} block_q4_1;
static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
+#define QK4_2 16
+typedef struct {
+ ggml_fp16_t d; // delta
+ uint8_t qs[QK4_2 / 2]; // nibbles / quants
+} block_q4_2;
+static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
+
#define QK8_0 32
typedef struct {
float d; // delta
#endif
}
+// reference implementation for deterministic creation of model files
+static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
+ assert(k % QK4_2 == 0);
+
+ const int nb = k / QK4_2;
+
+ for (int i = 0; i < nb; i++) {
+ float amax = 0.0f; // absolute max
+
+ for (int l = 0; l < QK4_2; l++) {
+ const float v = x[i*QK4_2 + l];
+ amax = MAX(amax, fabsf(v));
+ }
+
+ const float d = amax / ((1 << 3) - 1);
+
+ const float id = d ? 1.0f/d : 0.0f;
+
+ y[i].d = GGML_FP32_TO_FP16(d);
+
+ for (int l = 0; l < QK4_2; l += 2) {
+ const float v0 = x[i*QK4_2 + l + 0]*id;
+ const float v1 = x[i*QK4_2 + l + 1]*id;
+
+ const uint8_t vi0 = (uint8_t)(v0 + 8.5f);
+ const uint8_t vi1 = (uint8_t)(v1 + 8.5f);
+
+ assert(vi0 < 16);
+ assert(vi1 < 16);
+
+ y[i].qs[l/2] = vi0 | (vi1 << 4);
+ }
+ }
+}
+
+static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
+ assert(k % QK4_2 == 0);
+
+ block_q4_2 * restrict y = vy;
+
+ quantize_row_q4_2_reference(x, y, k);
+}
+
// reference implementation for deterministic creation of model files
static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
assert(k % QK8_0 == 0);
y[i].d = d;
for (int l = 0; l < QK8_0; ++l) {
- const float v = x[i*QK8_0 + l]*id;
+ const float v = x[i*QK8_0 + l]*id;
y[i].qs[l] = roundf(v);
}
}
#endif
}
+static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
+ assert(k % QK4_2 == 0);
+ const int nb = k / QK4_2;
+
+ const block_q4_2 * restrict x = vx;
+
+ for (int i = 0; i < nb; i++) {
+ const float d = GGML_FP16_TO_FP32(x[i].d);
+
+ const uint8_t * restrict pp = x[i].qs;
+
+ for (int l = 0; l < QK4_2; l += 2) {
+ const uint8_t vi = pp[l/2];
+
+ const int8_t vi0 = vi & 0xf;
+ const int8_t vi1 = vi >> 4;
+
+ const float v0 = (vi0 - 8)*d;
+ const float v1 = (vi1 - 8)*d;
+
+ y[i*QK4_2 + l + 0] = v0;
+ y[i*QK4_2 + l + 1] = v1;
+
+ assert(!isnan(y[i*QK4_2 + l + 0]));
+ assert(!isnan(y[i*QK4_2 + l + 1]));
+ }
+ }
+}
+
static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
+//static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
+static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
[GGML_TYPE_Q4_0] = {
.quantize_row_q_dot = quantize_row_q4_1,
.vec_dot_q = ggml_vec_dot_q4_1,
},
+ [GGML_TYPE_Q4_2] = {
+ .dequantize_row_q = dequantize_row_q4_2,
+ .quantize_row_q = quantize_row_q4_2,
+ .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_reference,
+ .quantize_row_q_dot = quantize_row_q8_0,
+ .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
+ },
// TODO: GGML_TYPE_Q8_0
};
*s = sumf;
}
+static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
+ const int nb = n / QK8_0;
+
+ assert(n % QK8_0 == 0);
+ assert(nb % 2 == 0);
+ assert(QK8_0 == 2*QK4_2);
+
+ const block_q4_2 * restrict x = vx;
+ const block_q8_0 * restrict y = vy;
+
+ float sumf = 0.0;
+
+#if defined(__ARM_NEON)
+ float32x4_t sumv0 = vdupq_n_f32(0.0f);
+ float32x4_t sumv1 = vdupq_n_f32(0.0f);
+
+ for (int i = 0; i < nb; i += 2) {
+ const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
+ const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
+ const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
+ const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
+ const block_q8_0 * restrict y0 = &y[i + 0];
+ const block_q8_0 * restrict y1 = &y[i + 1];
+
+ const uint8x16_t m4b = vdupq_n_u8(0xf);
+ const int8x16_t s8b = vdupq_n_s8(0x8);
+
+ const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
+ const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
+
+ // 4-bit -> 8-bit
+ const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
+ const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
+ const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
+ const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
+
+ // sub 8
+ const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
+ const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
+ const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
+ const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
+
+ // interleave
+ const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
+ const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
+ const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
+ const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
+
+ // load y
+ const int8x16_t v1_0l = vld1q_s8(y0->qs);
+ const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
+ const int8x16_t v1_1l = vld1q_s8(y1->qs);
+ const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
+
+#if defined(__ARM_FEATURE_DOTPROD)
+ sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
+ vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
+ vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
+
+ sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
+ vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
+ vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
+#else
+ const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
+ const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
+ const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
+ const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
+
+ const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
+ const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
+ const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
+ const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
+
+ const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
+ const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
+ const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
+ const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
+
+ sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
+ vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
+ vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
+
+ sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
+ vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
+ vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
+#endif
+ }
+
+ sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
+#else
+ // scalar
+ for (int i = 0; i < nb; i++) {
+ const uint8_t * restrict x0 = x[2*i + 0].qs;
+ const uint8_t * restrict x1 = x[2*i + 1].qs;
+ const int8_t * restrict y0 = y[i].qs;
+
+ const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
+ const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
+
+ int sumi_0 = 0;
+ int sumi_1 = 0;
+
+ for (int j = 0; j < QK8_0/4; j++) {
+ const uint8_t v0 = x0[j];
+ const uint8_t v1 = x1[j];
+
+ const int i0_0 = (int8_t) (v0 & 0xf) - 8;
+ const int i1_0 = (int8_t) (v0 >> 4) - 8;
+
+ const int i0_1 = (int8_t) (v1 & 0xf) - 8;
+ const int i1_1 = (int8_t) (v1 >> 4) - 8;
+
+ const int i2_0 = y0[2*j + 0];
+ const int i3_0 = y0[2*j + 1];
+
+ const int i2_1 = y0[2*(j + QK8_0/4) + 0];
+ const int i3_1 = y0[2*(j + QK8_0/4) + 1];
+
+ sumi_0 += i0_0*i2_0 + i1_0*i3_0;
+ sumi_1 += i0_1*i2_1 + i1_1*i3_1;
+ }
+
+ sumf += (d0 * y[i].d) * sumi_0;
+ sumf += (d1 * y[i].d) * sumi_1;
+ }
+#endif
+
+ *s = sumf;
+}
+
// compute GGML_VEC_DOT_UNROLL dot products at once
// xs - x row stride in bytes
inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
[GGML_TYPE_F16] = 1,
[GGML_TYPE_Q4_0] = QK4_0,
[GGML_TYPE_Q4_1] = QK4_1,
+ [GGML_TYPE_Q4_2] = QK4_2,
[GGML_TYPE_Q8_0] = QK8_0,
[GGML_TYPE_I8] = 1,
[GGML_TYPE_I16] = 1,
[GGML_TYPE_I32] = 1,
};
-static_assert(GGML_TYPE_COUNT == 8, "GGML_BLCK_SIZE is outdated");
+static_assert(GGML_TYPE_COUNT == 9, "GGML_BLCK_SIZE is outdated");
static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
[GGML_TYPE_F32] = sizeof(float),
[GGML_TYPE_F16] = sizeof(ggml_fp16_t),
[GGML_TYPE_Q4_0] = sizeof(block_q4_0),
[GGML_TYPE_Q4_1] = sizeof(block_q4_1),
+ [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
[GGML_TYPE_Q8_0] = sizeof(block_q8_0),
[GGML_TYPE_I8] = sizeof(int8_t),
[GGML_TYPE_I16] = sizeof(int16_t),
[GGML_TYPE_I32] = sizeof(int32_t),
};
-static_assert(GGML_TYPE_COUNT == 8, "GGML_TYPE_SIZE is outdated");
+static_assert(GGML_TYPE_COUNT == 9, "GGML_TYPE_SIZE is outdated");
static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
[GGML_TYPE_F16] = "f16",
[GGML_TYPE_Q4_0] = "q4_0",
[GGML_TYPE_Q4_1] = "q4_1",
+ [GGML_TYPE_Q4_2] = "q4_2",
[GGML_TYPE_Q8_0] = "q8_0",
[GGML_TYPE_I8] = "i8",
[GGML_TYPE_I16] = "i16",
[GGML_TYPE_I32] = "i32",
};
-static_assert(GGML_TYPE_COUNT == 8, "GGML_TYPE_NAME is outdated");
+static_assert(GGML_TYPE_COUNT == 9, "GGML_TYPE_NAME is outdated");
+
+static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
+ [GGML_TYPE_F32] = false,
+ [GGML_TYPE_F16] = false,
+ [GGML_TYPE_Q4_0] = true,
+ [GGML_TYPE_Q4_1] = true,
+ [GGML_TYPE_Q4_2] = true,
+ [GGML_TYPE_Q8_0] = true,
+ [GGML_TYPE_I8] = false,
+ [GGML_TYPE_I16] = false,
+ [GGML_TYPE_I32] = false,
+};
+static_assert(GGML_TYPE_COUNT == 9, "GGML_IS_QUANTIZED is outdated");
static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
"NONE",
(t0->ne[3] == t1->ne[3]);
}
+static inline bool ggml_is_quantized(enum ggml_type type) {
+ return GGML_IS_QUANTIZED[type];
+}
+
static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
return tensor->nb[0] > tensor->nb[1];
}
}
}
}
- } else if (dst->type == GGML_TYPE_Q4_0 || dst->type == GGML_TYPE_Q4_1) {
+ } else if (ggml_is_quantized(dst->type)) {
quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
size_t id = 0;
uint8_t * dst_ptr = (uint8_t *) dst->data;
}
}
}
- } else if (dst->type == GGML_TYPE_Q4_0 || dst->type == GGML_TYPE_Q4_1) {
+ } else if (ggml_is_quantized(dst->type)) {
quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
size_t id = 0;
uint8_t * dst_ptr = (uint8_t *) dst->data;
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
- GGML_ASSERT(src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1);
+ GGML_ASSERT(ggml_is_quantized(src0->type));
GGML_ASSERT(dst->type == src0->type);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
} break;
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
+ case GGML_TYPE_Q4_2:
{
ggml_compute_forward_add_q_f32(params, src0, src1, dst);
} break;
switch (src0->type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
+ case GGML_TYPE_Q4_2:
case GGML_TYPE_Q8_0:
{
ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
switch (src0->type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
+ case GGML_TYPE_Q4_2:
case GGML_TYPE_Q8_0:
{
ggml_compute_forward_get_rows_q(params, src0, src1, dst);
node->n_tasks = 1;
size_t cur = 0;
- if (node->type == GGML_TYPE_Q4_0 || node->type == GGML_TYPE_Q4_1) {
+ if (ggml_is_quantized(node->type)) {
cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0];
}
size_t cur = 0;
- if (node->src0->type == GGML_TYPE_Q4_0 || node->src0->type == GGML_TYPE_Q4_1) {
+ if (ggml_is_quantized(node->src0->type)) {
cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
}
return (n/QK4_1*sizeof(block_q4_1));
}
+size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
+ assert(k % QK4_2 == 0);
+ const int nb = k / QK4_2;
+
+ for (int j = 0; j < n; j += k) {
+ block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
+
+ quantize_row_q4_2_reference(src + j, y, k);
+
+ for (int i = 0; i < nb; i++) {
+ for (int l = 0; l < QK4_2; l += 2) {
+ const uint8_t vi0 = y[i].qs[l/2] & 0xF;
+ const uint8_t vi1 = y[i].qs[l/2] >> 4;
+
+ hist[vi0]++;
+ hist[vi1]++;
+ }
+ }
+ }
+
+ return (n/QK4_2*sizeof(block_q4_2));
+}
+
////////////////////////////////////////////////////////////////////////////////
int ggml_cpu_has_avx(void) {