help") {
+            whisper_print_usage(argc, argv, params);
+            exit(0);
+        } else {
+            fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
+            whisper_print_usage(argc, argv, params);
+            exit(0);
+        }
+    }
+
+    return true;
+}
+
+void whisper_print_usage(int argc, char ** argv, const whisper_params & params) {
+    fprintf(stderr, "\n");
+    fprintf(stderr, "usage: %s [options]\n", argv[0]);
+    fprintf(stderr, "\n");
+    fprintf(stderr, "options:\n");
+    fprintf(stderr, "  -h,       --help           show this help message and exit\n");
+    fprintf(stderr, "  -s SEED,  --seed SEED      RNG seed (default: -1)\n");
+    fprintf(stderr, "  -t N,     --threads N      number of threads to use during computation (default: %d)\n", params.n_threads);
+    fprintf(stderr, "  -T N,     --tokens N       maximum number of tokens to generate per iteration (default: %d)\n", params.max_tokens_per_iter);
+    fprintf(stderr, "  -v,       --verbose        verbose output\n");
+    fprintf(stderr, "            --translate      translate from source language to english\n");
+    fprintf(stderr, "  -ps,      --print_special  print special tokens\n");
+    fprintf(stderr, "  -l LANG,  --language LANG  spoken language (default: %s)\n", params.language.c_str());
+    fprintf(stderr, "  -m FNAME, --model FNAME    model path (default: %s)\n", params.model.c_str());
+    fprintf(stderr, "  -f FNAME, --file FNAME     input WAV file path (default: %s)\n", params.fname_inp.c_str());
+    fprintf(stderr, "\n");
+}
+
+
+// medium
+// hparams: {
+// 'n_mels': 80,
+// 'n_vocab': 51864,
+// 'n_audio_ctx': 1500,
+// 'n_audio_state': 1024,
+// 'n_audio_head': 16,
+// 'n_audio_layer': 24,
+// 'n_text_ctx': 448,
+// 'n_text_state': 1024,
+// 'n_text_head': 16,
+// 'n_text_layer': 24
+// }
+//
+// default hparams (Whisper tiny)
+struct whisper_hparams {
+    int32_t n_vocab       = 51864;
+    int32_t n_audio_ctx   = 1500;
+    int32_t n_audio_state = 384;
+    int32_t n_audio_head  = 6;
+    int32_t n_audio_layer = 4;
+    int32_t n_text_ctx    = 448;
+    int32_t n_text_state  = 384;
+    int32_t n_text_head   = 6;
+    int32_t n_text_layer  = 4;
+    int32_t n_mels        = 80;
+    int32_t f16           = 1;
+};
+
+// audio encoding layer
+struct whisper_layer_encoder {
+    // encoder.blocks.*.attn_ln
+    struct ggml_tensor * attn_ln_0_w;
+    struct ggml_tensor * attn_ln_0_b;
+
+    // encoder.blocks.*.attn.out
+    struct ggml_tensor * attn_ln_1_w;
+    struct ggml_tensor * attn_ln_1_b;
+
+    // encoder.blocks.*.attn.query
+    struct ggml_tensor * attn_q_w;
+    struct ggml_tensor * attn_q_b;
+
+    // encoder.blocks.*.attn.key
+    struct ggml_tensor * attn_k_w;
+
+    // encoder.blocks.*.attn.value
+    struct ggml_tensor * attn_v_w;
+    struct ggml_tensor * attn_v_b;
+
+    // encoder.blocks.*.mlp_ln
+    struct ggml_tensor * mlp_ln_w;
+    struct ggml_tensor * mlp_ln_b;
+
+    // encoder.blocks.*.mlp.0
+    struct ggml_tensor * mlp_0_w;
+    struct ggml_tensor * mlp_0_b;
+
+    // encoder.blocks.*.mlp.2
+    struct ggml_tensor * mlp_1_w;
+    struct ggml_tensor * mlp_1_b;
+};
+
+// token decoding layer
+struct whisper_layer_decoder {
+    // decoder.blocks.*.attn_ln
+    struct ggml_tensor * attn_ln_0_w;
+    struct ggml_tensor * attn_ln_0_b;
+
+    // decoder.blocks.*.attn.out
+    struct ggml_tensor * attn_ln_1_w;
+    struct ggml_tensor * attn_ln_1_b;
+
+    // decoder.blocks.*.attn.query
+    struct ggml_tensor * attn_q_w;
+    struct ggml_tensor * attn_q_b;
+
+    // decoder.blocks.*.attn.key
+    struct ggml_tensor * attn_k_w;
+
+    // decoder.blocks.*.attn.value
+    struct ggml_tensor * attn_v_w;
+    struct ggml_tensor * attn_v_b;
+
+    // decoder.blocks.*.cross_attn_ln
+    struct ggml_tensor * cross_attn_ln_0_w;
+    struct ggml_tensor * cross_attn_ln_0_b;
+
+    // decoder.blocks.*.cross_attn.out
+    struct ggml_tensor * cross_attn_ln_1_w;
+    struct ggml_tensor * cross_attn_ln_1_b;
+
+    // decoder.blocks.*.cross_attn.query
+    struct ggml_tensor * cross_attn_q_w;
+    struct ggml_tensor * cross_attn_q_b;
+
+    // decoder.blocks.*.cross_attn.key
+    struct ggml_tensor * cross_attn_k_w;
+
+    // decoder.blocks.*.cross_attn.value
+    struct ggml_tensor * cross_attn_v_w;
+    struct ggml_tensor * cross_attn_v_b;
+
+    // decoder.blocks.*.mlp_ln
+    struct ggml_tensor * mlp_ln_w;
+    struct ggml_tensor * mlp_ln_b;
+
+    // decoder.blocks.*.mlp.0
+    struct ggml_tensor * mlp_0_w;
+    struct ggml_tensor * mlp_0_b;
+
+    // decoder.blocks.*.mlp.2
+    struct ggml_tensor * mlp_1_w;
+    struct ggml_tensor * mlp_1_b;
+};
+
+struct whisper_model {
+    e_model type = MODEL_UNKNOWN;
+
+    whisper_hparams hparams;
+    whisper_filters filters;
+
+    // encoder.positional_embedding
+    struct ggml_tensor * e_pe;
+
+    // encoder.conv1
+    struct ggml_tensor * e_conv_1_w;
+    struct ggml_tensor * e_conv_1_b;
+
+    // encoder.conv2
+    struct ggml_tensor * e_conv_2_w;
+    struct ggml_tensor * e_conv_2_b;
+
+    // encoder.ln_post
+    struct ggml_tensor * e_ln_w;
+    struct ggml_tensor * e_ln_b;
+
+    // decoder.positional_embedding
+    struct ggml_tensor * d_pe; // DD
+
+    // decoder.token_embedding
+    struct ggml_tensor * d_te; // DD
+
+    // decoder.ln
+    struct ggml_tensor * d_ln_w; // DD
+    struct ggml_tensor * d_ln_b; // DD
+
+    std::vector<whisper_layer_encoder> layers_encoder;
+    std::vector<whisper_layer_decoder> layers_decoder;
+
+    // key + value memory
+    struct ggml_tensor * memory_k;
+    struct ggml_tensor * memory_v;
+
+    struct ggml_tensor * memory_cross_k;
+    struct ggml_tensor * memory_cross_v;
+
+    //
+    struct ggml_context * ctx;
+    std::map<std::string, struct ggml_tensor *> tensors;
+};
+
+// load the model from a ggml file
+//
+// file format:
+//
+//   - hparams
+//   - pre-computed mel filters
+//   - vocab
+//   - weights
+//
+// see the convert-pt-to-ggml.py script for details
+//
+bool whisper_model_load(const std::string & fname, whisper_model & model, whisper_vocab & vocab) {
+    printf("%s: loading model from '%s'\n", __func__, fname.c_str());
+
+    auto fin = std::ifstream(fname, std::ios::binary);
+    if (!fin) {
+        fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
+        return false;
+    }
+
+    // verify magic
+    {
+        uint32_t magic;
+        fin.read((char *) &magic, sizeof(magic));
+        if (magic != 0x67676d6c) {
+            fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
+            return false;
+        }
+    }
+
+    //load hparams
+    {
+        auto & hparams = model.hparams;
+
+        fin.read((char *) &hparams.n_vocab,       sizeof(hparams.n_vocab));
+        fin.read((char *) &hparams.n_audio_ctx,   sizeof(hparams.n_audio_ctx));
+        fin.read((char *) &hparams.n_audio_state, sizeof(hparams.n_audio_state));
+        fin.read((char *) &hparams.n_audio_head,  sizeof(hparams.n_audio_head));
+        fin.read((char *) &hparams.n_audio_layer, sizeof(hparams.n_audio_layer));
+        fin.read((char *) &hparams.n_text_ctx,    sizeof(hparams.n_text_ctx));
+        fin.read((char *) &hparams.n_text_state,  sizeof(hparams.n_text_state));
+        fin.read((char *) &hparams.n_text_head,   sizeof(hparams.n_text_head));
+        fin.read((char *) &hparams.n_text_layer,  sizeof(hparams.n_text_layer));
+        fin.read((char *) &hparams.n_mels,        sizeof(hparams.n_mels));
+        fin.read((char *) &hparams.f16,           sizeof(hparams.f16));
+
+        assert(hparams.n_text_state == hparams.n_audio_state);
+
+        if (hparams.n_audio_layer == 4) {
+            model.type = e_model::MODEL_TINY;
+        }
+
+        if (hparams.n_audio_layer == 6) {
+            model.type = e_model::MODEL_BASE;
+        }
+
+        if (hparams.n_audio_layer == 12) {
+            model.type = e_model::MODEL_SMALL;
+        }
+
+        if (hparams.n_audio_layer == 24) {
+            model.type = e_model::MODEL_MEDIUM;
+        }
+
+        if (hparams.n_audio_layer == 32) {
+            model.type = e_model::MODEL_LARGE;
+        }
+
+        printf("%s: n_vocab       = %d\n", __func__, hparams.n_vocab);
+        printf("%s: n_audio_ctx   = %d\n", __func__, hparams.n_audio_ctx);
+        printf("%s: n_audio_state = %d\n", __func__, hparams.n_audio_state);
+        printf("%s: n_audio_head  = %d\n", __func__, hparams.n_audio_head);
+        printf("%s: n_audio_layer = %d\n", __func__, hparams.n_audio_layer);
+        printf("%s: n_text_ctx    = %d\n", __func__, hparams.n_text_ctx);
+        printf("%s: n_text_state  = %d\n", __func__, hparams.n_text_state);
+        printf("%s: n_text_head   = %d\n", __func__, hparams.n_text_head);
+        printf("%s: n_text_layer  = %d\n", __func__, hparams.n_text_layer);
+        printf("%s: n_mels        = %d\n", __func__, hparams.n_mels);
+        printf("%s: f16           = %d\n", __func__, hparams.f16);
+        printf("%s: type          = %d\n", __func__, model.type);
+
+        // this is the total memory required to run the inference
+        const size_t mem_required =
+                   MEM_REQ_MODEL.at(model.type) +
+                  MEM_REQ_ENCODE.at(model.type) +
+            MEM_REQ_ENCODE_LAYER.at(model.type) +
+                  MEM_REQ_DECODE.at(model.type) +
+            MEM_REQ_DECODE_LAYER.at(model.type);
+
+        printf("%s: mem_required  = %.2f MB\n", __func__, mem_required / 1024.0 / 1024.0);
+    }
+
+    // load mel filters
+    {
+        auto & filters = model.filters;
+
+        fin.read((char *) &filters.n_mel, sizeof(filters.n_mel));
+        fin.read((char *) &filters.n_fft, sizeof(filters.n_fft));
+
+        filters.data.resize(filters.n_mel * filters.n_fft);
+        fin.read((char *) filters.data.data(), filters.data.size() * sizeof(float));
+    }
+
+    // load vocab
+    {
+        int32_t n_vocab = 0;
+        fin.read((char *) &n_vocab, sizeof(n_vocab));
+
+        //if (n_vocab != model.hparams.n_vocab) {
+        //    fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
+        //            __func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
+        //    return false;
+        //}
+
+        std::string word;
+        for (int i = 0; i < n_vocab; i++) {
+            uint32_t len;
+            fin.read((char *) &len, sizeof(len));
+
+            word.resize(len);
+            fin.read((char *) word.data(), len);
+
+            vocab.token_to_id[word] = i;
+            vocab.id_to_token[i] = word;
+
+            //printf("%s: vocab[%d] = '%s'\n", __func__, i, word.c_str());
+        }
+
+        vocab.n_vocab = model.hparams.n_vocab;
+        if (vocab.is_multilingual()) {
+            vocab.token_eot++;
+            vocab.token_sot++;
+            vocab.token_prev++;
+            vocab.token_solm++;
+            vocab.token_beg++;
+        }
+
+        if (n_vocab < model.hparams.n_vocab) {
+            printf("%s: adding %d extra tokens\n", __func__, model.hparams.n_vocab - n_vocab);
+            for (int i = n_vocab; i < model.hparams.n_vocab; i++) {
+                if (i > vocab.token_beg) {
+                    word = "[_TT_" + std::to_string(i - vocab.token_beg) + "]";
+                } else if (i == vocab.token_eot) {
+                    word = "[_EOT_]";
+                } else if (i == vocab.token_sot) {
+                    word = "[_SOT_]";
+                } else if (i == vocab.token_prev) {
+                    word = "[_PREV_]";
+                } else if (i == vocab.token_beg) {
+                    word = "[_BEG_]";
+                } else {
+                    word = "[_extra_token_" + std::to_string(i) + "]";
+                }
+                vocab.token_to_id[word] = i;
+                vocab.id_to_token[i] = word;
+            }
+        }
+    }
+
+    // for the big tensors, we have the option to store the data in 16-bit floats
+    // in order to save memory and also to speed up the computation
+    const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32;
+
+    auto & ctx = model.ctx;
+
+    size_t ctx_size = 0;
+
+    {
+        const auto & hparams = model.hparams;
+
+        const int n_vocab = hparams.n_vocab;
+
+        const int n_audio_ctx   = hparams.n_audio_ctx;
+        const int n_audio_state = hparams.n_audio_state;
+        const int n_audio_layer = hparams.n_audio_layer;
+
+        const int n_text_ctx = hparams.n_text_ctx;
+        const int n_text_state = hparams.n_text_state;
+        const int n_text_layer = hparams.n_text_layer;
+
+        const int n_mels = hparams.n_mels;
+
+        // encoder
+        {
+            // TODO: F16 .. maybe not?
+            ctx_size += n_audio_ctx*n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_pe;
+
+            ctx_size += 3*n_mels*n_audio_state*ggml_type_size(wtype);         // e_conv_1_w
+            ctx_size +=          n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_1_b
+
+            ctx_size += 3*n_audio_state*n_audio_state*ggml_type_size(wtype);         // e_conv_2_w
+            ctx_size +=                 n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_2_b
+
+            ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_w;
+            ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_b;
+        }
+
+        // decoder
+        {
+            // TODO: F16 .. maybe not?
+            ctx_size += n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // d_pe;
+
+            ctx_size += n_vocab*n_text_state*ggml_type_size(wtype); // d_te;
+
+            ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_w;
+            ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_b;
+        }
+
+        // encoder layers
+        {
+            ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w
+            ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b
+
+            ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype));         // mlp_0_w
+            ctx_size += n_audio_layer*(              4*n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b
+
+            ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype));         // mlp_1_w
+            ctx_size += n_audio_layer*(                n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b
+
+            ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w
+            ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b
+
+            ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype));         // attn_q_w
+            ctx_size += n_audio_layer*(              n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b
+
+            ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_k_w
+
+            ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype));         // attn_v_w
+            ctx_size += n_audio_layer*(              n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b
+
+            ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype));         // attn_ln_1_w
+            ctx_size += n_audio_layer*(              n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b
+        }
+
+        // decoder layers
+        {
+            ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w
+            ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b
+
+            ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype));         // mlp_0_w
+            ctx_size += n_text_layer*(             4*n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b
+
+            ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype));         // mlp_1_w
+            ctx_size += n_text_layer*(               n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b
+
+            ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w
+            ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b
+
+            ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype));         // attn_q_w
+            ctx_size += n_text_layer*(             n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b
+
+            ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_k_w
+
+            ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype));         // attn_v_w
+            ctx_size += n_text_layer*(             n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b
+
+            ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype));         // attn_ln_1_w
+            ctx_size += n_text_layer*(             n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b
+                                                                                                //
+            ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_w
+            ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_b
+
+            ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype));         // cross_attn_q_w
+            ctx_size += n_text_layer*(             n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_q_b
+
+            ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_k_w
+
+            ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype));         // cross_attn_v_w
+            ctx_size += n_text_layer*(             n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_v_b
+
+            ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype));         // cross_attn_ln_1_w
+            ctx_size += n_text_layer*(             n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_1_b
+        }
+
+        ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_k
+        ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_v
+
+        ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_k
+        ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_v
+
+        ctx_size += (15 + 15*n_audio_layer + 24*n_text_layer)*256; // object overhead
+
+        printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
+    }
+
+    // create the ggml context
+    {
+        struct ggml_init_params params = {
+            .mem_size   = ctx_size,
+            .mem_buffer = NULL,
+        };
+
+        model.ctx = ggml_init(params);
+        if (!model.ctx) {
+            fprintf(stderr, "%s: ggml_init() failed\n", __func__);
+            return false;
+        }
+    }
+
+    // prepare memory for the weights
+    {
+        const auto & hparams = model.hparams;
+
+        const int n_vocab = hparams.n_vocab;
+
+        const int n_audio_ctx   = hparams.n_audio_ctx;
+        const int n_audio_state = hparams.n_audio_state;
+        const int n_audio_layer = hparams.n_audio_layer;
+
+        const int n_text_ctx = hparams.n_text_ctx;
+        const int n_text_state = hparams.n_text_state;
+        const int n_text_layer = hparams.n_text_layer;
+
+        const int n_mels = hparams.n_mels;
+
+        model.layers_encoder.resize(n_audio_layer);
+        model.layers_decoder.resize(n_text_layer);
+
+        // encoder
+        {
+            model.e_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_state, n_audio_ctx);
+
+            model.e_conv_1_w = ggml_new_tensor_3d(ctx, wtype,         3, n_mels, n_audio_state);
+            model.e_conv_1_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state);
+
+            model.e_conv_2_w = ggml_new_tensor_3d(ctx, wtype,         3, n_audio_state, n_audio_state);
+            model.e_conv_2_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state);
+
+            model.e_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
+            model.e_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
+
+            // map by name
+            model.tensors["encoder.positional_embedding"] = model.e_pe;
+
+            model.tensors["encoder.conv1.weight"] = model.e_conv_1_w;
+            model.tensors["encoder.conv1.bias"]   = model.e_conv_1_b;
+
+            model.tensors["encoder.conv2.weight"] = model.e_conv_2_w;
+            model.tensors["encoder.conv2.bias"]   = model.e_conv_2_b;
+
+            model.tensors["encoder.ln_post.weight"] = model.e_ln_w;
+            model.tensors["encoder.ln_post.bias"]   = model.e_ln_b;
+
+            for (int i = 0; i < n_audio_layer; ++i) {
+                auto & layer = model.layers_encoder[i];
+
+                layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
+                layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
+
+                layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype,           n_audio_state, 4*n_audio_state);
+                layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_audio_state);
+
+                layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype,         4*n_audio_state, n_audio_state);
+                layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32,   n_audio_state);
+
+                layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
+                layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
+
+                layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype,         n_audio_state, n_audio_state);
+                layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
+
+                layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype,         n_audio_state, n_audio_state);
+
+                layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype,         n_audio_state, n_audio_state);
+                layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
+
+                layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype,         n_audio_state, n_audio_state);
+                layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
+
+                // map by name
+                model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w;
+                model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.bias"]   = layer.mlp_ln_b;
+
+                model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w;
+                model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.bias"]   = layer.mlp_0_b;
+
+                model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w;
+                model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.bias"]   = layer.mlp_1_b;
+
+                model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w;
+                model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.bias"]   = layer.attn_ln_0_b;
+
+                model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w;
+                model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.bias"]   = layer.attn_q_b;
+
+                model.tensors["encoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w;
+
+                model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w;
+                model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.bias"]   = layer.attn_v_b;
+
+                model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w;
+                model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.bias"]   = layer.attn_ln_1_b;
+            }
+        }
+
+        // decoder
+        {
+            model.d_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_text_state, n_text_ctx);
+
+            model.d_te = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_vocab);
+
+            model.d_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+            model.d_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+            // map by name
+            model.tensors["decoder.positional_embedding"] = model.d_pe;
+
+            model.tensors["decoder.token_embedding.weight"] = model.d_te;
+
+            model.tensors["decoder.ln.weight"] = model.d_ln_w;
+            model.tensors["decoder.ln.bias"]   = model.d_ln_b;
+
+            for (int i = 0; i < n_text_layer; ++i) {
+                auto & layer = model.layers_decoder[i];
+
+                layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+                layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+                layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype,           n_text_state, 4*n_text_state);
+                layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_text_state);
+
+                layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype,         4*n_text_state, n_text_state);
+                layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32,   n_text_state);
+
+                layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+                layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+                layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype,         n_text_state, n_text_state);
+                layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+                layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype,         n_text_state, n_text_state);
+
+                layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype,         n_text_state, n_text_state);
+                layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+                layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype,         n_text_state, n_text_state);
+                layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+                layer.cross_attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+                layer.cross_attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+                layer.cross_attn_q_w = ggml_new_tensor_2d(ctx, wtype,         n_text_state, n_text_state);
+                layer.cross_attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+                layer.cross_attn_k_w = ggml_new_tensor_2d(ctx, wtype,         n_text_state, n_text_state);
+
+                layer.cross_attn_v_w = ggml_new_tensor_2d(ctx, wtype,         n_text_state, n_text_state);
+                layer.cross_attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+                layer.cross_attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype,         n_text_state, n_text_state);
+                layer.cross_attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
+
+                // map by name
+                model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w;
+                model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.bias"]   = layer.mlp_ln_b;
+
+                model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w;
+                model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.bias"]   = layer.mlp_0_b;
+
+                model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w;
+                model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.bias"]   = layer.mlp_1_b;
+
+                model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w;
+                model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.bias"]   = layer.attn_ln_0_b;
+
+                model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w;
+                model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.bias"]   = layer.attn_q_b;
+
+                model.tensors["decoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w;
+
+                model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w;
+                model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.bias"]   = layer.attn_v_b;
+
+                model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w;
+                model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.bias"]   = layer.attn_ln_1_b;
+
+                model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.weight"] = layer.cross_attn_ln_0_w;
+                model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.bias"]   = layer.cross_attn_ln_0_b;
+
+                model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.weight"] = layer.cross_attn_q_w;
+                model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.bias"]   = layer.cross_attn_q_b;
+
+                model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.key.weight"] = layer.cross_attn_k_w;
+
+                model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.weight"] = layer.cross_attn_v_w;
+                model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.bias"]   = layer.cross_attn_v_b;
+
+                model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.weight"] = layer.cross_attn_ln_1_w;
+                model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.bias"]   = layer.cross_attn_ln_1_b;
+            }
+        }
+    }
+
+    // key + value memory
+    {
+        const auto & hparams = model.hparams;
+
+        const int n_text_state = hparams.n_text_state;
+        const int n_text_layer = hparams.n_text_layer;
+        const int n_text_ctx   = hparams.n_text_ctx;
+
+        // key/value memory for the self-attention layer
+        {
+            const int n_mem      = n_text_layer*n_text_ctx;
+            const int n_elements = n_text_state*n_mem;
+
+            model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
+            model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
+        }
+
+        // key/value memory for the cross-attention layer
+        {
+            const int n_audio_ctx   = hparams.n_audio_ctx;
+
+            const int n_mem      = n_text_layer*n_audio_ctx;
+            const int n_elements = n_text_state*n_mem;
+
+            model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
+            model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
+        }
+
+        const size_t memory_size =
+            ggml_nbytes(model.memory_k)       + ggml_nbytes(model.memory_v) +
+            ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v);
+
+        printf("%s: memory size = %8.2f MB \n", __func__, memory_size/1024.0/1024.0);
+    }
+
+    // load weights
+    {
+        size_t total_size = 0;
+
+        while (true) {
+            int32_t n_dims;
+            int32_t length;
+            int32_t ftype;
+
+            fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
+            fin.read(reinterpret_cast<char *>(&length), sizeof(length));
+            fin.read(reinterpret_cast<char *>(&ftype),  sizeof(ftype));
+
+            if (fin.eof()) {
+                break;
+            }
+
+            int32_t nelements = 1;
+            int32_t ne[3] = { 1, 1, 1 };
+            for (int i = 0; i < n_dims; ++i) {
+                fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
+                nelements *= ne[i];
+            }
+
+            std::string name(length, 0);
+            fin.read(&name[0], length);
+
+            if (model.tensors.find(name.data()) == model.tensors.end()) {
+                fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
+                return false;
+            }
+
+            auto tensor = model.tensors[name.data()];
+            if (ggml_nelements(tensor) != nelements) {
+                fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
+                return false;
+            }
+
+            if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1] || tensor->ne[2] != ne[2]) {
+                fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d, %d], expected [%d, %d, %d]\n",
+                        __func__, name.data(), tensor->ne[0], tensor->ne[1], tensor->ne[2], ne[0], ne[1], ne[2]);
+                return false;
+            }
+
+            const size_t bpe = (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t);
+
+            if (nelements*bpe != ggml_nbytes(tensor)) {
+                fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
+                        __func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
+                return false;
+            }
+
+            fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
+
+            //printf("%24s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
+            total_size += ggml_nbytes(tensor);
+        }
+
+        printf("%s: model size  = %8.2f MB\n", __func__, total_size/1024.0/1024.0);
+    }
+
+    fin.close();
+
+    return true;
+}
+
+// evaluate the encoder
+//
+// given audio recording (more specifically, its log mel spectrogram), runs forward pass of the encoder
+// part of the transformer model and returns the encoded features
+//
+//   - model:      the model
+//   - n_threads:  number of threads to use
+//   - mel_offset: offset in the mel spectrogram (i.e. audio offset)
+//   - mel_inp:    input mel spectrogram
+//   - features:   output encoded features
+//
+bool whisper_encode(
+        const whisper_model & model,
+        const int n_threads,
+        const int mel_offset,
+        const whisper_mel & mel_inp,
+              std::vector<float> & features) {
+    const auto & hparams = model.hparams;
+
+    const int n_vocab = hparams.n_vocab;
+
+    const int n_ctx   = hparams.n_audio_ctx;
+    const int n_state = hparams.n_audio_state;
+    const int n_head  = hparams.n_audio_head;
+    const int n_layer = hparams.n_audio_layer;
+
+    const int N = n_ctx;
+
+    const int n_mels = hparams.n_mels;
+    assert(mel_inp.n_mel == n_mels);
+
+    struct ggml_init_params params;
+
+    {
+        static size_t buf_size = MEM_REQ_ENCODE.at(model.type);
+        static void * buf = malloc(buf_size);
+
+        params = {
+            .mem_size   = buf_size,
+            .mem_buffer = buf,
+        };
+    }
+
+    struct ggml_context * ctx0 = ggml_init(params);
+
+    struct ggml_tensor * mel = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 2*n_ctx, n_mels);
+    assert(mel->type == GGML_TYPE_F32);
+    {
+        float * dst = (float *) mel->data;
+        memset(dst, 0, ggml_nbytes(mel));
+
+        const int i0 = std::min(mel_offset, mel_inp.n_len);
+        const int i1 = std::min(mel_offset + 2*n_ctx, mel_inp.n_len);
+
+        for (int j = 0; j < mel_inp.n_mel; ++j) {
+            for (int i = i0; i < i1; ++i) {
+                dst[j*2*n_ctx + (i - i0)] = mel_inp.data[j*mel_inp.n_len + i];
+            }
+        }
+    }
+
+    struct ggml_tensor * cur;
+
+    // convolution + gelu
+    {
+        cur = ggml_conv_1d_1s(ctx0, model.e_conv_1_w, mel);
+        cur = ggml_add(ctx0,
+                ggml_repeat(ctx0,
+                    model.e_conv_1_b,
+                    cur),
+                cur);
+
+        cur = ggml_gelu(ctx0, cur);
+
+        cur = ggml_conv_1d_2s(ctx0, model.e_conv_2_w, cur);
+        cur = ggml_add(ctx0,
+                ggml_repeat(ctx0,
+                    model.e_conv_2_b,
+                    cur),
+                cur);
+
+        cur = ggml_gelu(ctx0, cur);
+    }
+
+    cur = ggml_add(ctx0, model.e_pe, ggml_transpose(ctx0, cur));
+
+    struct ggml_tensor * inpL = cur;
+
+    for (int il = 0; il < n_layer; ++il) {
+        const auto & layer = model.layers_encoder[il];
+
+        // create separate context for each layer to reduce memory usage
+
+        struct ggml_init_params paramsL;
+        {
+            static size_t buf_size = MEM_REQ_ENCODE_LAYER.at(model.type);
+            static void * buf = malloc(buf_size);
+
+            paramsL = {
+                .mem_size   = buf_size,
+                .mem_buffer = buf,
+            };
+        }
+
+        struct ggml_context * ctxL = ggml_init(paramsL);
+
+        // norm
+        {
+            cur = ggml_norm(ctxL, inpL);
+
+            // cur = ln_0_w*cur + ln_0_b
+            cur = ggml_add(ctxL,
+                    ggml_mul(ctxL,
+                        ggml_repeat(ctxL, layer.attn_ln_0_w, cur),
+                        cur),
+                    ggml_repeat(ctxL, layer.attn_ln_0_b, cur));
+        }
+
+        // self-attention
+        {
+            struct ggml_tensor * Qcur = ggml_mul_mat(ctxL,
+                    layer.attn_q_w,
+                    cur);
+
+            Qcur = ggml_add(ctxL,
+                    ggml_repeat(ctxL,
+                        layer.attn_q_b,
+                        Qcur),
+                    Qcur);
+
+            //Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
+
+            // note: no bias for Key
+            struct ggml_tensor * Kcur = ggml_mul_mat(ctxL,
+                    layer.attn_k_w,
+                    cur);
+
+            //Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
+
+            struct ggml_tensor * Vcur = ggml_mul_mat(ctxL,
+                    layer.attn_v_w,
+                    cur);
+
+            Vcur = ggml_add(ctxL,
+                    ggml_repeat(ctxL,
+                        layer.attn_v_b,
+                        Vcur),
+                    Vcur);
+
+            // ------
+
+#ifdef USE_FLASH_ATTN
+            struct ggml_tensor * Q =
+                ggml_permute(ctxL,
+                        ggml_cpy(ctxL,
+                            Qcur,
+                            ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
+                        0, 2, 1, 3);
+
+            struct ggml_tensor * K =
+                ggml_permute(ctxL,
+                        ggml_cpy(ctxL,
+                            Kcur,
+                            ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
+                        0, 2, 1, 3);
+
+            struct ggml_tensor * V =
+                ggml_cpy(ctxL,
+                        ggml_permute(ctxL,
+                            ggml_reshape_3d(ctxL,
+                                Vcur,
+                                n_state/n_head, n_head, N),
+                            1, 2, 0, 3),
+                        ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, N, n_state/n_head, n_head)
+                        );
+
+            struct ggml_tensor * KQV = ggml_flash_attn(ctxL, Q, K, V, false);
+#else
+            struct ggml_tensor * Q =
+                ggml_permute(ctxL,
+                        ggml_cpy(ctxL,
+                            Qcur,
+                            ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)),
+                        0, 2, 1, 3);
+
+            struct ggml_tensor * K =
+                ggml_permute(ctxL,
+                        ggml_cpy(ctxL,
+                            Kcur,
+                            ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
+                        0, 2, 1, 3);
+
+            // K * Q
+            struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q);
+
+            struct ggml_tensor * KQ_scaled =
+                ggml_scale(ctxL,
+                        KQ,
+                        ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head))
+                        );
+
+            struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_scaled);
+
+            //struct ggml_tensor * V_trans =
+            //    ggml_permute(ctxL,
+            //            ggml_cpy(ctxL,
+            //                Vcur,
+            //                ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
+            //            1, 2, 0, 3);
+
+            //struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max);
+
+            struct ggml_tensor * V =
+                ggml_cpy(ctxL,
+                        ggml_permute(ctxL,
+                            ggml_reshape_3d(ctxL,
+                                Vcur,
+                                n_state/n_head, n_head, N),
+                            0, 2, 1, 3),
+                        ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, N, n_head)
+                        );
+
+            struct ggml_tensor * KQV = ggml_mul_mat(ctxL, ggml_transpose(ctxL, V), KQ_soft_max);
+#endif
+
+            struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3);
+
+            cur = ggml_cpy(ctxL,
+                    KQV_merged,
+                    ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N));
+        }
+
+        // projection
+        {
+            cur = ggml_mul_mat(ctxL,
+                    layer.attn_ln_1_w,
+                    cur);
+
+            cur = ggml_add(ctxL,
+                    ggml_repeat(ctxL, layer.attn_ln_1_b, cur),
+                    cur);
+        }
+
+        // add the input
+        cur = ggml_add(ctxL, cur, inpL);
+
+        struct ggml_tensor * inpFF = cur;
+
+        // feed-forward network
+        {
+            // norm
+            {
+                cur = ggml_norm(ctxL, inpFF);
+
+                // cur = mlp_ln_w*cur + mlp_ln_b
+                cur = ggml_add(ctxL,
+                        ggml_mul(ctxL,
+                            ggml_repeat(ctxL, layer.mlp_ln_w, cur),
+                            cur),
+                        ggml_repeat(ctxL, layer.mlp_ln_b, cur));
+            }
+
+#ifdef USE_FLASH_FF
+            cur = ggml_flash_ff(ctxL,
+                    ggml_cpy(ctxL, cur, ggml_new_tensor_2d(ctxL, GGML_TYPE_F16, n_state, N)),
+                    layer.mlp_0_w, layer.mlp_0_b, layer.mlp_1_w, layer.mlp_1_b);
+#else
+            // fully connected
+            cur = ggml_mul_mat(ctxL,
+                    layer.mlp_0_w,
+                    cur);
+
+            cur = ggml_add(ctxL,
+                    ggml_repeat(ctxL, layer.mlp_0_b, cur),
+                    cur);
+
+            // GELU activation
+            cur = ggml_gelu(ctxL, cur);
+
+            // projection
+            cur = ggml_mul_mat(ctxL,
+                    layer.mlp_1_w,
+                    cur);
+
+            cur = ggml_add(ctxL,
+                    ggml_repeat(ctxL, layer.mlp_1_b, cur),
+                    cur);
+#endif
+        }
+
+        // output from this layer
+        struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF);
+
+        {
+            struct ggml_cgraph gf = { .n_threads = n_threads };
+
+            ggml_build_forward_expand(&gf, inpO);
+            ggml_graph_compute       (ctxL, &gf);
+
+            //ggml_graph_print(&gf);
+        }
+
+        // TODO: this is a hack to have per-layer computation graphs - need to come up with something better
+        // input for next layer (inpO -> inpL)
+        memcpy(inpL->data, inpO->data, ggml_nbytes(inpL));
+        inpL->op = GGML_OP_NONE;
+        inpL->src0 = NULL;
+        inpL->src1 = NULL;
+
+        //printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0);
+
+        ggml_free(ctxL);
+    }
+
+    cur = inpL;
+
+    // norm
+    {
+        cur = ggml_norm(ctx0, cur);
+
+        // cur = ln_f_g*cur + ln_f_b
+        cur = ggml_add(ctx0,
+                ggml_mul(ctx0,
+                    ggml_repeat(ctx0, model.e_ln_w, cur),
+                    cur),
+                ggml_repeat(ctx0, model.e_ln_b, cur));
+    }
+
+    // run the computation
+    {
+        struct ggml_cgraph gf = { .n_threads = n_threads };
+
+        ggml_build_forward_expand(&gf, cur);
+        ggml_graph_compute       (ctx0, &gf);
+
+        //ggml_graph_print(&gf);
+    }
+
+    // cur
+    //{
+    //    printf("ne0 = %d\n", cur->ne[0]);
+    //    printf("ne1 = %d\n", cur->ne[1]);
+    //    for (int i = 0; i < 10; ++i) {
+    //        printf("%8.4f ", ((float *)(cur->data))[i]);
+    //    }
+    //    printf("... ");
+    //    for (int i = cur->ne[0] - 10; i < cur->ne[0]; ++i) {
+    //        printf("%8.4f ", ((float *)(cur->data))[i]);
+    //    }
+    //    printf("\n");
+    //}
+
+    // pre-compute cross-attention memory
+    {
+        struct ggml_cgraph gf = { .n_threads = n_threads };
+
+        // TODO: hack to disconnect the encoded features from the previous graph
+        cur->op = GGML_OP_NONE;
+        cur->src0 = NULL;
+        cur->src1 = NULL;
+
+        for (int il = 0; il < model.hparams.n_text_layer; ++il) {
+            auto & layer = model.layers_decoder[il];
+
+            struct ggml_tensor * Kcross = ggml_mul_mat(ctx0,
+                    layer.cross_attn_k_w,
+                    cur);
+
+            Kcross = ggml_scale(ctx0, Kcross, ggml_new_f32(ctx0, pow(float(n_state)/n_head, -0.25)));
+
+            struct ggml_tensor * Vcross = ggml_mul_mat(ctx0,
+                    layer.cross_attn_v_w,
+                    cur);
+
+            Vcross = ggml_add(ctx0,
+                    ggml_repeat(ctx0,
+                        layer.cross_attn_v_b,
+                        Vcross),
+                    Vcross);
+
+            struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_cross_k, n_state*n_ctx, (ggml_element_size(model.memory_cross_k)*n_state)*(il*n_ctx));
+            struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_cross_v, n_state*n_ctx, (ggml_element_size(model.memory_cross_v)*n_state)*(il*n_ctx));
+
+            ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcross, k));
+            ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcross, v));
+        }
+
+        ggml_graph_compute(ctx0, &gf);
+    }
+
+    ////////////////////////////////////////////////////////////////////////////
+
+    // output the features
+    assert(cur->type == GGML_TYPE_F32);
+    features.resize(cur->ne[0]*cur->ne[1]);
+    memcpy(features.data(), cur->data, features.size()*sizeof(float));
+
+    //printf("%s: used_mem = %f MB\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0);
+
+    ggml_free(ctx0);
+
+    return true;
+}
+
+// evaluate the decoder
+//
+// given text prompt + audio features -> predicts the probabilities for the next token
+//
+//   - model:      the model
+//   - n_threads:  number of threads to use
+//   - n_past:     prompt length
+//   - prompt:     text prompt
+//   - logits_out: output logits
+//   - probs_out:  output probabilities
+//
+bool whisper_decode(
+        const whisper_model & model,
+        const int n_threads,
+        const int n_past,
+        const std::vector<whisper_vocab::id> & prompt,
+              std::vector<float> & logits_out,
+              std::vector<float> & probs_out) {
+    const auto & hparams = model.hparams;
+
+    const int n_vocab = hparams.n_vocab;
+
+    const int n_ctx   = hparams.n_text_ctx;
+    const int n_state = hparams.n_text_state;
+    const int n_head  = hparams.n_text_head;
+    const int n_layer = hparams.n_text_layer;
+
+    const int N = prompt.size();
+    const int M = hparams.n_audio_ctx;
+
+    struct ggml_init_params params;
+
+    {
+        static size_t buf_size = MEM_REQ_DECODE.at(model.type);
+        static void * buf = malloc(buf_size);
+
+        params = {
+            .mem_size   = buf_size,
+            .mem_buffer = buf,
+        };
+    }
+
+    struct ggml_context * ctx0 = ggml_init(params);
+
+    struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
+    memcpy(embd->data, prompt.data(), N*ggml_element_size(embd));
+
+    struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
+    for (int i = 0; i < N; ++i) {
+        ((int32_t *) position->data)[i] = n_past + i;
+    }
+
+    // token encoding + position encoding
+    struct ggml_tensor * cur =
+        ggml_add(ctx0,
+                ggml_get_rows(ctx0, model.d_te, embd),
+                ggml_get_rows(ctx0, model.d_pe, position));
+
+    struct ggml_tensor * inpL = cur;
+
+    for (int il = 0; il < n_layer; ++il) {
+        const auto & layer = model.layers_decoder[il];
+
+        struct ggml_init_params paramsL;
+
+        {
+            static size_t buf_size = MEM_REQ_DECODE_LAYER.at(model.type);
+            static void * buf = malloc(buf_size);
+
+            paramsL = {
+                .mem_size   = buf_size,
+                .mem_buffer = buf,
+            };
+        }
+
+        struct ggml_context * ctxL = ggml_init(paramsL);
+        struct ggml_cgraph gf = { .n_threads = n_threads };
+
+        // norm
+        {
+            cur = ggml_norm(ctxL, inpL);
+
+            // cur = ln_0_w*cur + ln_0_b
+            cur = ggml_add(ctxL,
+                    ggml_mul(ctxL,
+                        ggml_repeat(ctxL, layer.attn_ln_0_w, cur),
+                        cur),
+                    ggml_repeat(ctxL, layer.attn_ln_0_b, cur));
+        }
+
+        // self-attention
+        {
+            struct ggml_tensor * Qcur = ggml_mul_mat(ctxL,
+                    layer.attn_q_w,
+                    cur);
+
+            Qcur = ggml_add(ctxL,
+                    ggml_repeat(ctxL,
+                        layer.attn_q_b,
+                        Qcur),
+                    Qcur);
+
+            Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
+
+            // note: no bias for Key
+            struct ggml_tensor * Kcur = ggml_mul_mat(ctxL,
+                    layer.attn_k_w,
+                    cur);
+
+            Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
+
+            struct ggml_tensor * Vcur = ggml_mul_mat(ctxL,
+                    layer.attn_v_w,
+                    cur);
+
+            Vcur = ggml_add(ctxL,
+                    ggml_repeat(ctxL,
+                        layer.attn_v_b,
+                        Vcur),
+                    Vcur);
+
+            // store key and value to memory
+            {
+                struct ggml_tensor * k = ggml_view_1d(ctxL, model.memory_k, N*n_state, (ggml_element_size(model.memory_k)*n_state)*(il*n_ctx + n_past));
+                struct ggml_tensor * v = ggml_view_1d(ctxL, model.memory_v, N*n_state, (ggml_element_size(model.memory_v)*n_state)*(il*n_ctx + n_past));
+
+                ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Kcur, k));
+                ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Vcur, v));
+            }
+
+            // ------
+
+            struct ggml_tensor * Q =
+                ggml_permute(ctxL,
+                        ggml_cpy(ctxL,
+                            Qcur,
+                            ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)),
+                        0, 2, 1, 3);
+
+            struct ggml_tensor * K =
+                ggml_permute(ctxL,
+                        ggml_reshape_3d(ctxL,
+                            ggml_view_1d(ctxL, model.memory_k, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_k)*n_state),
+                            n_state/n_head, n_head, n_past + N),
+                        0, 2, 1, 3);
+
+            // K * Q
+            struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q);
+
+            //struct ggml_tensor * KQ_scaled =
+            //    ggml_scale(ctxL,
+            //            KQ,
+            //            ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head))
+            //            );
+
+            struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ, n_past);
+
+            struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_masked);
+
+            struct ggml_tensor * V_trans =
+                ggml_permute(ctxL,
+                        ggml_reshape_3d(ctxL,
+                            ggml_view_1d(ctxL, model.memory_v, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_v)*n_state),
+                            n_state/n_head, n_head, n_past + N),
+                        1, 2, 0, 3);
+
+            struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max);
+
+            struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3);
+
+            cur = ggml_cpy(ctxL,
+                    KQV_merged,
+                    ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N));
+        }
+
+        {
+            cur = ggml_mul_mat(ctxL,
+                    layer.attn_ln_1_w,
+                    cur);
+
+            cur = ggml_add(ctxL,
+                    ggml_repeat(ctxL, layer.attn_ln_1_b, cur),
+                    cur);
+        }
+
+        // add the input
+        struct ggml_tensor * inpCA = ggml_add(ctxL, cur, inpL);
+
+        // norm
+        {
+            cur = ggml_norm(ctxL, inpCA); // note: we use inpCA here
+
+            // cur = ln_0_w*cur + ln_0_b
+            cur = ggml_add(ctxL,
+                    ggml_mul(ctxL,
+                        ggml_repeat(ctxL, layer.cross_attn_ln_0_w, cur),
+                        cur),
+                    ggml_repeat(ctxL, layer.cross_attn_ln_0_b, cur));
+        }
+
+        // cross-attention
+        {
+            struct ggml_tensor * Qcur = ggml_mul_mat(ctxL,
+                    layer.cross_attn_q_w,
+                    cur);
+
+            Qcur = ggml_add(ctxL,
+                    ggml_repeat(ctxL,
+                        layer.cross_attn_q_b,
+                        Qcur),
+                    Qcur);
+
+            Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
+
+            // Kcross is already scaled
+            struct ggml_tensor * Kcross =
+                ggml_reshape_3d(ctxL,
+                        ggml_view_1d(ctxL, model.memory_cross_k, M*n_state, il*M*ggml_element_size(model.memory_cross_k)*n_state),
+                        n_state/n_head, n_head, M);
+
+            struct ggml_tensor * Vcross =
+                ggml_reshape_3d(ctxL,
+                        ggml_view_1d(ctxL, model.memory_cross_v, M*n_state, il*M*ggml_element_size(model.memory_cross_v)*n_state),
+                        n_state/n_head, n_head, M);
+
+            // ------
+
+            struct ggml_tensor * Q =
+                ggml_permute(ctxL,
+                        ggml_cpy(ctxL,
+                            Qcur,
+                            ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)),
+                        0, 2, 1, 3);
+
+            struct ggml_tensor * K = ggml_permute(ctxL, Kcross, 0, 2, 1, 3);
+
+            // K * Q
+            struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q);
+
+            //struct ggml_tensor * KQ_scaled =
+            //    ggml_scale(ctxL,
+            //            KQ,
+            //            ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head))
+            //            );
+
+            // no masking for cross-attention
+            //struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ_scaled, n_past);
+
+            struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ);
+
+            struct ggml_tensor * V_trans = ggml_permute(ctxL, Vcross, 1, 2, 0, 3);
+
+            struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max);
+
+            struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3);
+
+            // cur = KQV_merged.contiguous().view(n_state, N)
+            cur = ggml_cpy(ctxL,
+                    KQV_merged,
+                    ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N));
+        }
+
+        // projection
+        {
+            cur = ggml_mul_mat(ctxL,
+                    layer.cross_attn_ln_1_w,
+                    cur);
+
+            cur = ggml_add(ctxL,
+                    ggml_repeat(ctxL, layer.cross_attn_ln_1_b, cur),
+                    cur);
+        }
+
+        // add the input
+        cur = ggml_add(ctxL, cur, inpCA);
+
+        struct ggml_tensor * inpFF = cur;
+
+        // feed-forward network
+        {
+            // norm
+            {
+                cur = ggml_norm(ctxL, inpFF);
+
+                // cur = mlp_ln_w*cur + mlp_ln_b
+                cur = ggml_add(ctxL,
+                        ggml_mul(ctxL,
+                            ggml_repeat(ctxL, layer.mlp_ln_w, cur),
+                            cur),
+                        ggml_repeat(ctxL, layer.mlp_ln_b, cur));
+            }
+
+            // fully connected
+            cur = ggml_mul_mat(ctxL,
+                    layer.mlp_0_w,
+                    cur);
+
+            cur = ggml_add(ctxL,
+                    ggml_repeat(ctxL, layer.mlp_0_b, cur),
+                    cur);
+
+            // GELU activation
+            cur = ggml_gelu(ctxL, cur);
+
+            // projection
+            cur = ggml_mul_mat(ctxL,
+                    layer.mlp_1_w,
+                    cur);
+
+            cur = ggml_add(ctxL,
+                    ggml_repeat(ctxL, layer.mlp_1_b, cur),
+                    cur);
+        }
+
+        // output from this layer
+        struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF);
+
+        {
+            ggml_build_forward_expand(&gf, inpO);
+            ggml_graph_compute       (ctxL, &gf);
+
+            //ggml_graph_print(&gf);
+        }
+
+        // TODO: this is a hack to have per-layer computation graphs - need to come up with something better
+        // input for next layer (inpO -> inpL)
+        memcpy(inpL->data, inpO->data, ggml_nbytes(inpL));
+        inpL->op = GGML_OP_NONE;
+        inpL->src0 = NULL;
+        inpL->src1 = NULL;
+
+        if (N > 1) {
+            //printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0);
+        }
+
+        ggml_free(ctxL);
+    }
+
+    cur = inpL;
+
+    // norm
+    {
+        cur = ggml_norm(ctx0, cur);
+
+        cur = ggml_add(ctx0,
+                ggml_mul(ctx0,
+                    ggml_repeat(ctx0, model.d_ln_w, cur),
+                    cur),
+                ggml_repeat(ctx0, model.d_ln_b, cur));
+    }
+
+    struct ggml_tensor * logits = ggml_mul_mat(ctx0, model.d_te, cur);
+
+    // logits -> probs
+    cur = ggml_dup(ctx0, logits);
+    cur = ggml_soft_max(ctx0, cur); // in-place
+
+    // run the computation
+    {
+        struct ggml_cgraph gf = { .n_threads = n_threads };
+
+        ggml_build_forward_expand(&gf, cur);
+        ggml_graph_compute       (ctx0, &gf);
+    }
+
+    logits_out.resize(N*n_vocab);
+    memcpy(logits_out.data(), ggml_get_data(logits), sizeof(float)*N*n_vocab);
+
+    probs_out.resize(N*n_vocab);
+    memcpy(probs_out.data(), ggml_get_data(cur), sizeof(float)*N*n_vocab);
+
+    if (N > 1) {
+        //const float mem_per_token = ggml_used_mem(ctx0)/1024.0/1024.0/N;
+        //printf("%s: used_mem = %f MB / %f per token\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0, mem_per_token);
+        //printf("%s: max mem = %f MB\n", __func__, mem_per_token*model.hparams.n_text_ctx);
+    }
+
+    ggml_free(ctx0);
+
+    return true;
+}
+
+// the most basic sampling scheme - select the top token
+// TODO: beam search
+// TODO: temperature
+whisper_vocab::id whisper_sample_best(
+        const whisper_vocab & vocab,
+        const float * probs,
+        double temp,
+        int offset = 0) {
+    int n_logits = vocab.id_to_token.size();
+
+    std::vector<std::pair<double, whisper_vocab::id>> probs_id;
+    probs_id.reserve(n_logits);
+
+    for (int i = offset; i < n_logits; i++) {
+        probs_id.push_back(std::make_pair(probs[i], i));
+    }
+
+    const int top_k = 10;
+
+    // find the top K tokens
+    std::partial_sort(
+            probs_id.begin(),
+            probs_id.begin() + top_k, probs_id.end(),
+            [](const std::pair<double, whisper_vocab::id> & a, const std::pair<double, whisper_vocab::id> & b) {
+        return a.first > b.first;
+    });
+
+    probs_id.resize(top_k);
+
+    //printf("\n");
+    //for (int i = 0; i < (int) probs_id.size(); i++) {
+    //    printf("%d: '%s' %f, %d\n", i, vocab.id_to_token.at(probs_id[i].second).c_str(), probs_id[i].first, probs_id[i].second);
+    //}
+
+    int res = 0;
+    while (probs_id[res].second == vocab.token_solm && res < (int) probs_id.size() - 1) {
+        res++;
+    }
+
+    return probs_id[res].second;
+}
+
+// Cooley-Tukey FFT
+// poor man's implmentation - use something better
+// input is real-valued
+// output is complex-valued
+void fft(const std::vector<float> & in, std::vector<float> & out) {
+    out.resize(in.size()*2);
+
+    int N = in.size();
+
+    if (N == 1) {
+        out[0] = in[0];
+        out[1] = 0;
+        return;
+    }
+
+    std::vector<float> even;
+    std::vector<float> odd;
+
+    for (int i = 0; i < N; i++) {
+        if (i % 2 == 0) {
+            even.push_back(in[i]);
+        } else {
+            odd.push_back(in[i]);
+        }
+    }
+
+    std::vector<float> even_fft;
+    std::vector<float> odd_fft;
+
+    fft(even, even_fft);
+    fft(odd, odd_fft);
+
+    for (int k = 0; k < N/2; k++) {
+        float theta = 2*M_PI*k/N;
+
+        float re = cos(theta);
+        float im = -sin(theta);
+
+        float re_odd = odd_fft[2*k + 0];
+        float im_odd = odd_fft[2*k + 1];
+
+        out[2*k + 0] = even_fft[2*k + 0] + re*re_odd - im*im_odd;
+        out[2*k + 1] = even_fft[2*k + 1] + re*im_odd + im*re_odd;
+
+        out[2*(k + N/2) + 0] = even_fft[2*k + 0] - re*re_odd + im*im_odd;
+        out[2*(k + N/2) + 1] = even_fft[2*k + 1] - re*im_odd - im*re_odd;
+    }
+}
+
+// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L92-L124
+bool log_mel_spectrogram(
+    const std::vector<float> sf32,
+    const int sample_rate,
+    const int fft_size,
+    const int fft_step,
+    const int n_mel,
+    const int n_threads,
+    const whisper_filters & filters,
+    whisper_mel & mel) {
+    const int n_sample = sf32.size();
+    const float * samples = sf32.data();
+
+    // Hanning window
+    std::vector<float> hann;
+    hann.resize(fft_size);
+    for (int i = 0; i < fft_size; i++) {
+        hann[i] = 0.5*(1.0 - cos((2.0*M_PI*i)/(fft_size)));
+    }
+
+    mel.n_mel = n_mel;
+    mel.n_len = (n_sample)/fft_step;
+    mel.data.resize(mel.n_mel*mel.n_len);
+
+    const int n_fft = 1 + fft_size/2;
+
+    printf("%s: n_sample = %d, n_len = %d\n", __func__, n_sample, mel.n_len);
+    printf("%s: recording length: %f s\n", __func__, (float) n_sample/sample_rate);
+
+    std::vector<std::thread> workers(n_threads);
+    for (int iw = 0; iw < n_threads; ++iw) {
+        workers[iw] = std::thread([&](int ith) {
+            std::vector<float> fft_in;
+            fft_in.resize(fft_size);
+            for (int i = 0; i < fft_size; i++) {
+                fft_in[i] = 0.0;
+            }
+
+            std::vector<float> fft_out;
+            fft_out.resize(2*fft_size);
+
+            for (int i = ith; i < mel.n_len; i += n_threads) {
+                const int offset = i*fft_step;
+
+                // apply Hanning window
+                for (int j = 0; j < fft_size; j++) {
+                    if (offset + j < n_sample) {
+                        fft_in[j] = hann[j]*samples[offset + j];
+                    } else {
+                        fft_in[j] = 0.0;
+                    }
+                }
+
+                // FFT -> mag^2
+                fft(fft_in, fft_out);
+
+                for (int j = 0; j < n_fft; j++) {
+                    fft_out[j] = (fft_out[2*j + 0]*fft_out[2*j + 0] + fft_out[2*j + 1]*fft_out[2*j + 1]);
+                }
+
+                // mel spectrogram
+                for (int j = 0; j < mel.n_mel; j++) {
+                    double sum = 0.0;
+
+                    for (int k = 0; k < n_fft; k++) {
+                        sum += fft_out[k]*filters.data[j*n_fft + k];
+                    }
+                    if (sum < 1e-10) {
+                        sum = 1e-10;
+                    }
+
+                    sum = log10(sum);
+
+                    mel.data[j*mel.n_len + i] = sum;
+                }
+            }
+        }, iw);
+    }
+
+    for (int iw = 0; iw < n_threads; ++iw) {
+        workers[iw].join();
+    }
+
+    // clamping and normalization
+    double mmax = -1e20;
+    for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
+        if (mel.data[i] > mmax) {
+            mmax = mel.data[i];
+        }
+    }
+
+    mmax -= 8.0;
+
+    for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
+        if (mel.data[i] < mmax) {
+            mel.data[i] = mmax;
+        }
+
+        mel.data[i] = (mel.data[i] + 4.0)/4.0;
+    }
+
+    return true;
+}
+
+int main(int argc, char ** argv) {
+    const int64_t t_main_start_us = ggml_time_us();
+
+    whisper_params params;
+
+    if (whisper_params_parse(argc, argv, params) == false) {
+        return 1;
+    }
+
+    if (params.seed < 0) {
+        params.seed = time(NULL);
+    }
+
+    // Model loading
+
+    //printf("%s: seed = %d\n", __func__, params.seed);
+
+    int64_t t_load_us   = 0;
+    int64_t t_mel_us    = 0;
+    int64_t t_sample_us  = 0;
+    int64_t t_encode_us = 0;
+    int64_t t_decode_us = 0;
+
+    whisper_vocab vocab;
+    whisper_model model;
+
+    // load the model
+    {
+        const int64_t t_start_us = ggml_time_us();
+
+        if (!whisper_model_load(params.model, model, vocab)) {
+            fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
+            whisper_print_usage(argc, argv, {});
+            return 1;
+        }
+
+        t_load_us = ggml_time_us() - t_start_us;
+    }
+
+    // WAV input
+    std::vector<float> pcmf32;
+    {
+        drwav wav;
+        if (!drwav_init_file(&wav, params.fname_inp.c_str(), NULL)) {
+            fprintf(stderr, "%s: failed to open WAV file '%s' - check your input\n", argv[0], params.fname_inp.c_str());
+            whisper_print_usage(argc, argv, {});
+            return 2;
+        }
+
+        if (wav.channels != 1) {
+            fprintf(stderr, "%s: WAV file '%s' must be mono\n", argv[0], params.fname_inp.c_str());
+            return 3;
+        }
+
+        if (wav.sampleRate != SAMPLE_RATE) {
+            fprintf(stderr, "%s: WAV file '%s' must be 16 kHz\n", argv[0], params.fname_inp.c_str());
+            return 4;
+        }
+
+        if (wav.bitsPerSample != 16) {
+            fprintf(stderr, "%s: WAV file '%s' must be 16-bit\n", argv[0], params.fname_inp.c_str());
+            return 5;
+        }
+
+        std::vector<int16_t> pcm16;
+        pcm16.resize(wav.totalPCMFrameCount);
+        drwav_read_pcm_frames_s16(&wav, wav.totalPCMFrameCount, pcm16.data());
+        drwav_uninit(&wav);
+
+        // convert to float
+        pcmf32.resize(pcm16.size());
+        for (size_t i = 0; i < pcm16.size(); i++) {
+            pcmf32[i] = float(pcm16[i])/32768.0f;
+        }
+    }
+
+    // compute log mel spectrogram
+    whisper_mel mel_inp;
+    {
+        const int64_t t_start_us = ggml_time_us();
+
+        log_mel_spectrogram(pcmf32, SAMPLE_RATE, N_FFT, HOP_LENGTH, N_MEL, params.n_threads, model.filters, mel_inp);
+
+        t_mel_us = ggml_time_us() - t_start_us;
+    }
+
+    // print some info about the processing
+    {
+        printf("\n");
+        if (!vocab.is_multilingual()) {
+            if (params.language != "en" || params.translate) {
+                params.language = "en";
+                params.translate = false;
+                printf("%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
+            }
+        }
+        printf("%s: processing %d samples (%.1f sec), %d threads, lang = %s, task = %s ...\n",
+                __func__, int(pcmf32.size()), float(pcmf32.size())/SAMPLE_RATE, params.n_threads,
+                g_lang.at(params.language).second.c_str(),
+                params.translate ? "translate" : "transcribe");
+    }
+
+    // the accumulated text context so far
+    std::vector<whisper_vocab::id> prompt_past = { };
+
+    // these tokens determine the task that will be performed
+    std::vector<whisper_vocab::id> prompt_init = { vocab.token_sot };
+    if (vocab.is_multilingual()) {
+        prompt_init.push_back(vocab.token_sot + 1 + g_lang.at(params.language).first);
+        if (params.translate) {
+            prompt_init.push_back(vocab.token_translate);
+        } else {
+            prompt_init.push_back(vocab.token_transcribe);
+        }
+    }
+
+    // main loop
+    int seek = 0;
+    while (true) {
+        if (seek >= mel_inp.n_len) {
+            break;
+        }
+
+        // encode audio features starting at offset seek
+        std::vector<float> features;
+        {
+            const int64_t t_start_us = ggml_time_us();
+
+            if (!whisper_encode(model, params.n_threads, seek, mel_inp, features)) {
+                fprintf(stderr, "%s: failed to eval\n", __func__);
+                return 1;
+            }
+
+            t_encode_us = ggml_time_us() - t_start_us;
+        }
+
+        std::vector<float> probs;
+        std::vector<float> logits;
+
+        std::vector<whisper_vocab::id> prompt;
+
+        int n_past = 0;
+
+        // if we have already generated some text, use it as a prompt to condition the next generation
+        if (prompt_past.size() > 0) {
+            int n_take = std::min(model.hparams.n_text_ctx/2, int(prompt_past.size()));
+
+            prompt = { vocab.token_prev };
+            prompt.insert(prompt.begin() + 1, prompt_past.end() - n_take, prompt_past.end());
+
+            prompt_past.clear();
+            prompt_past.insert(prompt_past.end(), prompt.begin() + 1, prompt.end());
+        }
+
+        prompt.insert(prompt.end(), prompt_init.begin(), prompt_init.end());
+
+        bool done = false;
+        int seek_delta = 100*CHUNK_SIZE;
+        whisper_vocab::id last_id = 0;
+
+        //for (int i = 0; i < prompt.size(); i++) {
+        //    printf("%s: prompt[%d] = %s\n", __func__, i, vocab.id_to_token[prompt[i]].c_str());
+        //}
+
+        printf("\n");
+        for (int i = 0; i < model.hparams.n_text_ctx/2; ++i) {
+            // decode
+            if (prompt.size() > 0) {
+                const int64_t t_start_us = ggml_time_us();
+
+                if (!whisper_decode(model, params.n_threads, n_past, prompt, logits, probs)) {
+                    fprintf(stderr, "%s: failed to eval\n", __func__);
+                    return 1;
+                }
+
+                t_decode_us += ggml_time_us() - t_start_us;
+            }
+
+            n_past += prompt.size();
+            prompt.clear();
+
+            // very basic greedy sampling strategy:
+            //
+            //   - always take the most probable token
+            //   - if we have accumulated more than 'params.max_tokens_per_iter' -> pick most probable timestamp token
+            //     and advance the sliding window by that amount
+            //   - in the meantime, if we encounter 2 consecutive timestamp tokens, we advance the sliding window too
+            //
+            // more sophisticated sampling strategies could be implemented here, but we keep it simple
+            // feel free to experiment!
+            //
+            {
+                // sample next token
+                const float temp  = 1.0; // TODO
+
+                const int n_vocab = model.hparams.n_vocab;
+
+                whisper_vocab::id id = 0;
+
+                {
+                    const int64_t t_start_sample_us = ggml_time_us();
+
+                    id = whisper_sample_best(vocab, probs.data() + (probs.size() - n_vocab), temp, i > params.max_tokens_per_iter ? vocab.token_beg : 0);
+
+                    t_sample_us += ggml_time_us() - t_start_sample_us;
+                }
+
+                // end of text token
+                if (id == vocab.token_eot) {
+                    break;
+                }
+
+                // 2 consecutive time tokens
+                if (id > vocab.token_beg && last_id > vocab.token_beg) {
+                    seek_delta = 2*(id - vocab.token_beg);
+                    done = true;
+                }
+                last_id = id;
+
+                // add it to the context
+                prompt.push_back(id);
+                prompt_past.push_back(id);
+            }
+
+            // display text
+            for (auto id : prompt) {
+                if (params.print_special_tokens == false && id >= vocab.token_eot) {
+                    continue;
+                }
+                printf("%s", vocab.id_to_token[id].c_str());
+            }
+            fflush(stdout);
+
+            if (done) {
+                break;
+            }
+        }
+
+        seek += seek_delta;
+    }
+
+    // report timing
+    {
+        const int64_t t_main_end_us = ggml_time_us();
+
+        printf("\n\n");
+        printf("%s:     load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
+        printf("%s:      mel time = %8.2f ms\n", __func__, t_mel_us/1000.0f);
+        printf("%s:   sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
+        printf("%s:   encode time = %8.2f ms / %.2f ms per layer\n", __func__, t_encode_us/1000.0f, t_encode_us/1000.0f/model.hparams.n_audio_layer);
+        printf("%s:   decode time = %8.2f ms\n", __func__, t_decode_us/1000.0f);
+        printf("%s:    total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
+    }
+
+    ggml_free(model.ctx);
+
+    return 0;
+}
index 04837fb512b23e749faf359390f13c7af7a56489..465a9b6d165ede8b5a26f12efb06dec448e45815 100644 (file)
@@ -12,6 +12,7 @@ extern "C" {
 #define GGML_MAX_NODES    4096
 #define GGML_MAX_PARAMS   16
 #define GGML_MAX_CONTEXTS 16
+#define GGML_MAX_OPT      4
 
 #ifdef __ARM_NEON
 // we use the built-in 16-bit float type
@@ -68,6 +69,11 @@ enum ggml_op {
     GGML_OP_DIAG_MASK_INF,
     GGML_OP_SOFT_MAX,
     GGML_OP_ROPE,
+    GGML_OP_CONV_1D_1S,
+    GGML_OP_CONV_1D_2S,
+
+    GGML_OP_FLASH_ATTN,
+    GGML_OP_FLASH_FF,
 
     GGML_OP_COUNT,
 };
@@ -91,6 +97,7 @@ struct ggml_tensor {
     struct ggml_tensor * grad;
     struct ggml_tensor * src0;
     struct ggml_tensor * src1;
+    struct ggml_tensor * opt[GGML_MAX_OPT];
 
     // thread scheduling
     int n_tasks;
@@ -180,14 +187,19 @@ struct ggml_tensor * ggml_new_tensor_4d(
         int    ne2,
         int    ne3);
 
+struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
 struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
 
 struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
 struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
 
 struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
+struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
 struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
 
+int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
+void    ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
+
 float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
 void  ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
 
@@ -383,6 +395,35 @@ struct ggml_tensor * ggml_rope(
         int                   n_dims,
         int                   mode);
 
+// padding = 1
+// TODO: we don't support extra parameters for now
+//       that's why we are hard-coding the stride, padding, and dilation
+//       not great ..
+struct ggml_tensor * ggml_conv_1d_1s(
+        struct ggml_context * ctx,
+        struct ggml_tensor  * a,
+        struct ggml_tensor  * b);
+
+struct ggml_tensor * ggml_conv_1d_2s(
+        struct ggml_context * ctx,
+        struct ggml_tensor  * a,
+        struct ggml_tensor  * b);
+
+struct ggml_tensor * ggml_flash_attn(
+        struct ggml_context * ctx,
+        struct ggml_tensor  * q,
+        struct ggml_tensor  * k,
+        struct ggml_tensor  * v,
+        bool                  masked);
+
+struct ggml_tensor * ggml_flash_ff(
+        struct ggml_context * ctx,
+        struct ggml_tensor  * a,
+        struct ggml_tensor  * b0,
+        struct ggml_tensor  * b1,
+        struct ggml_tensor  * c0,
+        struct ggml_tensor  * c1);
+
 //
 // automatic differentiation
 //
index af40156fe50e917ec03ab8022ee8484282405650..0094c2c4db59914cc193d6daeefd6451e41ac69b 100644 (file)
@@ -59,6 +59,7 @@ add_library(${TARGET}
 target_include_directories(${TARGET} PUBLIC
     .
     ../include
+    ../include/ggml
     )
 
 target_link_libraries(${TARGET} PUBLIC m ${GGML_EXTRA_LIBS} ${CMAKE_THREAD_LIBS_INIT})
index 726352b0b8dc47ef4f025d88bc00a7ce19a6b7bf..9b18d819cd35dccbf6f3099f1da62d528d3d93fd 100644 (file)
@@ -1,4 +1,4 @@
-#include "ggml/ggml.h"
+#include "ggml.h"
 
 #include <assert.h>
 #include <time.h>
 #define UNUSED(x) (void)(x)
 #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
 
+#define GGML_ASSERT(x) \
+    do { \
+        if (!(x)) { \
+            fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
+            abort(); \
+        } \
+    } while (0)
+
+#ifdef GGML_USE_ACCELERATE
+#include <Accelerate/Accelerate.h>
+#endif
+
 // floating point type used to accumulate sums
 typedef double ggml_float;
 
@@ -112,6 +124,16 @@ ggml_fp16_t ggml_fp32_to_fp16(float f) {
 }
 #endif
 
+//
+// global data
+//
+
+// precomputed gelu table for f16 (128 KB)
+static ggml_fp16_t table_gelu_f16[1 << 16];
+
+// precomputed exp table for f16 (128 KB)
+static ggml_fp16_t table_exp_f16[1 << 16];
+
 //
 // timing
 //
@@ -164,11 +186,13 @@ const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
 // fundamental operations
 //
 
-inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i]  = v; }
+inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
 
 inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
 
-inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i]  = v; }
+inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
+
+inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
 
 inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i]  = x[i] + y[i]; }
 inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x)                  { for (int i = 0; i < n; ++i) y[i] += x[i];        }
@@ -180,100 +204,154 @@ inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x)
 inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i]  = x[i]*y[i];   }
 inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i]  = x[i]/y[i];   }
 
-inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
-    for (int i = 0; i < n; ++i) {
-        y[i] += x[i]*v;
+inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
+    ggml_float sumf = 0.0;
+#ifdef __ARM_NEON
+    // NEON 128-bit
+    const int n16 = (n & ~15);
+
+    float32x4_t sum0 = vdupq_n_f32(0);
+    float32x4_t sum1 = vdupq_n_f32(0);
+    float32x4_t sum2 = vdupq_n_f32(0);
+    float32x4_t sum3 = vdupq_n_f32(0);
+
+    float32x4_t x0, x1, x2, x3;
+    float32x4_t y0, y1, y2, y3;
+
+    for (int i = 0; i < n16; i += 16) {
+        x0 = vld1q_f32(x + i + 0);
+        x1 = vld1q_f32(x + i + 4);
+        x2 = vld1q_f32(x + i + 8);
+        x3 = vld1q_f32(x + i + 12);
+
+        y0 = vld1q_f32(y + i + 0);
+        y1 = vld1q_f32(y + i + 4);
+        y2 = vld1q_f32(y + i + 8);
+        y3 = vld1q_f32(y + i + 12);
+
+        sum0 = vfmaq_f32(sum0, x0, y0);
+        sum1 = vfmaq_f32(sum1, x1, y1);
+        sum2 = vfmaq_f32(sum2, x2, y2);
+        sum3 = vfmaq_f32(sum3, x3, y3);
     }
-}
 
-inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
-    ggml_float sum = 0.0;
+    // reduce sum0..sum3 to sum0
+    sum0 = vaddq_f32(sum0, sum1);
+    sum2 = vaddq_f32(sum2, sum3);
+    sum0 = vaddq_f32(sum0, sum2);
+
+    float32x2_t sumf32 = vadd_f32(vget_low_f32(sum0), vget_high_f32(sum0));
+    sumf = vget_lane_f32(sumf32, 0) + vget_lane_f32(sumf32, 1);
+
+    // leftovers
+    for (int i = n16; i < n; ++i) {
+        sumf += x[i]*y[i];
+    }
+#elif defined(__AVX2__)
+    // AVX 256-bit (unroll 4)
+    const int n32 = (n & ~31);
+
+    __m256 sum0 = _mm256_setzero_ps();
+    __m256 sum1 = _mm256_setzero_ps();
+    __m256 sum2 = _mm256_setzero_ps();
+    __m256 sum3 = _mm256_setzero_ps();
+
+    __m256 x0, x1, x2, x3;
+    __m256 y0, y1, y2, y3;
+
+    for (int i = 0; i < n32; i += 32) {
+        x0 = _mm256_loadu_ps(x + i + 0);
+        x1 = _mm256_loadu_ps(x + i + 8);
+        x2 = _mm256_loadu_ps(x + i + 16);
+        x3 = _mm256_loadu_ps(x + i + 24);
+
+        y0 = _mm256_loadu_ps(y + i + 0);
+        y1 = _mm256_loadu_ps(y + i + 8);
+        y2 = _mm256_loadu_ps(y + i + 16);
+        y3 = _mm256_loadu_ps(y + i + 24);
+
+        sum0 = _mm256_fmadd_ps(x0, y0, sum0);
+        sum1 = _mm256_fmadd_ps(x1, y1, sum1);
+        sum2 = _mm256_fmadd_ps(x2, y2, sum2);
+        sum3 = _mm256_fmadd_ps(x3, y3, sum3);
+    }
+
+    sum0 = _mm256_add_ps(sum0, sum1);
+    sum2 = _mm256_add_ps(sum2, sum3);
+    sum0 = _mm256_add_ps(sum0, sum2);
+
+    const __m128 r4 = _mm_add_ps(_mm256_castps256_ps128(sum0), _mm256_extractf128_ps(sum0, 1));
+    const __m128 r2 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
+    const __m128 r1 = _mm_add_ss(r2, _mm_movehdup_ps(r2));
+
+    sumf = _mm_cvtss_f32(r1);
+
+    // leftovers
+    for (int i = n32; i < n; ++i) {
+        sumf += x[i]*y[i];
+    }
+#else
+    // scalar
     for (int i = 0; i < n; ++i) {
-        sum += x[i]*y[i];
+        sumf += x[i]*y[i];
     }
-    *s = sum;
+#endif
+
+    *s = sumf;
 }
 
 inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
     ggml_float sumf = 0.0;
 #ifdef __ARM_NEON
-    const int n64 = 64*(n/64);
+    const int n32 = (n & ~31);
 
-    float16x8_t sum0 = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
-    float16x8_t sum1 = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
-    float16x8_t sum2 = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
-    float16x8_t sum3 = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
-    float16x8_t sum4 = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
-    float16x8_t sum5 = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
-    float16x8_t sum6 = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
-    float16x8_t sum7 = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
+    float16x8_t sum0 = vdupq_n_f16(0);
+    float16x8_t sum1 = vdupq_n_f16(0);
+    float16x8_t sum2 = vdupq_n_f16(0);
+    float16x8_t sum3 = vdupq_n_f16(0);
 
-    float16x8_t x0, x1, x2, x3, x4, x5, x6, x7;
-    float16x8_t y0, y1, y2, y3, y4, y5, y6, y7;
+    float16x8_t x0, x1, x2, x3;
+    float16x8_t y0, y1, y2, y3;
 
-    for (int i = 0; i < n64; i += 64) {
+    for (int i = 0; i < n32; i += 32) {
         x0 = vld1q_f16(x + i + 0 );
         x1 = vld1q_f16(x + i + 8 );
         x2 = vld1q_f16(x + i + 16);
         x3 = vld1q_f16(x + i + 24);
-        x4 = vld1q_f16(x + i + 32);
-        x5 = vld1q_f16(x + i + 40);
-        x6 = vld1q_f16(x + i + 48);
-        x7 = vld1q_f16(x + i + 56);
 
         y0 = vld1q_f16(y + i + 0 );
         y1 = vld1q_f16(y + i + 8 );
         y2 = vld1q_f16(y + i + 16);
         y3 = vld1q_f16(y + i + 24);
-        y4 = vld1q_f16(y + i + 32);
-        y5 = vld1q_f16(y + i + 40);
-        y6 = vld1q_f16(y + i + 48);
-        y7 = vld1q_f16(y + i + 56);
 
         sum0 = vfmaq_f16(sum0, x0, y0);
         sum1 = vfmaq_f16(sum1, x1, y1);
         sum2 = vfmaq_f16(sum2, x2, y2);
         sum3 = vfmaq_f16(sum3, x3, y3);
-        sum4 = vfmaq_f16(sum4, x4, y4);
-        sum5 = vfmaq_f16(sum5, x5, y5);
-        sum6 = vfmaq_f16(sum6, x6, y6);
-        sum7 = vfmaq_f16(sum7, x7, y7);
     }
 
-    // TODO: F16 - better way to reduce this ?
-    float16x8_t sum = vaddq_f16(sum0, sum1);
+    // reduce sum0..sum3 to sum0
+    sum0 = vaddq_f16(sum0, sum1);
+    sum2 = vaddq_f16(sum2, sum3);
+    sum0 = vaddq_f16(sum0, sum2);
 
-    sum = vaddq_f16(sum, sum2);
-    sum = vaddq_f16(sum, sum3);
-    sum = vaddq_f16(sum, sum4);
-    sum = vaddq_f16(sum, sum5);
-    sum = vaddq_f16(sum, sum6);
-    sum = vaddq_f16(sum, sum7);
+    // load sum0 into 2 float32x4_t
+    float32x4_t sum0f32 = vcvt_f32_f16(vget_low_f16(sum0));
+    float32x4_t sum1f32 = vcvt_f32_f16(vget_high_f16(sum0));
 
-    sumf += sum[0] + sum[1] + sum[2] + sum[3] + sum[4] + sum[5] + sum[6] + sum[7];
+    // reduce sum0f32 and sum1f32 to sumf
+    sum0f32 = vaddq_f32(sum0f32, sum1f32);
 
-    // I think this somehow makes the inference worse .. not sure ?
-    //sum0 = vaddq_f16(sum0, sum1);
-    //sum2 = vaddq_f16(sum2, sum3);
-    //sum4 = vaddq_f16(sum4, sum5);
-    //sum6 = vaddq_f16(sum6, sum7);
-
-    //sum0 = vaddq_f16(sum0, sum2);
-    //sum4 = vaddq_f16(sum4, sum6);
-
-    //sum0 = vaddq_f16(sum0, sum4);
-
-    //for (int i = 0; i < 8; ++i) {
-    //    sumf += sum0[i];
-    //}
+    float32x2_t sumf32 = vadd_f32(vget_low_f32(sum0f32), vget_high_f32(sum0f32));
+    sumf = vget_lane_f32(sumf32, 0) + vget_lane_f32(sumf32, 1);
 
     // leftovers
-    for (int i = n64; i < n; ++i) {
+    for (int i = n32; i < n; ++i) {
         sumf += ggml_fp16_to_fp32(x[i])*ggml_fp16_to_fp32(y[i]);
     }
-#else
+#elif defined(__AVX2__)
     // AVX 256-bit (unroll 4)
-    const int n32 = 32*(n/32);
+    const int n32 = (n & ~31);
 
     __m256 sum0 = _mm256_setzero_ps();
     __m256 sum1 = _mm256_setzero_ps();
@@ -312,6 +390,11 @@ inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t
 
     // leftovers
     for (int i = n32; i < n; ++i) {
+        //GGML_ASSERT(false);
+        sumf += ggml_fp16_to_fp32(x[i])*ggml_fp16_to_fp32(y[i]);
+    }
+#else
+    for (int i = 0; i < n; ++i) {
         sumf += ggml_fp16_to_fp32(x[i])*ggml_fp16_to_fp32(y[i]);
     }
 #endif
@@ -319,61 +402,125 @@ inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t
     *s = sumf;
 }
 
+inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
+#ifdef __ARM_NEON
+    // NEON 128-bit
+    const int n16 = (n & ~15);
+
+    const float32x4_t v4 = vdupq_n_f32(v);
+
+    float32x4_t x0, x1, x2, x3;
+    float32x4_t y0, y1, y2, y3;
+
+    for (int i = 0; i < n16; i += 16) {
+        x0 = vld1q_f32(x + i + 0);
+        x1 = vld1q_f32(x + i + 4);
+        x2 = vld1q_f32(x + i + 8);
+        x3 = vld1q_f32(x + i + 12);
+
+        y0 = vld1q_f32(y + i + 0);
+        y1 = vld1q_f32(y + i + 4);
+        y2 = vld1q_f32(y + i + 8);
+        y3 = vld1q_f32(y + i + 12);
+
+        y0 = vfmaq_f32(y0, x0, v4);
+        y1 = vfmaq_f32(y1, x1, v4);
+        y2 = vfmaq_f32(y2, x2, v4);
+        y3 = vfmaq_f32(y3, x3, v4);
+
+        vst1q_f32(y + i + 0, y0);
+        vst1q_f32(y + i + 4, y1);
+        vst1q_f32(y + i + 8, y2);
+        vst1q_f32(y + i + 12, y3);
+    }
+
+    // leftovers
+    for (int i = n16; i < n; ++i) {
+        y[i] += x[i]*v;
+    }
+#elif defined(__AVX2__)
+    // AVX 256-bit (unroll 4)
+    const int n32 = (n & ~31);
+
+    const __m256 v4 = _mm256_set1_ps(v);
+
+    __m256 x0, x1, x2, x3;
+    __m256 y0, y1, y2, y3;
+
+    for (int i = 0; i < n32; i += 32) {
+        x0 = _mm256_loadu_ps(x + i + 0);
+        x1 = _mm256_loadu_ps(x + i + 8);
+        x2 = _mm256_loadu_ps(x + i + 16);
+        x3 = _mm256_loadu_ps(x + i + 24);
+
+        y0 = _mm256_loadu_ps(y + i + 0);
+        y1 = _mm256_loadu_ps(y + i + 8);
+        y2 = _mm256_loadu_ps(y + i + 16);
+        y3 = _mm256_loadu_ps(y + i + 24);
+
+        y0 = _mm256_fmadd_ps(x0, v4, y0);
+        y1 = _mm256_fmadd_ps(x1, v4, y1);
+        y2 = _mm256_fmadd_ps(x2, v4, y2);
+        y3 = _mm256_fmadd_ps(x3, v4, y3);
+
+        _mm256_storeu_ps(y + i + 0, y0);
+        _mm256_storeu_ps(y + i + 8, y1);
+        _mm256_storeu_ps(y + i + 16, y2);
+        _mm256_storeu_ps(y + i + 24, y3);
+    }
+
+    // leftovers
+    for (int i = n32; i < n; ++i) {
+        y[i] += x[i]*v;
+    }
+#else
+    // scalar
+    for (int i = 0; i < n; ++i) {
+        y[i] += x[i]*v;
+    }
+#endif
+}
+
 inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, ggml_fp16_t * restrict x, const float v) {
 #ifdef __ARM_NEON
     // NEON 128-bit
-    const int n64 = 64*(n/64);
+    const int n32 = (n & ~31);
 
     const float16x8_t v8 = vdupq_n_f16(v);
 
-    float16x8_t x0, x1, x2, x3, x4, x5, x6, x7;
-    float16x8_t y0, y1, y2, y3, y4, y5, y6, y7;
+    float16x8_t x0, x1, x2, x3;
+    float16x8_t y0, y1, y2, y3;
 
-    for (int i = 0; i < n64; i += 64) {
+    for (int i = 0; i < n32; i += 32) {
         y0 = vld1q_f16(y + i + 0 );
         y1 = vld1q_f16(y + i + 8 );
         y2 = vld1q_f16(y + i + 16);
         y3 = vld1q_f16(y + i + 24);
-        y4 = vld1q_f16(y + i + 32);
-        y5 = vld1q_f16(y + i + 40);
-        y6 = vld1q_f16(y + i + 48);
-        y7 = vld1q_f16(y + i + 56);
 
         x0 = vld1q_f16(x + i + 0 );
         x1 = vld1q_f16(x + i + 8 );
         x2 = vld1q_f16(x + i + 16);
         x3 = vld1q_f16(x + i + 24);
-        x4 = vld1q_f16(x + i + 32);
-        x5 = vld1q_f16(x + i + 40);
-        x6 = vld1q_f16(x + i + 48);
-        x7 = vld1q_f16(x + i + 56);
 
         y0 = vfmaq_f16(y0, x0, v8);
         y1 = vfmaq_f16(y1, x1, v8);
         y2 = vfmaq_f16(y2, x2, v8);
         y3 = vfmaq_f16(y3, x3, v8);
-        y4 = vfmaq_f16(y4, x4, v8);
-        y5 = vfmaq_f16(y5, x5, v8);
-        y6 = vfmaq_f16(y6, x6, v8);
-        y7 = vfmaq_f16(y7, x7, v8);
 
         vst1q_f16(y + i + 0 , y0);
         vst1q_f16(y + i + 8 , y1);
         vst1q_f16(y + i + 16, y2);
         vst1q_f16(y + i + 24, y3);
-        vst1q_f16(y + i + 32, y4);
-        vst1q_f16(y + i + 40, y5);
-        vst1q_f16(y + i + 48, y6);
-        vst1q_f16(y + i + 56, y7);
     }
 
     // leftovers
-    for (int i = n64; i < n; ++i) {
+    for (int i = n32; i < n; ++i) {
+        GGML_ASSERT(false);
         y[i] = ggml_fp32_to_fp16(ggml_fp16_to_fp32(y[i]) + ggml_fp16_to_fp32(x[i])*v);
     }
-#else
+#elif defined(__AVX2__)
     // AVX 256-bit
-    const int n32 = 32*(n/32);
+    const int n32 = (n & ~31);
 
     const __m256 v8 = _mm256_set1_ps(v);
 
@@ -404,12 +551,16 @@ inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, ggml_
 
     // leftovers
     for (int i = n32; i < n; ++i) {
+        GGML_ASSERT(false);
+        y[i] = ggml_fp32_to_fp16(ggml_fp16_to_fp32(y[i]) + ggml_fp16_to_fp32(x[i])*v);
+    }
+#else
+    for (int i = 0; i < n; ++i) {
         y[i] = ggml_fp32_to_fp16(ggml_fp16_to_fp32(y[i]) + ggml_fp16_to_fp32(x[i])*v);
     }
 #endif
 }
 
-
 inline static void ggml_vec_scale_f32(const int n, float * y, const float   v) { for (int i = 0; i < n; ++i) y[i] *= v;          }
 inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrt(*s);   }
 inline static void ggml_vec_sqr_f32  (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i];   }
@@ -422,12 +573,20 @@ inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) {
 const ggml_float GELU_COEF_A    = 0.044715;
 const ggml_float SQRT_2_OVER_PI = 0.79788456080286535587989211986876;
 
-inline static void ggml_vec_gelu_f32 (const int n, float * y, const float * x) {
+inline static float ggml_gelu_f32(float x) {
+    return 0.5*x*(1.0 + tanh(SQRT_2_OVER_PI*x*(1.0 + GELU_COEF_A*x*x)));
+}
+
+inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
+    for (int i = 0; i < n; ++i) {
+        y[i] = ggml_gelu_f32(x[i]);
+    }
+}
+
+inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
+    const uint16_t * i16 = (const uint16_t *) x;
     for (int i = 0; i < n; ++i) {
-        //y[i] = 0.5f*x[i]*(1.f + tanhf(SQRT_2_OVER_PI*(x[i] + 0.044715f*x[i]*x[i]*x[i])));
-        //0.5*x*(1+tf.tanh(np.sqrt(2/np.pi)*(x+0.044715*tf.pow(x, 3))))
-        const ggml_float xx = x[i];
-        y[i] = 0.5*xx*(1.0 + tanh(SQRT_2_OVER_PI*xx*(1.0 + GELU_COEF_A*xx*xx)));
+        y[i] = table_gelu_f16[i16[i]];
     }
 }
 
@@ -503,6 +662,11 @@ const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
     "DIAG_MASK_INF",
     "SOFT_MAX",
     "ROPE",
+    "CONV_1D_1S",
+    "CONV_1D_2S",
+
+    "FLASH_ATTN",
+    "FLASH_FF",
 };
 
 const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
@@ -538,6 +702,11 @@ const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
     "diag_mask_inf(x)",
     "soft_max(x)",
     "rope(x)",
+    "conv_1d_1s(x)",
+    "conv_1d_2s(x)",
+
+    "flash_attn(x)",
+    "flash_ff(x)",
 };
 
 //
@@ -723,6 +892,14 @@ bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t
         (t1->ne[3]%t0->ne[3] == 0);
 }
 
+int ggml_up32(int n) {
+    return (n + 31) & ~31;
+}
+
+int ggml_up64(int n) {
+    return (n + 63) & ~63;
+}
+
 // assert that pointer is aligned to GGML_MEM_ALIGN
 #define ggml_assert_aligned(ptr) \
     assert(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
@@ -730,6 +907,24 @@ bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t
 ////////////////////////////////////////////////////////////////////////////////
 
 struct ggml_context * ggml_init(struct ggml_init_params params) {
+    static bool is_first_call = true;
+    if (is_first_call) {
+        const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
+
+        for (int i = 0; i < (1 << 16); ++i) {
+            uint16_t ii = (uint16_t) i;
+            const float f = ggml_fp16_to_fp32(*(ggml_fp16_t *)(&ii));
+            table_gelu_f16[i] = ggml_fp32_to_fp16(ggml_gelu_f32(f));
+            table_exp_f16[i] = ggml_fp32_to_fp16(exp(f));
+        }
+
+        const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
+
+        GGML_PRINT_DEBUG("%s: GELU table initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
+
+        is_first_call = false;
+    }
+
     // find non-used context in g_state
     struct ggml_context * ctx = NULL;
 
@@ -752,7 +947,7 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
     }
 
     if (ctx == NULL) {
-        GGML_PRINT_DEBUG("%s\n", "ggml_init: no unused context found");
+        GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
         return NULL;
     }
 
@@ -775,8 +970,8 @@ void ggml_free(struct ggml_context * ctx) {
         if (&g_state.contexts[i].context == ctx) {
             g_state.contexts[i].used = false;
 
-            GGML_PRINT_DEBUG("ggml_free: context %d with %d objects has been freed. memory used = %zu\n",
-                    i, ctx->n_objects, ctx->objects_end->offset + ctx->objects_end->size);
+            GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
+                    __func__, i, ctx->n_objects, ctx->objects_end->offset + ctx->objects_end->size);
 
             if (ctx->mem_buffer_owned) {
                 free(ctx->mem_buffer);
@@ -862,6 +1057,7 @@ struct ggml_tensor * ggml_new_tensor_impl(
         /*.grad         =*/ NULL,
         /*.src0         =*/ NULL,
         /*.src1         =*/ NULL,
+        /*.opt          =*/ { NULL },
         /*.n_tasks      =*/ 0,
         /*.perf_runs    =*/ 0,
         /*.perf_cycles  =*/ 0,
@@ -931,6 +1127,14 @@ struct ggml_tensor * ggml_new_tensor_4d(
     return ggml_new_tensor(ctx, type, 4, ne);
 }
 
+struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
+    struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
+
+    ggml_set_i32(result, value);
+
+    return result;
+}
+
 struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
     struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
 
@@ -948,6 +1152,58 @@ struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
     return tensor;
 }
 
+struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
+    const int n     = ggml_nrows(tensor);
+    const int nc    = tensor->ne[0];
+    const size_t n1 = tensor->nb[1];
+
+    char * const data = tensor->data;
+
+    switch (tensor->type) {
+        case GGML_TYPE_I8:
+            {
+                assert(tensor->nb[0] == sizeof(int8_t));
+                for (int i = 0; i < n; i++) {
+                    ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
+                }
+            } break;
+        case GGML_TYPE_I16:
+            {
+                assert(tensor->nb[0] == sizeof(int16_t));
+                for (int i = 0; i < n; i++) {
+                    ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
+                }
+            } break;
+        case GGML_TYPE_I32:
+            {
+                assert(tensor->nb[0] == sizeof(int32_t));
+                for (int i = 0; i < n; i++) {
+                    ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
+                }
+            } break;
+        case GGML_TYPE_F16:
+            {
+                assert(tensor->nb[0] == sizeof(ggml_fp16_t));
+                for (int i = 0; i < n; i++) {
+                    ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
+                }
+            } break;
+        case GGML_TYPE_F32:
+            {
+                assert(tensor->nb[0] == sizeof(float));
+                for (int i = 0; i < n; i++) {
+                    ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
+                }
+            } break;
+        case GGML_TYPE_COUNT:
+            {
+                assert(false);
+            } break;
+    }
+
+    return tensor;
+}
+
 struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
     const int n     = ggml_nrows(tensor);
     const int nc    = tensor->ne[0];
@@ -979,7 +1235,10 @@ struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
             } break;
         case GGML_TYPE_F16:
             {
-                assert(false); // TODO: implement
+                assert(tensor->nb[0] == sizeof(ggml_fp16_t));
+                for (int i = 0; i < n; i++) {
+                    ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
+                }
             } break;
         case GGML_TYPE_F32:
             {
@@ -997,39 +1256,109 @@ struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
     return tensor;
 }
 
+int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
+    switch (tensor->type) {
+        case GGML_TYPE_I8:
+            {
+                GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
+                return ((int8_t *)(tensor->data))[i];
+            } break;
+        case GGML_TYPE_I16:
+            {
+                GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
+                return ((int16_t *)(tensor->data))[i];
+            } break;
+        case GGML_TYPE_I32:
+            {
+                GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
+                return ((int32_t *)(tensor->data))[i];
+            } break;
+        case GGML_TYPE_F16:
+            {
+                GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
+                return ggml_fp16_to_fp32(((ggml_fp16_t *)(tensor->data))[i]);
+            } break;
+        case GGML_TYPE_F32:
+            {
+                GGML_ASSERT(tensor->nb[0] == sizeof(float));
+                return ((float *)(tensor->data))[i];
+            } break;
+        case GGML_TYPE_COUNT:
+            {
+                GGML_ASSERT(false);
+            } break;
+    }
+
+    return 0.0f;
+}
+
+void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
+    switch (tensor->type) {
+        case GGML_TYPE_I8:
+            {
+                GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
+                ((int8_t *)(tensor->data))[i] = value;
+            } break;
+        case GGML_TYPE_I16:
+            {
+                GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
+                ((int16_t *)(tensor->data))[i] = value;
+            } break;
+        case GGML_TYPE_I32:
+            {
+                GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
+                ((int32_t *)(tensor->data))[i] = value;
+            } break;
+        case GGML_TYPE_F16:
+            {
+                GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
+                ((ggml_fp16_t *)(tensor->data))[i] = ggml_fp32_to_fp16(value);
+            } break;
+        case GGML_TYPE_F32:
+            {
+                GGML_ASSERT(tensor->nb[0] == sizeof(float));
+                ((float *)(tensor->data))[i] = value;
+            } break;
+        case GGML_TYPE_COUNT:
+            {
+                GGML_ASSERT(false);
+            } break;
+    }
+}
+
 float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
     switch (tensor->type) {
         case GGML_TYPE_I8:
             {
-                assert(tensor->nb[0] == sizeof(int8_t));
+                GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
                 return ((int8_t *)(tensor->data))[i];
             } break;
         case GGML_TYPE_I16:
             {
-                assert(tensor->nb[0] == sizeof(int16_t));
+                GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
                 return ((int16_t *)(tensor->data))[i];
             } break;
         case GGML_TYPE_I32:
             {
-                assert(tensor->nb[0] == sizeof(int32_t));
+                GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
                 return ((int32_t *)(tensor->data))[i];
             } break;
         case GGML_TYPE_F16:
             {
-                assert(false); // TODO: implement
+                GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
+                return ggml_fp16_to_fp32(((ggml_fp16_t *)(tensor->data))[i]);
             } break;
         case GGML_TYPE_F32:
             {
-                assert(tensor->nb[0] == sizeof(float));
+                GGML_ASSERT(tensor->nb[0] == sizeof(float));
                 return ((float *)(tensor->data))[i];
             } break;
         case GGML_TYPE_COUNT:
             {
-                assert(false);
+                GGML_ASSERT(false);
             } break;
     }
 
-    assert(false);
     return 0.0f;
 }
 
@@ -1037,31 +1366,32 @@ void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
     switch (tensor->type) {
         case GGML_TYPE_I8:
             {
-                assert(tensor->nb[0] == sizeof(int8_t));
+                GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
                 ((int8_t *)(tensor->data))[i] = value;
             } break;
         case GGML_TYPE_I16:
             {
-                assert(tensor->nb[0] == sizeof(int16_t));
+                GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
                 ((int16_t *)(tensor->data))[i] = value;
             } break;
         case GGML_TYPE_I32:
             {
-                assert(tensor->nb[0] == sizeof(int32_t));
+                GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
                 ((int32_t *)(tensor->data))[i] = value;
             } break;
         case GGML_TYPE_F16:
             {
-                assert(false); // TODO: implement
+                GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
+                ((ggml_fp16_t *)(tensor->data))[i] = ggml_fp32_to_fp16(value);
             } break;
         case GGML_TYPE_F32:
             {
-                assert(tensor->nb[0] == sizeof(float));
+                GGML_ASSERT(tensor->nb[0] == sizeof(float));
                 ((float *)(tensor->data))[i] = value;
             } break;
         case GGML_TYPE_COUNT:
             {
-                assert(false);
+                GGML_ASSERT(false);
             } break;
     }
 }
@@ -2101,6 +2431,124 @@ struct ggml_tensor * ggml_rope(
     return result;
 }
 
+// ggml_conv_1d_1s
+
+struct ggml_tensor * ggml_conv_1d_1s(
+        struct ggml_context * ctx,
+        struct ggml_tensor  * a,
+        struct ggml_tensor  * b) {
+    assert(ggml_is_matrix(b));
+    assert(a->ne[1] == b->ne[1]);
+    assert(a->ne[3] == 1);
+    bool is_node = false;
+
+    if (a->grad || b->grad) {
+        assert(false); // TODO: implement backward
+        is_node = true;
+    }
+
+    const int ne[4] = { b->ne[0], a->ne[2], 1, 1, };
+    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
+
+    result->op   = GGML_OP_CONV_1D_1S;
+    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+    result->src0 = a;
+    result->src1 = b;
+
+    return result;
+}
+
+// ggml_conv_1d_2s
+
+struct ggml_tensor * ggml_conv_1d_2s(
+        struct ggml_context * ctx,
+        struct ggml_tensor  * a,
+        struct ggml_tensor  * b) {
+    assert(ggml_is_matrix(b));
+    assert(a->ne[1] == b->ne[1]);
+    assert(a->ne[3] == 1);
+    bool is_node = false;
+
+    if (a->grad || b->grad) {
+        assert(false); // TODO: implement backward
+        is_node = true;
+    }
+
+    const int ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
+    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
+
+    result->op   = GGML_OP_CONV_1D_2S;
+    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+    result->src0 = a;
+    result->src1 = b;
+
+    return result;
+}
+
+// ggml_flash_attn
+
+struct ggml_tensor * ggml_flash_attn(
+        struct ggml_context * ctx,
+        struct ggml_tensor  * q,
+        struct ggml_tensor  * k,
+        struct ggml_tensor  * v,
+        bool                  masked) {
+    assert(ggml_can_mul_mat(k, q));
+    // TODO: check if vT can be multiplied by (k*qT)
+
+    bool is_node = false;
+
+    if (q->grad || k->grad || v->grad) {
+        GGML_ASSERT(false); // TODO: implement backward
+        is_node = true;
+    }
+
+    //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
+    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
+
+    result->op   = GGML_OP_FLASH_ATTN;
+    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+    result->src0 = q;
+    result->src1 = k;
+    result->opt[0] = v;
+    result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
+
+    return result;
+}
+
+// ggml_flash_ff
+
+struct ggml_tensor * ggml_flash_ff(
+        struct ggml_context * ctx,
+        struct ggml_tensor  * a,
+        struct ggml_tensor  * b0,
+        struct ggml_tensor  * b1,
+        struct ggml_tensor  * c0,
+        struct ggml_tensor  * c1) {
+    assert(ggml_can_mul_mat(b0, a));
+    // TODO: more checks
+
+    bool is_node = false;
+
+    if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
+        GGML_ASSERT(false); // TODO: implement backward
+        is_node = true;
+    }
+
+    //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
+    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
+
+    result->op   = GGML_OP_FLASH_FF;
+    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+    result->src0 = a;
+    result->src1 = b0;
+    result->opt[0] = b1;
+    result->opt[1] = c0;
+    result->opt[2] = c1;
+
+    return result;
+}
+
 ////////////////////////////////////////////////////////////////////////////////
 
 void ggml_set_param(
@@ -2114,7 +2562,7 @@ void ggml_set_param(
 
 // ggml_compute_forward_dup
 
-void ggml_compute_forward_dup(
+void ggml_compute_forward_dup_f16(
         const struct ggml_compute_params * params,
         const struct ggml_tensor * src0,
         struct ggml_tensor * dst) {
@@ -2126,17 +2574,52 @@ void ggml_compute_forward_dup(
         return;
     }
 
-    if (src0->nb[0] == sizeof(float)) {
-        const int ne00 = src0->ne[0];
-        const int ne01 = src0->ne[1];
-        const int ne02 = src0->ne[2];
-        const int ne03 = src0->ne[3];
+    //const int ne00 = src0->ne[0];
+    //const int ne01 = src0->ne[1];
+    //const int ne02 = src0->ne[2];
+    //const int ne03 = src0->ne[3];
+
+    //const size_t nb00 = src0->nb[0];
+    //const size_t nb01 = src0->nb[1];
+    //const size_t nb02 = src0->nb[2];
+    //const size_t nb03 = src0->nb[3];
+
+    if (ggml_is_contiguous(src0) && src0->type == dst->type) {
+        memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
+        return;
+    }
+
+    GGML_ASSERT(false); // TODO: implement
+}
+
+void ggml_compute_forward_dup_f32(
+        const struct ggml_compute_params * params,
+        const struct ggml_tensor * src0,
+        struct ggml_tensor * dst) {
+    GGML_ASSERT(params->ith == 0);
+    GGML_ASSERT(ggml_is_contiguous(dst));
+    GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
 
-        const size_t nb00 = src0->nb[0];
-        const size_t nb01 = src0->nb[1];
-        const size_t nb02 = src0->nb[2];
-        const size_t nb03 = src0->nb[3];
+    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+        return;
+    }
+
+    const int ne00 = src0->ne[0];
+    const int ne01 = src0->ne[1];
+    const int ne02 = src0->ne[2];
+    const int ne03 = src0->ne[3];
 
+    const size_t nb00 = src0->nb[0];
+    const size_t nb01 = src0->nb[1];
+    const size_t nb02 = src0->nb[2];
+    const size_t nb03 = src0->nb[3];
+
+    if (ggml_is_contiguous(src0) && src0->type == dst->type) {
+        memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
+        return;
+    }
+
+    if (src0->nb[0] == sizeof(float)) {
         if (dst->type == GGML_TYPE_F32) {
             int id = 0;
             const size_t rs = ne00*nb00;
@@ -2170,38 +2653,72 @@ void ggml_compute_forward_dup(
                 }
             }
         } else {
-            assert(false); // TODO: implement
+            GGML_ASSERT(false); // TODO: implement
         }
     } else {
-        GGML_PRINT_DEBUG("ggml_compute_forward_dup: fix me\n"); // TODO !!!
-        const int ne00 = src0->ne[0];
-        const int ne01 = src0->ne[1];
-        const int ne02 = src0->ne[2];
-        const int ne03 = src0->ne[3];
-
-        const size_t nb00 = src0->nb[0];
-        const size_t nb01 = src0->nb[1];
-        const size_t nb02 = src0->nb[2];
-        const size_t nb03 = src0->nb[3];
-
-        int id = 0;
-        for (int i03 = 0; i03 < ne03; i03++) {
-            for (int i02 = 0; i02 < ne02; i02++) {
-                for (int i01 = 0; i01 < ne01; i01++) {
-                    for (int i00 = 0; i00 < ne00; i00++) {
-                        const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
-                              char *  dst_ptr = (char *)  dst->data + id*sizeof(float);
+        //printf("%s: this is not optimal - fix me\n", __func__);
 
-                        memcpy(dst_ptr, src0_ptr, sizeof(float));
+        if (dst->type == GGML_TYPE_F32) {
+            int id = 0;
+            float * dst_ptr = (float *) dst->data;
 
-                        id++;
+            for (int i03 = 0; i03 < ne03; i03++) {
+                for (int i02 = 0; i02 < ne02; i02++) {
+                    for (int i01 = 0; i01 < ne01; i01++) {
+                        for (int i00 = 0; i00 < ne00; i00++) {
+                            const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+
+                            dst_ptr[id] = *src0_ptr;
+                            id++;
+                        }
+                    }
+                }
+            }
+        } else if (dst->type == GGML_TYPE_F16) {
+            int id = 0;
+            ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
+
+            for (int i03 = 0; i03 < ne03; i03++) {
+                for (int i02 = 0; i02 < ne02; i02++) {
+                    for (int i01 = 0; i01 < ne01; i01++) {
+                        for (int i00 = 0; i00 < ne00; i00++) {
+                            const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
+
+                            dst_ptr[id] = ggml_fp32_to_fp16(*src0_ptr);
+                            id++;
+                        }
                     }
                 }
             }
+        } else {
+            GGML_ASSERT(false); // TODO: implement
         }
     }
 }
 
+void ggml_compute_forward_dup(
+        const struct ggml_compute_params * params,
+        const struct ggml_tensor * src0,
+        struct ggml_tensor * dst) {
+    switch (src0->type) {
+        case GGML_TYPE_F16:
+            {
+                ggml_compute_forward_dup_f16(params, src0, dst);
+            } break;
+        case GGML_TYPE_F32:
+            {
+                ggml_compute_forward_dup_f32(params, src0, dst);
+            } break;
+        case GGML_TYPE_I8:
+        case GGML_TYPE_I16:
+        case GGML_TYPE_I32:
+        case GGML_TYPE_COUNT:
+            {
+                GGML_ASSERT(false);
+            } break;
+    }
+}
+
 // ggml_compute_forward_add
 
 void ggml_compute_forward_add_f32(
@@ -2209,8 +2726,8 @@ void ggml_compute_forward_add_f32(
         const struct ggml_tensor * src0,
         const struct ggml_tensor * src1,
         struct ggml_tensor * dst) {
-    assert(params->ith == 0);
-    assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
+    GGML_ASSERT(params->ith == 0);
+    GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
 
     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
         return;
@@ -2219,15 +2736,36 @@ void ggml_compute_forward_add_f32(
     const int n  = ggml_nrows(src0);
     const int nc = src0->ne[0];
 
-    assert( dst->nb[0] == sizeof(float));
-    assert(src0->nb[0] == sizeof(float));
-    assert(src1->nb[0] == sizeof(float));
+    const size_t nb00 = src0->nb[0];
+    const size_t nb01 = src0->nb[1];
 
-    for (int i = 0; i < n; i++) {
-        ggml_vec_add_f32(nc,
-                (float *) ((char *) dst->data  + i*( dst->nb[1])),
-                (float *) ((char *) src0->data + i*(src0->nb[1])),
-                (float *) ((char *) src1->data + i*(src1->nb[1])));
+    const size_t nb10 = src1->nb[0];
+    const size_t nb11 = src1->nb[1];
+
+    const size_t nb0 = dst->nb[0];
+    const size_t nb1 = dst->nb[1];
+
+    GGML_ASSERT( nb0 == sizeof(float));
+    GGML_ASSERT(nb00 == sizeof(float));
+
+    if (nb10 == sizeof(float)) {
+        for (int j = 0; j < n; j++) {
+            ggml_vec_add_f32(nc,
+                    (float *) ((char *) dst->data  + j*nb1),
+                    (float *) ((char *) src0->data + j*nb01),
+                    (float *) ((char *) src1->data + j*nb11));
+        }
+    } else {
+        // src1 is not contiguous
+        for (int j = 0; j < n; j++) {
+            float * dst_ptr  = (float *) ((char *) dst->data  + j*nb1);
+            float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
+            for (int i = 0; i < nc; i++) {
+                float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
+
+                dst_ptr[i] = src0_ptr[i] + *src1_ptr;
+            }
+        }
     }
 }
 
@@ -2927,27 +3465,35 @@ void ggml_compute_forward_gelu_f32(
         const struct ggml_compute_params * params,
         const struct ggml_tensor * src0,
         struct ggml_tensor * dst) {
-    assert(params->ith == 0);
-    assert(ggml_are_same_shape(src0, dst));
+    GGML_ASSERT(ggml_is_contiguous(src0));
+    GGML_ASSERT(ggml_is_contiguous(dst));
+    GGML_ASSERT(ggml_are_same_shape(src0, dst));
 
     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
         return;
     }
 
-    const int n  = ggml_nrows(src0);
+    const int ith = params->ith;
+    const int nth = params->nth;
+
     const int nc = src0->ne[0];
+    const int nr = ggml_nrows(src0);
 
-    assert(dst->nb[0]  == sizeof(float));
-    assert(src0->nb[0] == sizeof(float));
+    // rows per thread
+    const int dr = (nr + nth - 1)/nth;
 
-    for (int i = 0; i < n; i++) {
+    // row range for this thread
+    const int ir0 = dr*ith;
+    const int ir1 = MIN(ir0 + dr, nr);
+
+    for (int i1 = ir0; i1 < ir1; i1++) {
         ggml_vec_gelu_f32(nc,
-                (float *) ((char *) dst->data  + i*( dst->nb[1])),
-                (float *) ((char *) src0->data + i*(src0->nb[1])));
+                (float *) ((char *) dst->data  + i1*( dst->nb[1])),
+                (float *) ((char *) src0->data + i1*(src0->nb[1])));
 
 #ifndef NDEBUG
         for (int k = 0; k < nc; k++) {
-            const float x = ((float *) ((char *) dst->data  + i*( dst->nb[1])))[k];
+            const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
             UNUSED(x);
             assert(!isnan(x));
             assert(!isinf(x));
@@ -3145,15 +3691,94 @@ void ggml_compute_forward_mul_mat_f32(
 
         float * const wdata = params->wdata;
 
-        ggml_vec_cpy_f32(ne, dst->data, wdata);
+        // cols per thread
+        const int dc = (ne + nth - 1)/nth;
+
+        // col range for this thread
+        const int ic0 = dc*ith;
+        const int ic1 = MIN(ic0 + dc, ne);
+
+        ggml_vec_cpy_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + ic0);
 
         for (int k = 1; k < nth; k++) {
-            ggml_vec_acc_f32(ne, dst->data, wdata + (ne + CACHE_LINE_SIZE_F32)*k);
+            ggml_vec_acc_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + (ne + CACHE_LINE_SIZE_F32)*k + ic0);
         }
 
         return;
     }
 
+//#ifdef GGML_USE_ACCELERATE
+//    // try to use BLAS
+//
+//    if (nb01 >= nb00 && ne0 > 1024 && ne1 > 1024) {
+//        if (params->ith != 0) return;
+//        printf("XXXXXXXX\n");
+//
+//        GGML_ASSERT(ggml_is_contiguous(src0));
+//        GGML_ASSERT(ggml_is_contiguous(src1));
+//
+//        printf("ne00 = %d, ne01 = %d, ne02 = %d, ne03 = %d\n", ne00, ne01, ne02, ne03);
+//        printf("ne10 = %d, ne11 = %d, ne12 = %d, ne13 = %d\n", ne10, ne11, ne12, ne13);
+//        printf("ne0  = %d, ne1  = %d, ne2  = %d, ne3  = %d\n", ne0, ne1, ne2, ne3);
+//
+//        printf("nb00 = %d, nb01 = %d, nb02 = %d, nb03 = %d\n", nb00, nb01, nb02, nb03);
+//        printf("nb10 = %d, nb11 = %d, nb12 = %d, nb13 = %d\n", nb10, nb11, nb12, nb13);
+//        printf("nb0  = %d, nb1  = %d, nb2  = %d, nb3  = %d\n", nb0, nb1, nb2, nb3);
+//
+//        float * const wdata = params->wdata;
+//
+//        int64_t tsum = 0.0;
+//        for (int i03 = 0; i03 < ne03; i03++) {
+//            for (int i02 = 0; i02 < ne02; i02++) {
+//                const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
+//                const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
+//                      float * z = (float *) ((char *)  dst->data + i02*nb2  + i03*nb3);
+//
+//                // transpose src1
+//                for (int j = 0; j < ne11; ++j) {
+//                    for (int i = 0; i < ne10; ++i) {
+//                        wdata[i*ne11 + j] = y[j*ne10 + i];
+//                    }
+//                }
+//
+//                {
+//                    const int64_t tt0 = ggml_time_us();
+//                    cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
+//                            1500, 1500, 64,
+//                            1.0, x, 64,
+//                            wdata, 1500,
+//                            0.0, z, 1500);
+//                    const int64_t tt1 = ggml_time_us();
+//                    tsum += tt1 - tt0;
+//                }
+//
+//                // transpose z
+//                for (int j = 0; j < ne1; ++j) {
+//                    for (int i = 0; i < ne0; ++i) {
+//                        wdata[i*ne1 + j] = z[j*ne0 + i];
+//                    }
+//                }
+//
+//                memcpy(z, wdata, ne0*ne1*sizeof(float));
+//
+//                //cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
+//                //        ne0, ne1, 64,
+//                //        1.0f,
+//                //        x, ne00,
+//                //        y, ne11,
+//                //        0.0f,
+//                //        z, 1500);
+//            }
+//        }
+//        printf("time = %f ms\n", tsum/1000.0);
+//        return;
+//    } else {
+//        //cblas_sgemv(CblasRowMajor, CblasTrans,   ne00, ne01, 1.0, src0->data, ne01, src1->data, 1, 0.0, dst->data, 1);
+//    }
+//
+//#endif
+
+
     if (nb01 >= nb00) {
         // TODO: do not support transposed src1
         assert(nb10 == sizeof(float));
@@ -3285,6 +3910,11 @@ void ggml_compute_forward_mul_mat_f16_f32(
     const int nb02 = src0->nb[2];
     const int nb03 = src0->nb[3];
 
+    const int nb10 = src1->nb[0];
+    const int nb11 = src1->nb[1];
+    const int nb12 = src1->nb[2];
+    const int nb13 = src1->nb[3];
+
     const int nb0  = dst->nb[0];
     const int nb1  = dst->nb[1];
     const int nb2  = dst->nb[2];
@@ -3322,10 +3952,19 @@ void ggml_compute_forward_mul_mat_f16_f32(
         if (nb01 >= nb00) {
             ggml_fp16_t * const wdata = params->wdata;
 
-            for (int i = 0; i < ne10*ne11*ne12*ne13; ++i) {
-                wdata[i] = ggml_fp32_to_fp16(((float *) src1->data)[i]);
+            int id = 0;
+            for (int i13 = 0; i13 < ne13; ++i13) {
+                for (int i12 = 0; i12 < ne12; ++i12) {
+                    for (int i11 = 0; i11 < ne11; ++i11) {
+                        for (int i10 = 0; i10 < ne10; ++i10) {
+                            wdata[id++] = ggml_fp32_to_fp16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
+                        }
+                    }
+                }
             }
 
+            GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
+
             return;
         }
 
@@ -3344,12 +3983,19 @@ void ggml_compute_forward_mul_mat_f16_f32(
 
         ggml_fp16_t * const wdata = params->wdata;
 
-        for (int i = 0; i < ne; ++i) {
+        // cols per thread
+        const int dc = (ne + nth - 1)/nth;
+
+        // col range for this thread
+        const int ic0 = dc*ith;
+        const int ic1 = MIN(ic0 + dc, ne);
+
+        for (int i = ic0; i < ic1; ++i) {
             ((float *) dst->data)[i] = ggml_fp16_to_fp32(wdata[i]);
         }
 
         for (int k = 1; k < nth; k++) {
-            for (int i = 0; i < ne; ++i) {
+            for (int i = ic0; i < ic1; ++i) {
                 ((float *) dst->data)[i] += ggml_fp16_to_fp32(wdata[(ne + CACHE_LINE_SIZE_F32)*k + i]);
             }
         }
@@ -3359,10 +4005,8 @@ void ggml_compute_forward_mul_mat_f16_f32(
 
     if (nb01 >= nb00) {
         // fp16 -> half the size, so divide by 2
-        const int nb10 = src1->nb[0]/2; UNUSED(nb10);
-
         // TODO: do not support transposed src1
-        assert(nb10 == sizeof(ggml_fp16_t));
+        assert(nb10/2 == sizeof(ggml_fp16_t));
 
         // parallelize by src0 rows using ggml_vec_dot_f32
 
@@ -3384,27 +4028,22 @@ void ggml_compute_forward_mul_mat_f16_f32(
             const int i02 = (ir - i03*ne02*ne01)/ne01;
             const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
 
-            ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
-
-            for (int ic = 0; ic < ne11; ++ic) {
-                // src1 indices
-                const int i13 = i03;
-                const int i12 = i02;
-                const int i11 = ic;
+            const int i13 = i03;
+            const int i12 = i02;
 
-                // dst indices
-                const int i0 = i01;
-                const int i1 = i11;
-                const int i2 = i02;
-                const int i3 = i03;
+            const int i0 = i01;
+            const int i2 = i02;
+            const int i3 = i03;
 
-                assert(ne00 % 64 == 0);
+            ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
+            ggml_fp16_t * src1_col = wdata + (i13*ne12*ne11 + i12*ne11 + 0)*ne00;
 
-                ggml_fp16_t * src1_col = wdata + (i13*ne12*ne11 + i12*ne11 + i11)*ne00;
+            float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
 
-                float * dst_row = (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3));
+            for (int ic = 0; ic < ne11; ++ic) {
+                assert(ne00 % 32 == 0);
 
-                ggml_vec_dot_f16(ne00, dst_row, src0_row, src1_col);
+                ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
             }
         }
     } else {
@@ -3412,11 +4051,6 @@ void ggml_compute_forward_mul_mat_f16_f32(
         // each thread has its own work data
         // during FINALIZE we accumulate all work data into dst
 
-        const int nb10 = src1->nb[0];
-        const int nb11 = src1->nb[1];
-        const int nb12 = src1->nb[2];
-        const int nb13 = src1->nb[3];
-
         // total columns in src1
         const int nc = ne10;
 
@@ -3498,6 +4132,7 @@ void ggml_compute_forward_mul_mat(
             } break;
     }
 }
+
 // ggml_compute_forward_scale
 
 void ggml_compute_forward_scale_f32(
@@ -3505,24 +4140,33 @@ void ggml_compute_forward_scale_f32(
         const struct ggml_tensor * src0,
         const struct ggml_tensor * src1,
         struct ggml_tensor * dst) {
-    assert(params->ith == 0);
-    assert(ggml_is_scalar(src1));
+    GGML_ASSERT(ggml_is_contiguous(src0));
+    GGML_ASSERT(ggml_is_contiguous(dst));
+    GGML_ASSERT(ggml_are_same_shape(src0, dst));
+    GGML_ASSERT(ggml_is_scalar(src1));
 
     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
         return;
     }
 
-    const int n  = ggml_nrows(src0);
+    // scale factor
+    const float v = *(float *) src1->data;
+
+    const int ith = params->ith;
+    const int nth = params->nth;
+
     const int nc = src0->ne[0];
+    const int nr = ggml_nrows(src0);
 
-    assert( dst->nb[0] == sizeof(float));
-    assert(src0->nb[0] == sizeof(float));
-    assert(src1->nb[0] == sizeof(float));
+    // rows per thread
+    const int dr = (nr + nth - 1)/nth;
 
-    const float v = *(float *) src1->data;
+    // row range for this thread
+    const int ir0 = dr*ith;
+    const int ir1 = MIN(ir0 + dr, nr);
 
-    for (int i = 0; i < n; i++) {
-        ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i*(dst->nb[1])), v);
+    for (int i1 = ir0; i1 < ir1; i1++) {
+        ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
     }
 }
 
@@ -3744,7 +4388,9 @@ void ggml_compute_forward_soft_max_f32(
         const struct ggml_compute_params * params,
         const struct ggml_tensor * src0,
         struct ggml_tensor * dst) {
-    assert(params->ith == 0);
+    GGML_ASSERT(ggml_is_contiguous(src0));
+    GGML_ASSERT(ggml_is_contiguous(dst));
+    GGML_ASSERT(ggml_are_same_shape(src0, dst));
 
     if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
         return;
@@ -3752,64 +4398,1078 @@ void ggml_compute_forward_soft_max_f32(
 
     // TODO: handle transposed/permuted matrices
 
-    const int n  = ggml_nrows(src0);
+    const int ith = params->ith;
+    const int nth = params->nth;
+
     const int nc = src0->ne[0];
-    const int nr = src0->ne[1];
-    const int nz = n/nr;
+    const int nr = ggml_nrows(src0);
 
-    assert( dst->nb[0] == sizeof(float));
-    assert(src0->nb[0] == sizeof(float));
+    // rows per thread
+    const int dr = (nr + nth - 1)/nth;
 
-    for (int k = 0; k < nz; k++) {
-        for (int j = 0; j < nr; j++) {
-            float *p = (float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1]);
+    // row range for this thread
+    const int ir0 = dr*ith;
+    const int ir1 = MIN(ir0 + dr, nr);
+
+    for (int i1 = ir0; i1 < ir1; i1++) {
+        float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
 
 #ifndef NDEBUG
-            for (int i = 0; i < nc; ++i) {
-                assert(!isnan(p[i]));
-            }
+        for (int i = 0; i < nc; ++i) {
+            assert(!isnan(p[i]));
+        }
 #endif
 
-            float max = -INFINITY;
-            for (int i = 0; i < nc; i++) {
-                max = MAX(max, p[i]);
-            }
+        float max = -INFINITY;
+        for (int i = 0; i < nc; i++) {
+            max = MAX(max, p[i]);
+        }
+
+        ggml_float sum = 0.0;
+
+        for (int i = 0; i < nc; i++) {
+            if (p[i] == -INFINITY) {
+                p[i] = 0.0;
+            } else {
+                //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
+                ggml_fp16_t s = ggml_fp32_to_fp16(p[i] - max);
+                const float val = ggml_fp16_to_fp32(table_exp_f16[*(uint16_t *) &s]);
+                sum += val;
+                p[i] = val;
+            }
+        }
+
+        assert(sum > 0.0f);
+
+        sum = 1.0/sum;
+        ggml_vec_scale_f32(nc, p, sum);
+
+#ifndef NDEBUG
+        for (int i = 0; i < nc; ++i) {
+            assert(!isnan(p[i]));
+            assert(!isinf(p[i]));
+        }
+#endif
+    }
+}
+
+void ggml_compute_forward_soft_max(
+        const struct ggml_compute_params * params,
+        const struct ggml_tensor * src0,
+        struct ggml_tensor * dst) {
+    switch (src0->type) {
+        case GGML_TYPE_F32:
+            {
+                ggml_compute_forward_soft_max_f32(params, src0, dst);
+            } break;
+        case GGML_TYPE_I8:
+        case GGML_TYPE_I16:
+        case GGML_TYPE_I32:
+        case GGML_TYPE_F16:
+        case GGML_TYPE_COUNT:
+            {
+                assert(false);
+            } break;
+    }
+}
+
+// ggml_compute_forward_rope
+
+void ggml_compute_forward_rope_f32(
+        const struct ggml_compute_params * params,
+        const struct ggml_tensor * src0,
+        const struct ggml_tensor * src1,
+        struct ggml_tensor * dst) {
+    assert(params->ith == 0);
+    assert(src1->type == GGML_TYPE_I32);
+    assert(ggml_nelements(src1) == 3);
+
+    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+        return;
+    }
+
+    const int n_past = ((int32_t *) src1->data)[0];
+    const int n_dims = ((int32_t *) src1->data)[1];
+    const int mode   = ((int32_t *) src1->data)[2];
+
+    //const int ne0 = src0->ne[0];
+    const int ne1 = src0->ne[1];
+    const int ne2 = src0->ne[2];
+    const int ne3 = src0->ne[3];
+
+    const int nb0 = src0->nb[0];
+    const int nb1 = src0->nb[1];
+    const int nb2 = src0->nb[2];
+    const int nb3 = src0->nb[3];
+
+    //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
+    //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
+
+    assert(nb0 == sizeof(float));
+
+    // TODO: optimize
+    for (int i3 = 0; i3 < ne3; i3++) {
+        for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
+            const int p = (mode == 0 ? n_past + i2 : i2);
+            for (int i1 = 0; i1 < ne1; i1++) {
+                for (int i0 = 0; i0 < n_dims; i0 += 2) {
+                    const double theta = pow(10000.0, ((double)-i0)/n_dims);
+
+                    const double cos_theta = cos(p*theta);
+                    const double sin_theta = sin(p*theta);
+
+                    const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+                          float * dst_data  = (float *)((char *)  dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+                    double x0 = src[0];
+                    double x1 = src[1];
+
+                    dst_data[0] = x0*cos_theta - x1*sin_theta;
+                    dst_data[1] = x0*sin_theta + x1*cos_theta;
+                }
+            }
+        }
+    }
+}
+
+void ggml_compute_forward_rope(
+        const struct ggml_compute_params * params,
+        const struct ggml_tensor * src0,
+        const struct ggml_tensor * src1,
+        struct ggml_tensor * dst) {
+    switch (src0->type) {
+        case GGML_TYPE_F32:
+            {
+                ggml_compute_forward_rope_f32(params, src0, src1, dst);
+            } break;
+        case GGML_TYPE_I8:
+        case GGML_TYPE_I16:
+        case GGML_TYPE_I32:
+        case GGML_TYPE_F16:
+        case GGML_TYPE_COUNT:
+            {
+                assert(false);
+            } break;
+    }
+}
+
+// ggml_compute_forward_conv_1d_1s
+
+void ggml_compute_forward_conv_1d_1s_f16_f32(
+        const struct ggml_compute_params * params,
+        const struct ggml_tensor * src0,
+        const struct ggml_tensor * src1,
+              struct ggml_tensor * dst) {
+    GGML_ASSERT(src0->type == GGML_TYPE_F16);
+    GGML_ASSERT(src1->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    int64_t t0 = ggml_perf_time_us();
+    UNUSED(t0);
+
+    const int ne00 = src0->ne[0];
+    const int ne01 = src0->ne[1];
+    const int ne02 = src0->ne[2];
+    //const int ne03 = src0->ne[3];
+
+    const int ne10 = src1->ne[0];
+    const int ne11 = src1->ne[1];
+    //const int ne12 = src1->ne[2];
+    //const int ne13 = src1->ne[3];
+
+    //const int ne0  = dst->ne[0];
+    //const int ne1  = dst->ne[1];
+    //const int ne2  = dst->ne[2];
+    //const int ne3  = dst->ne[3];
+    //const int ne   = ne0*ne1*ne2*ne3;
+
+    const int nb00 = src0->nb[0];
+    const int nb01 = src0->nb[1];
+    const int nb02 = src0->nb[2];
+    //const int nb03 = src0->nb[3];
+
+    const int nb10 = src1->nb[0];
+    const int nb11 = src1->nb[1];
+    //const int nb12 = src1->nb[2];
+    //const int nb13 = src1->nb[3];
+
+    //const int nb0  = dst->nb[0];
+    const int nb1  = dst->nb[1];
+    //const int nb2  = dst->nb[2];
+    //const int nb3  = dst->nb[3];
+
+    const int ith = params->ith;
+    const int nth = params->nth;
+
+    const int nk = ne00;
+    const int nh = nk/2;
+
+    const int ew0 = ggml_up32(ne01);
+
+    GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
+    GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
+    GGML_ASSERT(nb10 == sizeof(float));
+
+    if (params->type == GGML_TASK_INIT) {
+        // TODO: fix this memset (wsize is overestimated)
+        memset(params->wdata, 0, params->wsize);
+
+        // prepare kernel data (src0)
+        {
+            ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
+
+            for (int i02 = 0; i02 < ne02; i02++) {
+                for (int i01 = 0; i01 < ne01; i01++) {
+                    const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
+                    ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
+                    for (int i00 = 0; i00 < ne00; i00++) {
+                        dst_data[i00*ew0 + i01] = src[i00];
+                    }
+                }
+            }
+        }
+
+        // prepare source data (src1)
+        {
+            ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
+
+            for (int i11 = 0; i11 < ne11; i11++) {
+                const float * const src = (float *)((char *) src1->data + i11*nb11);
+                ggml_fp16_t * dst_data = wdata;
+                for (int i10 = 0; i10 < ne10; i10++) {
+                    dst_data[(i10 + nh)*ew0 + i11] = ggml_fp32_to_fp16(src[i10]);
+                }
+            }
+        }
+
+        return;
+    }
+
+    if (params->type == GGML_TASK_FINALIZE) {
+        return;
+    }
+
+    // total rows in dst
+    const int nr = ne02;
+
+    // rows per thread
+    const int dr = (nr + nth - 1)/nth;
+
+    // row range for this thread
+    const int ir0 = dr*ith;
+    const int ir1 = MIN(ir0 + dr, nr);
+
+    for (int i1 = ir0; i1 < ir1; i1++) {
+        float * dst_data = (float *)((char *) dst->data + i1*nb1);
+        for (int i0 = 0; i0 < ne10; ++i0) {
+            dst_data[i0] = 0;
+            for (int k = -nh; k <= nh; k++) {
+                float v = 0.0f;
+                ggml_vec_dot_f16(ew0, &v,
+                        (ggml_fp16_t *) params->wdata +   i1*ew0*ne00 +      (nh + k)*ew0,
+                        (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
+
+                dst_data[i0] += v;
+            }
+        }
+    }
+}
+
+void ggml_compute_forward_conv_1d_1s_f32(
+        const struct ggml_compute_params * params,
+        const struct ggml_tensor * src0,
+        const struct ggml_tensor * src1,
+              struct ggml_tensor * dst) {
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT(src1->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    int64_t t0 = ggml_perf_time_us();
+    UNUSED(t0);
+
+    const int ne00 = src0->ne[0];
+    const int ne01 = src0->ne[1];
+    const int ne02 = src0->ne[2];
+    //const int ne03 = src0->ne[3];
+
+    const int ne10 = src1->ne[0];
+    const int ne11 = src1->ne[1];
+    //const int ne12 = src1->ne[2];
+    //const int ne13 = src1->ne[3];
+
+    //const int ne0  = dst->ne[0];
+    //const int ne1  = dst->ne[1];
+    //const int ne2  = dst->ne[2];
+    //const int ne3  = dst->ne[3];
+    //const int ne   = ne0*ne1*ne2*ne3;
+
+    const int nb00 = src0->nb[0];
+    const int nb01 = src0->nb[1];
+    const int nb02 = src0->nb[2];
+    //const int nb03 = src0->nb[3];
+
+    const int nb10 = src1->nb[0];
+    const int nb11 = src1->nb[1];
+    //const int nb12 = src1->nb[2];
+    //const int nb13 = src1->nb[3];
+
+    //const int nb0  = dst->nb[0];
+    const int nb1  = dst->nb[1];
+    //const int nb2  = dst->nb[2];
+    //const int nb3  = dst->nb[3];
+
+    const int ith = params->ith;
+    const int nth = params->nth;
+
+    const int nk = ne00;
+    const int nh = nk/2;
+
+    const int ew0 = ggml_up32(ne01);
+
+    GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
+    GGML_ASSERT(nb00 == sizeof(float));
+    GGML_ASSERT(nb10 == sizeof(float));
+
+    if (params->type == GGML_TASK_INIT) {
+        // TODO: fix this memset (wsize is overestimated)
+        memset(params->wdata, 0, params->wsize);
+
+        // prepare kernel data (src0)
+        {
+            float * const wdata = (float *) params->wdata + 0;
+
+            for (int i02 = 0; i02 < ne02; i02++) {
+                for (int i01 = 0; i01 < ne01; i01++) {
+                    const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
+                    float * dst_data = wdata + i02*ew0*ne00;
+                    for (int i00 = 0; i00 < ne00; i00++) {
+                        dst_data[i00*ew0 + i01] = src[i00];
+                    }
+                }
+            }
+        }
+
+        // prepare source data (src1)
+        {
+            float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
+
+            for (int i11 = 0; i11 < ne11; i11++) {
+                const float * const src = (float *)((char *) src1->data + i11*nb11);
+                float * dst_data = wdata;
+                for (int i10 = 0; i10 < ne10; i10++) {
+                    dst_data[(i10 + nh)*ew0 + i11] = src[i10];
+                }
+            }
+        }
+
+        return;
+    }
+
+    if (params->type == GGML_TASK_FINALIZE) {
+        return;
+    }
+
+    // total rows in dst
+    const int nr = ne02;
+
+    // rows per thread
+    const int dr = (nr + nth - 1)/nth;
+
+    // row range for this thread
+    const int ir0 = dr*ith;
+    const int ir1 = MIN(ir0 + dr, nr);
+
+    for (int i1 = ir0; i1 < ir1; i1++) {
+        float * dst_data = (float *)((char *) dst->data + i1*nb1);
+        for (int i0 = 0; i0 < ne10; ++i0) {
+            dst_data[i0] = 0;
+            for (int k = -nh; k <= nh; k++) {
+                float v = 0.0f;
+                ggml_vec_dot_f32(ew0, &v,
+                        (float *) params->wdata +   i1*ew0*ne00 +      (nh + k)*ew0,
+                        (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
+
+                dst_data[i0] += v;
+            }
+        }
+    }
+}
+
+void ggml_compute_forward_conv_1d_1s(
+        const struct ggml_compute_params * params,
+        const struct ggml_tensor * src0,
+        const struct ggml_tensor * src1,
+        struct ggml_tensor * dst) {
+    switch (src0->type) {
+        case GGML_TYPE_F16:
+            {
+                ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
+            } break;
+        case GGML_TYPE_F32:
+            {
+                ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
+            } break;
+        case GGML_TYPE_I8:
+        case GGML_TYPE_I16:
+        case GGML_TYPE_I32:
+        case GGML_TYPE_COUNT:
+            {
+                GGML_ASSERT(false);
+            } break;
+    }
+}
+
+// ggml_compute_forward_conv_1d_2s
+
+void ggml_compute_forward_conv_1d_2s_f16_f32(
+        const struct ggml_compute_params * params,
+        const struct ggml_tensor * src0,
+        const struct ggml_tensor * src1,
+              struct ggml_tensor * dst) {
+    GGML_ASSERT(src0->type == GGML_TYPE_F16);
+    GGML_ASSERT(src1->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    int64_t t0 = ggml_perf_time_us();
+    UNUSED(t0);
+
+    const int ne00 = src0->ne[0];
+    const int ne01 = src0->ne[1];
+    const int ne02 = src0->ne[2];
+    //const int ne03 = src0->ne[3];
+
+    const int ne10 = src1->ne[0];
+    const int ne11 = src1->ne[1];
+    //const int ne12 = src1->ne[2];
+    //const int ne13 = src1->ne[3];
+
+    //const int ne0  = dst->ne[0];
+    //const int ne1  = dst->ne[1];
+    //const int ne2  = dst->ne[2];
+    //const int ne3  = dst->ne[3];
+    //const int ne   = ne0*ne1*ne2*ne3;
+
+    const int nb00 = src0->nb[0];
+    const int nb01 = src0->nb[1];
+    const int nb02 = src0->nb[2];
+    //const int nb03 = src0->nb[3];
+
+    const int nb10 = src1->nb[0];
+    const int nb11 = src1->nb[1];
+    //const int nb12 = src1->nb[2];
+    //const int nb13 = src1->nb[3];
+
+    //const int nb0  = dst->nb[0];
+    const int nb1  = dst->nb[1];
+    //const int nb2  = dst->nb[2];
+    //const int nb3  = dst->nb[3];
+
+    const int ith = params->ith;
+    const int nth = params->nth;
+
+    const int nk = ne00;
+    const int nh = nk/2;
+
+    const int ew0 = ggml_up32(ne01);
+
+    GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
+    GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
+    GGML_ASSERT(nb10 == sizeof(float));
+
+    if (params->type == GGML_TASK_INIT) {
+        // TODO: fix this memset (wsize is overestimated)
+        memset(params->wdata, 0, params->wsize);
+
+        // prepare kernel data (src0)
+        {
+            ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
+
+            for (int i02 = 0; i02 < ne02; i02++) {
+                for (int i01 = 0; i01 < ne01; i01++) {
+                    const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
+                    ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
+                    for (int i00 = 0; i00 < ne00; i00++) {
+                        dst_data[i00*ew0 + i01] = src[i00];
+                    }
+                }
+            }
+        }
+
+        // prepare source data (src1)
+        {
+            ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
+
+            for (int i11 = 0; i11 < ne11; i11++) {
+                const float * const src = (float *)((char *) src1->data + i11*nb11);
+                ggml_fp16_t * dst_data = wdata;
+                for (int i10 = 0; i10 < ne10; i10++) {
+                    dst_data[(i10 + nh)*ew0 + i11] = ggml_fp32_to_fp16(src[i10]);
+                }
+            }
+        }
+
+        return;
+    }
+
+    if (params->type == GGML_TASK_FINALIZE) {
+        return;
+    }
+
+    // total rows in dst
+    const int nr = ne02;
+
+    // rows per thread
+    const int dr = (nr + nth - 1)/nth;
+
+    // row range for this thread
+    const int ir0 = dr*ith;
+    const int ir1 = MIN(ir0 + dr, nr);
+
+    for (int i1 = ir0; i1 < ir1; i1++) {
+        float * dst_data = (float *)((char *) dst->data + i1*nb1);
+        for (int i0 = 0; i0 < ne10; i0 += 2) {
+            dst_data[i0/2] = 0;
+            for (int k = -nh; k <= nh; k++) {
+                float v = 0.0f;
+                ggml_vec_dot_f16(ew0, &v,
+                        (ggml_fp16_t *) params->wdata +   i1*ew0*ne00 +      (nh + k)*ew0,
+                        (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
+
+                dst_data[i0/2] += v;
+            }
+        }
+    }
+}
+
+void ggml_compute_forward_conv_1d_2s_f32(
+        const struct ggml_compute_params * params,
+        const struct ggml_tensor * src0,
+        const struct ggml_tensor * src1,
+              struct ggml_tensor * dst) {
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT(src1->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+    int64_t t0 = ggml_perf_time_us();
+    UNUSED(t0);
+
+    const int ne00 = src0->ne[0];
+    const int ne01 = src0->ne[1];
+    const int ne02 = src0->ne[2];
+    //const int ne03 = src0->ne[3];
+
+    const int ne10 = src1->ne[0];
+    const int ne11 = src1->ne[1];
+    //const int ne12 = src1->ne[2];
+    //const int ne13 = src1->ne[3];
+
+    //const int ne0  = dst->ne[0];
+    //const int ne1  = dst->ne[1];
+    //const int ne2  = dst->ne[2];
+    //const int ne3  = dst->ne[3];
+    //const int ne   = ne0*ne1*ne2*ne3;
+
+    const int nb00 = src0->nb[0];
+    const int nb01 = src0->nb[1];
+    const int nb02 = src0->nb[2];
+    //const int nb03 = src0->nb[3];
+
+    const int nb10 = src1->nb[0];
+    const int nb11 = src1->nb[1];
+    //const int nb12 = src1->nb[2];
+    //const int nb13 = src1->nb[3];
+
+    //const int nb0  = dst->nb[0];
+    const int nb1  = dst->nb[1];
+    //const int nb2  = dst->nb[2];
+    //const int nb3  = dst->nb[3];
+
+    const int ith = params->ith;
+    const int nth = params->nth;
+
+    const int nk = ne00;
+    const int nh = nk/2;
+
+    const int ew0 = ggml_up32(ne01);
+
+    GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
+    GGML_ASSERT(nb00 == sizeof(float));
+    GGML_ASSERT(nb10 == sizeof(float));
+
+    if (params->type == GGML_TASK_INIT) {
+        // TODO: fix this memset (wsize is overestimated)
+        memset(params->wdata, 0, params->wsize);
+
+        // prepare kernel data (src0)
+        {
+            float * const wdata = (float *) params->wdata + 0;
+
+            for (int i02 = 0; i02 < ne02; i02++) {
+                for (int i01 = 0; i01 < ne01; i01++) {
+                    const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
+                    float * dst_data = wdata + i02*ew0*ne00;
+                    for (int i00 = 0; i00 < ne00; i00++) {
+                        dst_data[i00*ew0 + i01] = src[i00];
+                    }
+                }
+            }
+        }
+
+        // prepare source data (src1)
+        {
+            float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
+
+            for (int i11 = 0; i11 < ne11; i11++) {
+                const float * const src = (float *)((char *) src1->data + i11*nb11);
+                float * dst_data = wdata;
+                for (int i10 = 0; i10 < ne10; i10++) {
+                    dst_data[(i10 + nh)*ew0 + i11] = src[i10];
+                }
+            }
+        }
+
+        return;
+    }
+
+    if (params->type == GGML_TASK_FINALIZE) {
+        return;
+    }
+
+    // total rows in dst
+    const int nr = ne02;
+
+    // rows per thread
+    const int dr = (nr + nth - 1)/nth;
+
+    // row range for this thread
+    const int ir0 = dr*ith;
+    const int ir1 = MIN(ir0 + dr, nr);
+
+    for (int i1 = ir0; i1 < ir1; i1++) {
+        float * dst_data = (float *)((char *) dst->data + i1*nb1);
+        for (int i0 = 0; i0 < ne10; i0 += 2) {
+            dst_data[i0/2] = 0;
+            for (int k = -nh; k <= nh; k++) {
+                float v = 0.0f;
+                ggml_vec_dot_f32(ew0, &v,
+                        (float *) params->wdata +   i1*ew0*ne00 +      (nh + k)*ew0,
+                        (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
+
+                dst_data[i0/2] += v;
+            }
+        }
+    }
+}
+
+void ggml_compute_forward_conv_1d_2s(
+        const struct ggml_compute_params * params,
+        const struct ggml_tensor * src0,
+        const struct ggml_tensor * src1,
+        struct ggml_tensor * dst) {
+    switch (src0->type) {
+        case GGML_TYPE_F16:
+            {
+                ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
+            } break;
+        case GGML_TYPE_F32:
+            {
+                ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
+            } break;
+        case GGML_TYPE_I8:
+        case GGML_TYPE_I16:
+        case GGML_TYPE_I32:
+        case GGML_TYPE_COUNT:
+            {
+                GGML_ASSERT(false);
+            } break;
+    }
+}
+
+// ggml_compute_forward_flash_attn
+
+void ggml_compute_forward_flash_attn_f32(
+        const struct ggml_compute_params * params,
+        const struct ggml_tensor * q,
+        const struct ggml_tensor * k,
+        const struct ggml_tensor * v,
+        const bool masked,
+             struct ggml_tensor * dst) {
+    int64_t t0 = ggml_perf_time_us();
+    UNUSED(t0);
+
+    const int neq0 = q->ne[0];
+    const int neq1 = q->ne[1];
+    const int neq2 = q->ne[2];
+    const int neq3 = q->ne[3];
+
+    const int nek0 = k->ne[0];
+    const int nek1 = k->ne[1];
+    //const int nek2 = k->ne[2];
+    //const int nek3 = k->ne[3];
+
+    //const int nev0 = v->ne[0];
+    const int nev1 = v->ne[1];
+    //const int nev2 = v->ne[2];
+    //const int nev3 = v->ne[3];
+
+    const int ne0  = dst->ne[0];
+    const int ne1  = dst->ne[1];
+    //const int ne2  = dst->ne[2];
+    //const int ne3  = dst->ne[3];
+
+    const int nbk0 = k->nb[0];
+    const int nbk1 = k->nb[1];
+    const int nbk2 = k->nb[2];
+    const int nbk3 = k->nb[3];
+
+    const int nbq0 = q->nb[0];
+    const int nbq1 = q->nb[1];
+    const int nbq2 = q->nb[2];
+    const int nbq3 = q->nb[3];
+
+    const int nbv0 = v->nb[0];
+    const int nbv1 = v->nb[1];
+    const int nbv2 = v->nb[2];
+    const int nbv3 = v->nb[3];
+
+    const int nb0  = dst->nb[0];
+    const int nb1  = dst->nb[1];
+    const int nb2  = dst->nb[2];
+    const int nb3  = dst->nb[3];
+
+    const int ith = params->ith;
+    const int nth = params->nth;
+
+    const int D = neq0;
+    const int N = neq1;
+    const int P = nek1 - N;
+    const int M = P + N;
+
+    GGML_ASSERT(ne0 == D);
+    GGML_ASSERT(ne1 == N);
+    GGML_ASSERT(P >= 0);
+
+    GGML_ASSERT(nbq0 == sizeof(float));
+    GGML_ASSERT(nbk0 == sizeof(float));
+    GGML_ASSERT(nbv0 == sizeof(float));
+
+    GGML_ASSERT(neq0 == D);
+    GGML_ASSERT(nek0 == D);
+    GGML_ASSERT(nev1 == D);
+
+    GGML_ASSERT(neq1 == N);
+    GGML_ASSERT(nek1 == N + P);
+    GGML_ASSERT(nev1 == D);
+
+    // dst cannot be transposed or permuted
+    GGML_ASSERT(nb0 == sizeof(float));
+    GGML_ASSERT(nb0 <= nb1);
+    GGML_ASSERT(nb1 <= nb2);
+    GGML_ASSERT(nb2 <= nb3);
+
+    if (params->type == GGML_TASK_INIT) {
+        return;
+    }
+
+    if (params->type == GGML_TASK_FINALIZE) {
+        return;
+    }
+
+    // parallelize by q rows using ggml_vec_dot_f32
+
+    // total rows in q
+    const int nr = neq1*neq2*neq3;
+
+    // rows per thread
+    const int dr = (nr + nth - 1)/nth;
+
+    // row range for this thread
+    const int ir0 = dr*ith;
+    const int ir1 = MIN(ir0 + dr, nr);
+
+    const float scale = 1.0/sqrt((double) D);
+
+    //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
+
+    for (int ir = ir0; ir < ir1; ++ir) {
+        // q indices
+        const int iq3 = ir/(neq2*neq1);
+        const int iq2 = (ir - iq3*neq2*neq1)/neq1;
+        const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
+
+        float * S = (float *) params->wdata + ith*(M + CACHE_LINE_SIZE_F32);
+
+        for (int ic = 0; ic < nek1; ++ic) {
+            // k indices
+            const int ik3 = iq3;
+            const int ik2 = iq2;
+            const int ik1 = ic;
+
+            // S indices
+            const int i1 = ik1;
+
+            ggml_vec_dot_f32(neq0,
+                    S + i1,
+                    (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
+                    (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
+        }
+
+        // scale
+        ggml_vec_scale_f32(nek1, S, scale);
+
+        if (masked) {
+            for (int i = P; i < M; i++) {
+                if (i > P + iq1) {
+                    S[i] = -INFINITY;
+                }
+            }
+        }
+
+        // softmax
+        {
+            float max = -INFINITY;
+            for (int i = 0; i < M; i++) {
+                max = MAX(max, S[i]);
+            }
+
+            ggml_float sum = 0.0;
+
+            for (int i = 0; i < M; i++) {
+                if (S[i] == -INFINITY) {
+                    S[i] = 0.0;
+                } else {
+                    //const float val = (S[i] == -INFINITY) ? 0.0 : exp(S[i] - max);
+                    ggml_fp16_t s = ggml_fp32_to_fp16(S[i] - max);
+                    const float val = ggml_fp16_to_fp32(table_exp_f16[*(uint16_t *) &s]);
+                    sum += val;
+                    S[i] = val;
+                }
+            }
+
+            assert(sum > 0.0f);
+
+            sum = 1.0/sum;
+            ggml_vec_scale_f32(M, S, sum);
+        }
+
+        for (int ic = 0; ic < nev1; ++ic) {
+            // dst indices
+            const int i1 = iq1;
+            const int i2 = iq2;
+            const int i3 = iq3;
+
+            ggml_vec_dot_f32(nek1,
+                    (float *) ((char *) dst->data + (ic*nb0 + i1*nb1  + i2*nb2  + i3*nb3)),
+                    (float *) ((char *) v->data   + (         ic*nbv1 + i2*nbv2 + i3*nbv3)),
+                    S);
+        }
+    }
+}
+
+void ggml_compute_forward_flash_attn_f16(
+        const struct ggml_compute_params * params,
+        const struct ggml_tensor * q,
+        const struct ggml_tensor * k,
+        const struct ggml_tensor * v,
+        const bool masked,
+             struct ggml_tensor * dst) {
+    int64_t t0 = ggml_perf_time_us();
+    UNUSED(t0);
+
+    const int neq0 = q->ne[0];
+    const int neq1 = q->ne[1];
+    const int neq2 = q->ne[2];
+    const int neq3 = q->ne[3];
+
+    const int nek0 = k->ne[0];
+    const int nek1 = k->ne[1];
+    //const int nek2 = k->ne[2];
+    //const int nek3 = k->ne[3];
+
+    //const int nev0 = v->ne[0];
+    const int nev1 = v->ne[1];
+    //const int nev2 = v->ne[2];
+    //const int nev3 = v->ne[3];
+
+    const int ne0  = dst->ne[0];
+    const int ne1  = dst->ne[1];
+    //const int ne2  = dst->ne[2];
+    //const int ne3  = dst->ne[3];
+
+    const int nbk0 = k->nb[0];
+    const int nbk1 = k->nb[1];
+    const int nbk2 = k->nb[2];
+    const int nbk3 = k->nb[3];
+
+    const int nbq0 = q->nb[0];
+    const int nbq1 = q->nb[1];
+    const int nbq2 = q->nb[2];
+    const int nbq3 = q->nb[3];
+
+    const int nbv0 = v->nb[0];
+    const int nbv1 = v->nb[1];
+    const int nbv2 = v->nb[2];
+    const int nbv3 = v->nb[3];
+
+    const int nb0  = dst->nb[0];
+    const int nb1  = dst->nb[1];
+    const int nb2  = dst->nb[2];
+    const int nb3  = dst->nb[3];
+
+    const int ith = params->ith;
+    const int nth = params->nth;
+
+    const int D = neq0;
+    const int N = neq1;
+    const int P = nek1 - N;
+    const int M = P + N;
+
+    GGML_ASSERT(ne0 == D);
+    GGML_ASSERT(ne1 == N);
+    GGML_ASSERT(P >= 0);
+
+    GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
+    GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
+    GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
+
+    GGML_ASSERT(neq0 == D);
+    GGML_ASSERT(nek0 == D);
+    GGML_ASSERT(nev1 == D);
+
+    GGML_ASSERT(neq1 == N);
+    GGML_ASSERT(nek1 == N + P);
+    GGML_ASSERT(nev1 == D);
+
+    // dst cannot be transposed or permuted
+    GGML_ASSERT(nb0 == sizeof(float));
+    GGML_ASSERT(nb0 <= nb1);
+    GGML_ASSERT(nb1 <= nb2);
+    GGML_ASSERT(nb2 <= nb3);
+
+    if (params->type == GGML_TASK_INIT) {
+        return;
+    }
+
+    if (params->type == GGML_TASK_FINALIZE) {
+        return;
+    }
+
+    // parallelize by q rows using ggml_vec_dot_f32
+
+    // total rows in q
+    const int nr = neq1*neq2*neq3;
+
+    // rows per thread
+    const int dr = (nr + nth - 1)/nth;
+
+    // row range for this thread
+    const int ir0 = dr*ith;
+    const int ir1 = MIN(ir0 + dr, nr);
+
+    const float scale = 1.0/sqrt((double) D);
+
+    //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
+
+    for (int ir = ir0; ir < ir1; ++ir) {
+        // q indices
+        const int iq3 = ir/(neq2*neq1);
+        const int iq2 = (ir - iq3*neq2*neq1)/neq1;
+        const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
+
+        float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
+
+        for (int ic = 0; ic < nek1; ++ic) {
+            // k indices
+            const int ik3 = iq3;
+            const int ik2 = iq2;
+            const int ik1 = ic;
+
+            // S indices
+            const int i1 = ik1;
+
+            ggml_vec_dot_f16(neq0,
+                    S + i1,
+                    (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
+                    (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
+        }
+
+        // scale
+        ggml_vec_scale_f32(nek1, S, scale);
+
+        if (masked) {
+            for (int i = P; i < M; i++) {
+                if (i > P + iq1) {
+                    S[i] = -INFINITY;
+                }
+            }
+        }
+
+        // softmax
+        {
+            float max = -INFINITY;
+            for (int i = 0; i < M; i++) {
+                max = MAX(max, S[i]);
+            }
 
             ggml_float sum = 0.0;
-            for (int i = 0; i < nc; i++) {
-                const ggml_float v = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
-                sum += v;
-                p[i] = v;
+
+            for (int i = 0; i < M; i++) {
+                if (S[i] == -INFINITY) {
+                    S[i] = 0.0;
+                } else {
+                    //const float val = (S[i] == -INFINITY) ? 0.0 : exp(S[i] - max);
+                    ggml_fp16_t s = ggml_fp32_to_fp16(S[i] - max);
+                    const float val = ggml_fp16_to_fp32(table_exp_f16[*(uint16_t *) &s]);
+                    sum += val;
+                    S[i] = val;
+                }
             }
 
             assert(sum > 0.0f);
 
             sum = 1.0/sum;
-            ggml_vec_scale_f32(nc, p, sum);
+            ggml_vec_scale_f32(M, S, sum);
+        }
 
-#ifndef NDEBUG
-            for (int i = 0; i < nc; ++i) {
-                assert(!isnan(p[i]));
-                assert(!isinf(p[i]));
-            }
-#endif
+        ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
+
+        for (int i = 0; i < M; i++) {
+            S16[i] = ggml_fp32_to_fp16(S[i]);
+        }
+
+        for (int ic = 0; ic < nev1; ++ic) {
+            // dst indices
+            const int i1 = iq1;
+            const int i2 = iq2;
+            const int i3 = iq3;
+
+            ggml_vec_dot_f16(nek1,
+                    (float *)       ((char *) dst->data + (ic*nb0 + i1*nb1  + i2*nb2  + i3*nb3)),
+                    (ggml_fp16_t *) ((char *) v->data   + (         ic*nbv1 + i2*nbv2 + i3*nbv3)),
+                    S16);
         }
     }
 }
 
-void ggml_compute_forward_soft_max(
+void ggml_compute_forward_flash_attn(
         const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
+        const struct ggml_tensor * q,
+        const struct ggml_tensor * k,
+        const struct ggml_tensor * v,
+        const bool masked,
         struct ggml_tensor * dst) {
-    switch (src0->type) {
+    switch (q->type) {
+        case GGML_TYPE_F16:
+            {
+                ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
+            } break;
         case GGML_TYPE_F32:
             {
-                ggml_compute_forward_soft_max_f32(params, src0, dst);
+                ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
             } break;
         case GGML_TYPE_I8:
         case GGML_TYPE_I16:
         case GGML_TYPE_I32:
-        case GGML_TYPE_F16:
         case GGML_TYPE_COUNT:
             {
                 assert(false);
@@ -3817,79 +5477,208 @@ void ggml_compute_forward_soft_max(
     }
 }
 
-// ggml_compute_forward_rope
+// ggml_compute_forward_flash_ff
 
-void ggml_compute_forward_rope_f32(
+void ggml_compute_forward_flash_ff_f16(
         const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
+        const struct ggml_tensor * a,  // F16
+        const struct ggml_tensor * b0, // F16 fc_w
+        const struct ggml_tensor * b1, // F32 fc_b
+        const struct ggml_tensor * c0, // F16 proj_w
+        const struct ggml_tensor * c1, // F32 proj_b
         struct ggml_tensor * dst) {
-    assert(params->ith == 0);
-    assert(src1->type == GGML_TYPE_I32);
-    assert(ggml_nelements(src1) == 3);
+    int64_t t0 = ggml_perf_time_us();
+    UNUSED(t0);
 
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+    const int nea0 = a->ne[0];
+    const int nea1 = a->ne[1];
+    const int nea2 = a->ne[2];
+    const int nea3 = a->ne[3];
+
+    const int neb00 = b0->ne[0];
+    const int neb01 = b0->ne[1];
+    //const int neb02 = b0->ne[2];
+    //const int neb03 = b0->ne[3];
+
+    const int neb10 = b1->ne[0];
+    const int neb11 = b1->ne[1];
+    //const int neb12 = b1->ne[2];
+    //const int neb13 = b1->ne[3];
+
+    const int nec00 = c0->ne[0];
+    const int nec01 = c0->ne[1];
+    //const int nec02 = c0->ne[2];
+    //const int nec03 = c0->ne[3];
+
+    const int nec10 = c1->ne[0];
+    const int nec11 = c1->ne[1];
+    //const int nec12 = c1->ne[2];
+    //const int nec13 = c1->ne[3];
+
+    const int ne0 = dst->ne[0];
+    const int ne1 = dst->ne[1];
+    const int ne2 = dst->ne[2];
+    //const int ne3 = dst->ne[3];
+
+    const int nba0 = a->nb[0];
+    const int nba1 = a->nb[1];
+    const int nba2 = a->nb[2];
+    const int nba3 = a->nb[3];
+
+    const int nbb00 = b0->nb[0];
+    const int nbb01 = b0->nb[1];
+    const int nbb02 = b0->nb[2];
+    const int nbb03 = b0->nb[3];
+
+    const int nbb10 = b1->nb[0];
+    //const int nbb11 = b1->nb[1];
+    //const int nbb12 = b1->nb[2];
+    //const int nbb13 = b1->nb[3];
+
+    const int nbc00 = c0->nb[0];
+    const int nbc01 = c0->nb[1];
+    const int nbc02 = c0->nb[2];
+    const int nbc03 = c0->nb[3];
+
+    const int nbc10 = c1->nb[0];
+    //const int nbc11 = c1->nb[1];
+    //const int nbc12 = c1->nb[2];
+    //const int nbc13 = c1->nb[3];
+
+    const int nb0 = dst->nb[0];
+    const int nb1 = dst->nb[1];
+    const int nb2 = dst->nb[2];
+    const int nb3 = dst->nb[3];
+
+    const int ith = params->ith;
+    const int nth = params->nth;
+
+    const int D = nea0;
+    //const int N = nea1;
+    const int M = neb01;
+
+    GGML_ASSERT(ne0 == nea0);
+    GGML_ASSERT(ne1 == nea1);
+    GGML_ASSERT(ne2 == nea2);
+
+    GGML_ASSERT(nba0  == sizeof(ggml_fp16_t));
+    GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
+    GGML_ASSERT(nbb10 == sizeof(float));
+    GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
+    GGML_ASSERT(nbc10 == sizeof(float));
+
+    GGML_ASSERT(neb00 == D);
+    GGML_ASSERT(neb01 == M);
+    GGML_ASSERT(neb10 == M);
+    GGML_ASSERT(neb11 == 1);
+
+    GGML_ASSERT(nec00 == M);
+    GGML_ASSERT(nec01 == D);
+    GGML_ASSERT(nec10 == D);
+    GGML_ASSERT(nec11 == 1);
+
+    // dst cannot be transposed or permuted
+    GGML_ASSERT(nb0 == sizeof(float));
+    GGML_ASSERT(nb0 <= nb1);
+    GGML_ASSERT(nb1 <= nb2);
+    GGML_ASSERT(nb2 <= nb3);
+
+    if (params->type == GGML_TASK_INIT) {
         return;
     }
 
-    const int n_past = ((int32_t *) src1->data)[0];
-    const int n_dims = ((int32_t *) src1->data)[1];
-    const int mode   = ((int32_t *) src1->data)[2];
+    if (params->type == GGML_TASK_FINALIZE) {
+        return;
+    }
 
-    //const int ne0 = src0->ne[0];
-    const int ne1 = src0->ne[1];
-    const int ne2 = src0->ne[2];
-    const int ne3 = src0->ne[3];
+    // parallelize by a rows using ggml_vec_dot_f32
 
-    const int nb0 = src0->nb[0];
-    const int nb1 = src0->nb[1];
-    const int nb2 = src0->nb[2];
-    const int nb3 = src0->nb[3];
+    // total rows in a
+    const int nr = nea1*nea2*nea3;
 
-    //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
-    //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
+    // rows per thread
+    const int dr = (nr + nth - 1)/nth;
 
-    assert(nb0 == sizeof(float));
+    // row range for this thread
+    const int ir0 = dr*ith;
+    const int ir1 = MIN(ir0 + dr, nr);
 
-    // TODO: optimize
-    for (int i3 = 0; i3 < ne3; i3++) {
-        for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
-            const int p = (mode == 0 ? n_past + i2 : i2);
-            for (int i1 = 0; i1 < ne1; i1++) {
-                for (int i0 = 0; i0 < n_dims; i0 += 2) {
-                    const double theta = pow(10000.0, ((double)-i0)/n_dims);
+    for (int ir = ir0; ir < ir1; ++ir) {
+        // a indices
+        const int ia3 = ir/(nea2*nea1);
+        const int ia2 = (ir - ia3*nea2*nea1)/nea1;
+        const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
 
-                    const double cos_theta = cos(p*theta);
-                    const double sin_theta = sin(p*theta);
+        float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
 
-                    const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
-                          float * dst_data  = (float *)((char *)  dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+        for (int ic = 0; ic < neb01; ++ic) {
+            // b0 indices
+            const int ib03 = ia3;
+            const int ib02 = ia2;
+            const int ib01 = ic;
 
-                    double x0 = src[0];
-                    double x1 = src[1];
+            // S indices
+            const int i1 = ib01;
 
-                    dst_data[0] = x0*cos_theta - x1*sin_theta;
-                    dst_data[1] = x0*sin_theta + x1*cos_theta;
-                }
+            ggml_vec_dot_f16(nea0,
+                    S + i1,
+                    (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
+                    (ggml_fp16_t *) ((char *)  a->data + ( ia1*nba1  +  ia2*nba2  +  ia3*nba3)));
+        }
+
+        ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
+        //ggml_vec_gelu_f32(neb01, S, S);
+
+        ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
+
+        for (int i = 0; i < M; i++) {
+            S16[i] = ggml_fp32_to_fp16(S[i]);
+        }
+
+        ggml_vec_gelu_f16(neb01, S16, S16);
+
+        {
+            // dst indices
+            const int i1 = ia1;
+            const int i2 = ia2;
+            const int i3 = ia3;
+
+            for (int ic = 0; ic < nec01; ++ic) {
+
+                ggml_vec_dot_f16(neb01,
+                        (float *)       ((char *) dst->data + (ic*nb0 + i1*nb1   + i2*nb2   + i3*nb3)),
+                        (ggml_fp16_t *) ((char *) c0->data  + (         ic*nbc01 + i2*nbc02 + i3*nbc03)),
+                        S16);
             }
+
+            ggml_vec_add_f32(nec01,
+                    (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
+                    (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
+                    (float *) c1->data);
         }
     }
 }
 
-void ggml_compute_forward_rope(
+void ggml_compute_forward_flash_ff(
         const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
+        const struct ggml_tensor * a,
+        const struct ggml_tensor * b0,
+        const struct ggml_tensor * b1,
+        const struct ggml_tensor * c0,
+        const struct ggml_tensor * c1,
         struct ggml_tensor * dst) {
-    switch (src0->type) {
+    switch (b0->type) {
+        case GGML_TYPE_F16:
+            {
+                ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
+            } break;
         case GGML_TYPE_F32:
             {
-                ggml_compute_forward_rope_f32(params, src0, src1, dst);
+                GGML_ASSERT(false); // TODO
             } break;
         case GGML_TYPE_I8:
         case GGML_TYPE_I16:
         case GGML_TYPE_I32:
-        case GGML_TYPE_F16:
         case GGML_TYPE_COUNT:
             {
                 assert(false);
@@ -4015,13 +5804,32 @@ void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tenso
             {
                 ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
             } break;
+        case GGML_OP_CONV_1D_1S:
+            {
+                ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
+            } break;
+        case GGML_OP_CONV_1D_2S:
+            {
+                ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
+            } break;
+        case GGML_OP_FLASH_ATTN:
+            {
+                int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
+                GGML_ASSERT(t == 0 || t == 1);
+                bool masked = t != 0;
+                ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
+            } break;
+        case GGML_OP_FLASH_FF:
+            {
+                ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
+            } break;
         case GGML_OP_NONE:
             {
                 // nop
             } break;
         case GGML_OP_COUNT:
             {
-                assert(false);
+                GGML_ASSERT(false);
             } break;
     };
 }
@@ -4207,43 +6015,59 @@ void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tenso
             } break;
         case GGML_OP_SCALE:
             {
-                assert(false); // TODO: not implemented
+                GGML_ASSERT(false); // TODO: not implemented
             } break;
         case GGML_OP_CPY:
             {
-                assert(false); // TODO: not implemented
+                GGML_ASSERT(false); // TODO: not implemented
             } break;
         case GGML_OP_RESHAPE:
             {
-                assert(false); // TODO: not implemented
+                GGML_ASSERT(false); // TODO: not implemented
             } break;
         case GGML_OP_VIEW:
             {
-                assert(false); // not supported
+                GGML_ASSERT(false); // not supported
             } break;
         case GGML_OP_PERMUTE:
             {
-                assert(false); // TODO: not implemented
+                GGML_ASSERT(false); // TODO: not implemented
             } break;
         case GGML_OP_TRANSPOSE:
             {
-                assert(false); // TODO: not implemented
+                GGML_ASSERT(false); // TODO: not implemented
             } break;
         case GGML_OP_GET_ROWS:
             {
-                assert(false); // TODO: not implemented
+                GGML_ASSERT(false); // TODO: not implemented
             } break;
         case GGML_OP_DIAG_MASK_INF:
             {
-                assert(false); // TODO: not implemented
+                GGML_ASSERT(false); // TODO: not implemented
             } break;
         case GGML_OP_SOFT_MAX:
             {
-                assert(false); // TODO: not implemented
+                GGML_ASSERT(false); // TODO: not implemented
             } break;
         case GGML_OP_ROPE:
             {
-                assert(false); // TODO: not implemented
+                GGML_ASSERT(false); // TODO: not implemented
+            } break;
+        case GGML_OP_CONV_1D_1S:
+            {
+                GGML_ASSERT(false); // TODO: not implemented
+            } break;
+        case GGML_OP_CONV_1D_2S:
+            {
+                GGML_ASSERT(false); // TODO: not implemented
+            } break;
+        case GGML_OP_FLASH_ATTN:
+            {
+                GGML_ASSERT(false); // not supported
+            } break;
+        case GGML_OP_FLASH_FF:
+            {
+                GGML_ASSERT(false); // not supported
             } break;
         case GGML_OP_NONE:
             {
@@ -4251,7 +6075,7 @@ void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tenso
             } break;
         case GGML_OP_COUNT:
             {
-                assert(false);
+                GGML_ASSERT(false);
             } break;
     };
 }
@@ -4286,6 +6110,12 @@ void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node)
         ggml_visit_parents(cgraph, node->src1);
     }
 
+    for (int i = 0; i < GGML_MAX_OPT; ++i) {
+        if (node->opt[i]) {
+            ggml_visit_parents(cgraph, node->opt[i]);
+        }
+    }
+
     if (node->op == GGML_OP_NONE && node->grad == NULL) {
         // reached a leaf node, not part of the gradient graph (e.g. a constant)
         assert(cgraph->n_leafs < GGML_MAX_NODES);
@@ -4571,7 +6401,13 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
                 case GGML_OP_NEG:
                 case GGML_OP_STEP:
                 case GGML_OP_RELU:
+                    {
+                        node->n_tasks = 1;
+                    } break;
                 case GGML_OP_GELU:
+                    {
+                        node->n_tasks = MIN(n_threads, ggml_nrows(node->src0));
+                    } break;
                 case GGML_OP_NORM:
                     {
                         node->n_tasks = 1;
@@ -4581,19 +6417,29 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
                         // TODO: use different scheduling for different matrix sizes
                         node->n_tasks = n_threads;
 
+                        size_t cur = 0;
+
                         // TODO: better way to determine if the matrix is transposed
                         if (node->src0->nb[1] < node->src0->nb[0]) {
-                            size_t cur = ggml_nbytes(node)*node->n_tasks; // TODO: this can become (n_tasks-1)
-                            work_size = MAX(work_size, cur);
+                            cur = ggml_nbytes(node)*node->n_tasks; // TODO: this can become (n_tasks-1)
                         } else {
                             if (node->src0->type == GGML_TYPE_F16 &&
                                 node->src1->type == GGML_TYPE_F32) {
-                                size_t cur = sizeof(ggml_fp16_t)*ggml_nelements(node->src1);
-                                work_size = MAX(work_size, cur);
+                                cur = sizeof(ggml_fp16_t)*ggml_nelements(node->src1);
+                            } else if (node->src0->type == GGML_TYPE_F32 &&
+                                       node->src1->type == GGML_TYPE_F32) {
+                                cur = 0;
+                            } else {
+                                GGML_ASSERT(false);
                             }
                         }
+
+                        work_size = MAX(work_size, cur);
                     } break;
                 case GGML_OP_SCALE:
+                    {
+                        node->n_tasks = MIN(n_threads, ggml_nrows(node->src0));
+                    } break;
                 case GGML_OP_CPY:
                 case GGML_OP_RESHAPE:
                 case GGML_OP_VIEW:
@@ -4601,11 +6447,83 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
                 case GGML_OP_TRANSPOSE:
                 case GGML_OP_GET_ROWS:
                 case GGML_OP_DIAG_MASK_INF:
+                    {
+                        node->n_tasks = 1;
+                    } break;
                 case GGML_OP_SOFT_MAX:
+                    {
+                        node->n_tasks = MIN(n_threads, ggml_nrows(node->src0));
+                    } break;
                 case GGML_OP_ROPE:
                     {
                         node->n_tasks = 1;
                     } break;
+                case GGML_OP_CONV_1D_1S:
+                case GGML_OP_CONV_1D_2S:
+                    {
+                        node->n_tasks = n_threads;
+
+                        GGML_ASSERT(node->src0->ne[3] == 1);
+                        GGML_ASSERT(node->src1->ne[2] == 1);
+                        GGML_ASSERT(node->src1->ne[3] == 1);
+
+                        size_t cur = 0;
+                        const int nk = node->src0->ne[0];
+
+                        if (node->src0->type == GGML_TYPE_F16 &&
+                            node->src1->type == GGML_TYPE_F32) {
+                            cur = sizeof(ggml_fp16_t)*(
+                                    nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
+                                    ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
+                                    );
+                        } else if (node->src0->type == GGML_TYPE_F32 &&
+                                   node->src1->type == GGML_TYPE_F32) {
+                            cur = sizeof(float)*(
+                                    nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
+                                    ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
+                                    );
+                        } else {
+                            GGML_ASSERT(false);
+                        }
+
+                        work_size = MAX(work_size, cur);
+                    } break;
+                case GGML_OP_FLASH_ATTN:
+                    {
+                        node->n_tasks = n_threads;
+
+                        size_t cur = 0;
+
+                        if (node->src1->type == GGML_TYPE_F32) {
+                            cur  = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
+                            cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
+                        }
+
+                        if (node->src1->type == GGML_TYPE_F16) {
+                            cur  = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
+                            cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
+                        }
+
+                        work_size = MAX(work_size, cur);
+                    } break;
+                case GGML_OP_FLASH_FF:
+                    {
+                        node->n_tasks = n_threads;
+
+                        size_t cur = 0;
+
+                        if (node->src1->type == GGML_TYPE_F32) {
+                            cur  = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
+                            cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
+                        }
+
+                        if (node->src1->type == GGML_TYPE_F16) {
+                            cur  = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
+                            cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
+                        }
+
+                        work_size = MAX(work_size, cur);
+                    } break;
                 case GGML_OP_NONE:
                     {
                         node->n_tasks = 1;
@@ -4692,6 +6610,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
         params.type = GGML_TASK_COMPUTE;
         ggml_compute_forward(&params, node);
 
+        // wait for thread pool
         if (node->n_tasks > 1) {
             if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
                 atomic_store(&state_shared.has_work, false);
@@ -4711,9 +6630,60 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
         }
 
         // FINALIZE
+        if (node->n_tasks > 1) {
+            if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
+                atomic_store(&state_shared.has_work, false);
+            }
+
+            while (atomic_load(&state_shared.has_work)) {
+                ggml_lock_lock  (&state_shared.spin);
+                ggml_lock_unlock(&state_shared.spin);
+            }
+
+            // launch thread pool
+            for (int j = 0; j < n_threads - 1; j++) {
+                workers[j].params = (struct ggml_compute_params) {
+                    .type  = GGML_TASK_FINALIZE,
+                    .ith   = j + 1,
+                    .nth   = n_threads,
+                    .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
+                    .wdata = cgraph->work ? cgraph->work->data : NULL,
+                };
+                workers[j].node = node;
+            }
+
+            atomic_fetch_sub(&state_shared.n_ready, 1);
+
+            while (atomic_load(&state_shared.n_ready) > 0) {
+                ggml_lock_lock  (&state_shared.spin);
+                ggml_lock_unlock(&state_shared.spin);
+            }
+
+            atomic_store(&state_shared.has_work, true);
+        }
+
         params.type = GGML_TASK_FINALIZE;
         ggml_compute_forward(&params, node);
 
+        // wait for thread pool
+        if (node->n_tasks > 1) {
+            if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
+                atomic_store(&state_shared.has_work, false);
+            }
+
+            while (atomic_load(&state_shared.has_work)) {
+                ggml_lock_lock  (&state_shared.spin);
+                ggml_lock_unlock(&state_shared.spin);
+            }
+
+            atomic_fetch_sub(&state_shared.n_ready, 1);
+
+            while (atomic_load(&state_shared.n_ready) != 0) {
+                ggml_lock_lock  (&state_shared.spin);
+                ggml_lock_unlock(&state_shared.spin);
+            }
+        }
+
         // performance stats (node)
         {
             int64_t perf_cycles_cur  = ggml_perf_cycles()  - perf_node_start_cycles;