def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
use_temp_file: bool = False, eager: bool = False,
metadata_override: Path | None = None, model_name: str | None = None,
- split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False):
+ split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
+ small_first_shard: bool = False, hparams: dict[str, Any] | None = None):
if type(self) is Model:
raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
self.is_safetensors = len(self.part_names) > 0
if not self.is_safetensors:
self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
- self.hparams = Model.load_hparams(self.dir_model)
+ self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
self.tensor_names = None
special_vocab._set_special_token("eot", 32010)
special_vocab.add_to_gguf(self.gguf_writer)
+ tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
+ if tokenizer_config_file.is_file():
+ with open(tokenizer_config_file, "r", encoding="utf-8") as f:
+ tokenizer_config_json = json.load(f)
+ if "add_prefix_space" in tokenizer_config_json:
+ self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
+
+ # Apply to granite small models only
+ if self.hparams.get("vocab_size", 32000) == 49152:
+ self.gguf_writer.add_add_bos_token(False)
+
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
- tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
- if tokenizer_config_file.is_file():
- with open(tokenizer_config_file, "r", encoding="utf-8") as f:
- tokenizer_config_json = json.load(f)
- if "add_prefix_space" in tokenizer_config_json:
- self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
-
- # Apply to granite small models only
- if self.hparams.get("vocab_size", 32000) == 49152:
- self.gguf_writer.add_add_bos_token(False)
-
@staticmethod
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
if n_head_kv is not None and n_head != n_head_kv:
from math import prod
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Iterable, Iterator, Sequence, SupportsIndex, cast
+from transformers import AutoConfig
import torch
help="only print out what will be done, without writing any new files",
)
parser.add_argument(
- "--base", type=Path, required=True,
- help="directory containing Hugging Face model config files (config.json, tokenizer.json) for the base model that the adapter is based on - only config is needed, actual model weights are not required",
+ "--base", type=Path,
+ help="directory containing Hugging Face model config files (config.json, tokenizer.json) for the base model that the adapter is based on - only config is needed, actual model weights are not required. If base model is unspecified, it will be loaded from Hugging Face hub based on the adapter config",
)
parser.add_argument(
"lora_path", type=Path,
return parser.parse_args()
+def load_hparams_from_hf(hf_model_id: str) -> dict[str, Any]:
+ # normally, adapter does not come with base model config, we need to load it from AutoConfig
+ config = AutoConfig.from_pretrained(hf_model_id)
+ return config.to_dict()
+
+
if __name__ == '__main__':
args = parse_args()
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
ftype = ftype_map[args.outtype]
- dir_base_model: Path = args.base
+ dir_base_model: Path | None = args.base
dir_lora: Path = args.lora_path
lora_config = dir_lora / "adapter_config.json"
input_model = dir_lora / "adapter_model.safetensors"
input_model = os.path.join(dir_lora, "adapter_model.bin")
lora_model = torch.load(input_model, map_location="cpu", weights_only=True)
+ # load LoRA config
+ with open(lora_config, "r") as f:
+ lparams: dict[str, Any] = json.load(f)
+
# load base model
- logger.info(f"Loading base model: {dir_base_model.name}")
- hparams = Model.load_hparams(dir_base_model)
+ if dir_base_model is None:
+ if "base_model_name_or_path" in lparams:
+ model_id = lparams["base_model_name_or_path"]
+ logger.info(f"Loading base model from Hugging Face: {model_id}")
+ try:
+ hparams = load_hparams_from_hf(model_id)
+ except OSError as e:
+ logger.error(f"Failed to load base model config: {e}")
+ logger.error("Please try downloading the base model and add its path to --base")
+ sys.exit(1)
+ else:
+ logger.error("'base_model_name_or_path' is not found in adapter_config.json")
+ logger.error("Base model config is required. Please download the base model and add its path to --base")
+ sys.exit(1)
+ else:
+ logger.info(f"Loading base model: {dir_base_model.name}")
+ hparams = Model.load_hparams(dir_base_model)
+
with torch.inference_mode():
try:
model_class = Model.from_model_architecture(hparams["architectures"][0])
self.dir_model_card = dir_lora_model
self.lora_alpha = float(lora_alpha)
+ def set_vocab(self):
+ pass
+
def set_type(self):
self.gguf_writer.add_type(gguf.GGUFType.ADAPTER)
self.gguf_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
def set_gguf_parameters(self):
self.gguf_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, self.lora_alpha)
- super().set_gguf_parameters()
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
# Never add extra tensors (e.g. rope_freqs) for LoRA adapters
logger.error(f"Unexpected name '{name}': Not a lora_A or lora_B tensor")
if ".embed_tokens.weight" in name or ".lm_head.weight" in name:
logger.error("Embeddings is present in the adapter. This can be due to new tokens added during fine tuning")
- logger.error("Hint: if you are using TRL, make sure not to call setup_chat_format()")
+ logger.error("Please refer to https://github.com/ggerganov/llama.cpp/pull/9948")
sys.exit(1)
if base_name in tensor_map:
yield (dest_name + ".lora_a", lora_a)
yield (dest_name + ".lora_b", lora_b)
- with open(lora_config, "r") as f:
- lparams: dict[str, Any] = json.load(f)
-
alpha: float = lparams["lora_alpha"]
model_instance = LoraModel(
dry_run=args.dry_run,
dir_lora_model=dir_lora,
lora_alpha=alpha,
+ hparams=hparams,
)
logger.info("Exporting model...")