return MixtralModel
if model_architecture == "PhiForCausalLM":
return Phi2Model
+ if model_architecture == "PlamoForCausalLM":
+ return PlamoModel
return Model
def _is_model_safetensors(self) -> bool:
return gguf.MODEL_ARCH.LLAMA
if arch == "PhiForCausalLM":
return gguf.MODEL_ARCH.PHI2
+ if arch == "PlamoForCausalLM":
+ return gguf.MODEL_ARCH.PLAMO
raise NotImplementedError(f'Architecture "{arch}" not supported!')
self.gguf_writer.add_add_bos_token(False)
+class PlamoModel(Model):
+ def set_vocab(self):
+ self._set_vocab_sentencepiece()
+
+ def set_gguf_parameters(self):
+ hparams = self.hparams
+ block_count = hparams["num_hidden_layers"]
+
+ self.gguf_writer.add_name("PLaMo")
+ self.gguf_writer.add_context_length(4096) # not in config.json
+ self.gguf_writer.add_embedding_length(hparams["hidden_size"])
+ self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
+ self.gguf_writer.add_block_count(block_count)
+ self.gguf_writer.add_head_count(hparams["num_attention_heads"])
+ self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
+ self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
+
+ def shuffle_attn_q_weight(self, data_torch):
+ assert data_torch.size() == (5120, 5120)
+ data_torch = data_torch.reshape(8, 5, 128, 5120)
+ data_torch = torch.permute(data_torch, (1, 0, 2, 3))
+ data_torch = torch.reshape(data_torch, (5120, 5120))
+ return data_torch
+
+ def shuffle_attn_output_weight(self, data_torch):
+ assert data_torch.size() == (5120, 5120)
+ data_torch = data_torch.reshape(5120, 8, 5, 128)
+ data_torch = torch.permute(data_torch, (0, 2, 1, 3))
+ data_torch = torch.reshape(data_torch, (5120, 5120))
+ return data_torch
+
+ def write_tensors(self):
+ block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
+ tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
+
+ for name, data_torch in self.get_tensors():
+ if "self_attn.rotary_emb.inv_freq" in name:
+ continue
+
+ # map tensor names
+ new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
+ if new_name is None:
+ print(f"Can not map tensor {name!r}")
+ sys.exit()
+
+ # shuffle for broadcasting of gqa in ggml_mul_mat
+ if new_name.endswith("attn_q.weight"):
+ data_torch = self.shuffle_attn_q_weight(data_torch)
+ elif new_name.endswith("attn_output.weight"):
+ data_torch = self.shuffle_attn_output_weight(data_torch)
+
+ old_dtype = data_torch.dtype
+
+ # convert any unsupported data types to float32
+ if data_torch.dtype not in (torch.float16, torch.float32):
+ data_torch = data_torch.to(torch.float32)
+
+ data = data_torch.squeeze().numpy()
+
+ n_dims = len(data.shape)
+ data_dtype = data.dtype
+
+ # if f32 desired, convert any float16 to float32
+ if self.ftype == 0 and data_dtype == np.float16:
+ data = data.astype(np.float32)
+
+ # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
+ if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
+ data = data.astype(np.float32)
+
+ # if f16 desired, convert any float32 2-dim weight tensors to float16
+ if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
+ data = data.astype(np.float16)
+
+ print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
+
+ self.gguf_writer.add_tensor(new_name, data)
+
+
###### CONVERSION LOGIC ######
def parse_args() -> argparse.Namespace:
- parser = argparse.ArgumentParser(description="Convert a huggingface model to a GGML compatible file")
+ parser = argparse.ArgumentParser(
+ description="Convert a huggingface model to a GGML compatible file")
parser.add_argument(
"--vocab-only", action="store_true",
help="extract only the vocab",
"language_model.encoder.layers.{bid}.input_layernorm", # persimmon
"model.layers.{bid}.ln1", # yi
"transformer.h.{bid}.ln", # phi2
+ "model.layers.layers.{bid}.norm", # plamo
),
# Attention norm 2
# Attention query
MODEL_TENSOR.ATTN_Q: (
- "model.layers.{bid}.self_attn.q_proj", # llama-hf
- "layers.{bid}.attention.wq", # llama-pth
- "encoder.layer.{bid}.attention.self.query", # bert
- "transformer.h.{bid}.attn.q_proj", # gpt-j
+ "model.layers.{bid}.self_attn.q_proj", # llama-hf
+ "layers.{bid}.attention.wq", # llama-pth
+ "encoder.layer.{bid}.attention.self.query", # bert
+ "transformer.h.{bid}.attn.q_proj", # gpt-j
+ "model.layers.layers.{bid}.self_attn.q_proj", # plamo
),
# Attention key
MODEL_TENSOR.ATTN_K: (
- "model.layers.{bid}.self_attn.k_proj", # llama-hf
- "layers.{bid}.attention.wk", # llama-pth
- "encoder.layer.{bid}.attention.self.key", # bert
- "transformer.h.{bid}.attn.k_proj", # gpt-j
+ "model.layers.{bid}.self_attn.k_proj", # llama-hf
+ "layers.{bid}.attention.wk", # llama-pth
+ "encoder.layer.{bid}.attention.self.key", # bert
+ "transformer.h.{bid}.attn.k_proj", # gpt-j
+ "model.layers.layers.{bid}.self_attn.k_proj", # plamo
),
# Attention value
MODEL_TENSOR.ATTN_V: (
- "model.layers.{bid}.self_attn.v_proj", # llama-hf
- "layers.{bid}.attention.wv", # llama-pth
- "encoder.layer.{bid}.attention.self.value", # bert
- "transformer.h.{bid}.attn.v_proj", # gpt-j
+ "model.layers.{bid}.self_attn.v_proj", # llama-hf
+ "layers.{bid}.attention.wv", # llama-pth
+ "encoder.layer.{bid}.attention.self.value", # bert
+ "transformer.h.{bid}.attn.v_proj", # gpt-j
+ "model.layers.layers.{bid}.self_attn.v_proj", # plamo
),
# Attention output
"transformer.h.{bid}.attn.out_proj", # gpt-j
"language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
"transformer.h.{bid}.mixer.out_proj", # phi2
+ "model.layers.layers.{bid}.self_attn.o_proj", # plamo
),
# Rotary embeddings
MODEL_TENSOR.ATTN_ROT_EMBD: (
- "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
- "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
+ "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
+ "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
+ "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
),
# Feed-forward norm
"language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
"transformer.h.{bid}.mlp.w1", # qwen
"transformer.h.{bid}.mlp.fc1", # phi2
+ "model.layers.layers.{bid}.mlp.up_proj", # plamo
),
MODEL_TENSOR.FFN_UP_EXP: (
"model.layers.{bid}.mlp.gate_proj", # llama-hf refact
"layers.{bid}.feed_forward.w1", # llama-pth
"transformer.h.{bid}.mlp.w2", # qwen
+ "model.layers.layers.{bid}.mlp.gate_proj", # plamo
),
MODEL_TENSOR.FFN_GATE_EXP: (
"transformer.h.{bid}.mlp.fc_out", # gpt-j
"language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
"transformer.h.{bid}.mlp.fc2", # phi2
+ "model.layers.layers.{bid}.mlp.down_proj", # plamo
),
MODEL_TENSOR.FFN_DOWN_EXP: (
LLM_ARCH_STABLELM,
LLM_ARCH_QWEN,
LLM_ARCH_PHI2,
+ LLM_ARCH_PLAMO,
LLM_ARCH_UNKNOWN,
};
{ LLM_ARCH_STABLELM, "stablelm" },
{ LLM_ARCH_QWEN, "qwen" },
{ LLM_ARCH_PHI2, "phi2" },
+ { LLM_ARCH_PLAMO, "plamo" },
};
enum llm_kv {
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
+ {
+ LLM_ARCH_PLAMO,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ },
+ },
{
LLM_ARCH_UNKNOWN,
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
+ case LLM_ARCH_PLAMO:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
+ switch (hparams.n_layer) {
+ case 40: model.type = e_model::MODEL_13B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
default: (void)0;
}
layer.ffn_up_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend);
}
} break;
+ case LLM_ARCH_PLAMO:
+ {
+ model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
+
+ // output
+ {
+ ggml_backend_type backend_norm;
+ ggml_backend_type backend_output;
+
+ if (n_gpu_layers > int(n_layer)) {
+ backend_norm = llama_backend_offload;
+ backend_output = llama_backend_offload_split;
+ } else {
+ backend_norm = GGML_BACKEND_CPU;
+ backend_output = GGML_BACKEND_CPU;
+ }
+
+ model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
+ model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
+ }
+
+ const uint32_t n_ff = hparams.n_ff;
+
+ const int i_gpu_start = n_layer - n_gpu_layers;
+
+ model.layers.resize(n_layer);
+
+ for (uint32_t i = 0; i < n_layer; ++i) {
+ const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT
+ const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
+
+ layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split);
+ layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split);
+ layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
+ layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
+
+ layer.ffn_gate = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
+ layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
+ layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
+ }
+ } break;
default:
throw std::runtime_error("unknown architecture");
}
return gf;
}
+
+ struct ggml_cgraph * build_plamo() {
+ struct ggml_cgraph * gf = ggml_new_graph(ctx0);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb);
+ cb(inpL, "inp_embd", -1);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
+ cb(inp_pos, "inp_pos", -1);
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
+ cb(KQ_mask, "KQ_mask", -1);
+
+ // shift the entire K-cache if needed
+ if (do_rope_shift) {
+ llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, LLM_ROPE, n_ctx, n_embd_head, freq_base, freq_scale, cb);
+ }
+
+ for (int il = 0; il < n_layer; ++il) {
+
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ struct ggml_tensor * attention_norm = cur;
+
+ // self-attention
+ {
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+
+ struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+
+ struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_rope_custom(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
+ n_embd_head, 2, 0, n_orig_ctx, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow);
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_custom(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
+ n_embd_head, 2, 0, n_orig_ctx, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow);
+ cb(Kcur, "Kcur", il);
+
+ llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
+
+ cur = llm_build_kqv(ctx0, model, hparams, kv_self,
+ model.layers[il].wo, NULL,
+ Qcur, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ cb(cur, "kqv_out", il);
+ }
+ struct ggml_tensor * sa_out = cur;
+
+ cur = attention_norm;
+
+ // feed-forward network
+ {
+ cur = llm_build_ffn(ctx0, cur,
+ model.layers[il].ffn_up, NULL,
+ model.layers[il].ffn_gate, NULL,
+ model.layers[il].ffn_down, NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+ }
+
+ cur = ggml_add(ctx0, cur, sa_out);
+ cb(cur, "l_out", il);
+
+ cur = ggml_add(ctx0, cur, inpL);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = ggml_mul_mat(ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
};
//
{
result = llm.build_phi2();
} break;
+ case LLM_ARCH_PLAMO:
+ {
+ result = llm.build_plamo();
+ } break;
default:
GGML_ASSERT(false);
}