cl_kernel kernel_sub, kernel_sub_row, kernel_sub_f16, kernel_sub_row_f16;
cl_kernel kernel_add_id;
cl_kernel kernel_scale;
+ cl_kernel kernel_sqr_cont_f32, kernel_sqr_cont_f32_4, kernel_sqr_cont_f16, kernel_sqr_cont_f16_4;
+ cl_kernel kernel_sqrt_cont_f32, kernel_sqrt_cont_f32_4, kernel_sqrt_cont_f16, kernel_sqrt_cont_f16_4;
+ cl_kernel kernel_mean_f32;
cl_kernel kernel_silu, kernel_silu_4;
cl_kernel kernel_gelu, kernel_gelu_4;
cl_kernel kernel_gelu_erf, kernel_gelu_erf_4;
cl_kernel kernel_conv_2d_f16;
cl_kernel kernel_conv_2d_f32;
cl_kernel kernel_conv_2d_f16_f32;
+ cl_kernel kernel_ssm_conv_f32_f32, kernel_ssm_conv_f32_f32_4;
cl_kernel kernel_timestep_embedding;
cl_kernel kernel_gemv_moe_mxfp4_f32, kernel_gemm_moe_mxfp4_f32;
cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat;
GGML_LOG_CONT(".");
}
+ // sqr
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "sqr.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("sqr.cl");
+#endif
+ cl_program prog =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_sqr_cont_f32 = clCreateKernel(prog, "kernel_sqr_cont_f32", &err), err));
+ CL_CHECK((backend_ctx->kernel_sqr_cont_f32_4 = clCreateKernel(prog, "kernel_sqr_cont_f32_4", &err), err));
+ CL_CHECK((backend_ctx->kernel_sqr_cont_f16 = clCreateKernel(prog, "kernel_sqr_cont_f16", &err), err));
+ CL_CHECK((backend_ctx->kernel_sqr_cont_f16_4 = clCreateKernel(prog, "kernel_sqr_cont_f16_4", &err), err));
+
+ CL_CHECK(clReleaseProgram(prog));
+ GGML_LOG_CONT(".");
+ }
+
+ // sqrt
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "sqrt.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("sqrt.cl");
+#endif
+ cl_program prog =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_sqrt_cont_f32 = clCreateKernel(prog, "kernel_sqrt_cont_f32", &err), err));
+ CL_CHECK((backend_ctx->kernel_sqrt_cont_f32_4 = clCreateKernel(prog, "kernel_sqrt_cont_f32_4", &err), err));
+ CL_CHECK((backend_ctx->kernel_sqrt_cont_f16 = clCreateKernel(prog, "kernel_sqrt_cont_f16", &err), err));
+ CL_CHECK((backend_ctx->kernel_sqrt_cont_f16_4 = clCreateKernel(prog, "kernel_sqrt_cont_f16_4", &err), err));
+
+ CL_CHECK(clReleaseProgram(prog));
+ GGML_LOG_CONT(".");
+ }
+
+ // mean
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "mean.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("mean.cl");
+#endif
+ cl_program prog =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_mean_f32 = clCreateKernel(prog, "kernel_mean_f32", &err), err));
+
+ CL_CHECK(clReleaseProgram(prog));
+ GGML_LOG_CONT(".");
+ }
+
// sub
{
#ifdef GGML_OPENCL_EMBED_KERNELS
}
}
+ // ssm_conv
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "ssm_conv.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("ssm_conv.cl");
+#endif
+ cl_program prog =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_ssm_conv_f32_f32 = clCreateKernel(prog, "kernel_ssm_conv_f32_f32", &err), err));
+ CL_CHECK((backend_ctx->kernel_ssm_conv_f32_f32_4 = clCreateKernel(prog, "kernel_ssm_conv_f32_f32_4", &err), err));
+ CL_CHECK(clReleaseProgram(prog));
+ GGML_LOG_CONT(".");
+ }
+
// mul_mv_id_q4_0_f32_8x_flat
{
#ifdef GGML_OPENCL_EMBED_KERNELS
(op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16);
case GGML_OP_ADD_ID:
return op->src[0]->type == GGML_TYPE_F32;
+ case GGML_OP_SQR:
+ case GGML_OP_SQRT:
+ return (op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) &&
+ ggml_is_contiguous(op->src[0]);
case GGML_OP_UNARY:
switch (ggml_get_unary_op(op)) {
case GGML_UNARY_OP_GELU:
return (op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16) ||
(op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
(op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32);
+ case GGML_OP_SSM_CONV:
+ return (op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32);
case GGML_OP_CONCAT:
return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
case GGML_OP_TIMESTEP_EMBEDDING:
return cols <= max_workgroup_size && op->src[0]->type == GGML_TYPE_F32;
}
case GGML_OP_SUM_ROWS:
+ case GGML_OP_MEAN:
return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
case GGML_OP_FLASH_ATTN_EXT:
{
}
}
+static void ggml_cl_sqr(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_ASSERT(src0);
+ GGML_ASSERT(src0->extra);
+ GGML_ASSERT(dst);
+ GGML_ASSERT(dst->extra);
+ UNUSED(src1);
+
+ ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
+
+ ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
+ ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
+
+ cl_ulong offset0 = extra0->offset + src0->view_offs;
+ cl_ulong offsetd = extrad->offset + dst->view_offs;
+
+ cl_kernel kernel;
+
+ // Currently assumes src0 is contiguous
+ int n = ggml_nelements(dst);
+ if (n % 4 == 0) {
+ if (src0->type == GGML_TYPE_F32) {
+ kernel = backend_ctx->kernel_sqr_cont_f32_4;
+ } else {
+ kernel = backend_ctx->kernel_sqr_cont_f16_4;
+ }
+ n /= 4;
+ } else {
+ if (src0->type == GGML_TYPE_F32) {
+ kernel = backend_ctx->kernel_sqr_cont_f32;
+ } else {
+ kernel = backend_ctx->kernel_sqr_cont_f16;
+ }
+ }
+
+ CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
+ CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
+
+ size_t global_work_size[] = {(size_t)n, 1, 1};
+ size_t local_work_size[] = {64, 1, 1};
+
+ size_t * local_work_size_ptr = local_work_size;
+ if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
+ local_work_size_ptr = nullptr;
+ }
+
+ backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
+}
+
+static void ggml_cl_sqrt(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_ASSERT(src0);
+ GGML_ASSERT(src0->extra);
+ GGML_ASSERT(dst);
+ GGML_ASSERT(dst->extra);
+ UNUSED(src1);
+
+ ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
+
+ ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
+ ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
+
+ cl_ulong offset0 = extra0->offset + src0->view_offs;
+ cl_ulong offsetd = extrad->offset + dst->view_offs;
+
+ cl_kernel kernel;
+
+ // Currently assumes src0 is contiguous
+ int n = ggml_nelements(dst);
+ if (n % 4 == 0) {
+ if (src0->type == GGML_TYPE_F32) {
+ kernel = backend_ctx->kernel_sqrt_cont_f32_4;
+ } else {
+ kernel = backend_ctx->kernel_sqrt_cont_f16_4;
+ }
+ n /= 4;
+ } else {
+ if (src0->type == GGML_TYPE_F32) {
+ kernel = backend_ctx->kernel_sqrt_cont_f32;
+ } else {
+ kernel = backend_ctx->kernel_sqrt_cont_f16;
+ }
+ }
+
+ CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
+ CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
+
+ size_t global_work_size[] = {(size_t)n, 1, 1};
+ size_t local_work_size[] = {64, 1, 1};
+
+ size_t * local_work_size_ptr = local_work_size;
+ if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
+ local_work_size_ptr = nullptr;
+ }
+
+ backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
+}
+
+static void ggml_cl_mean(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_ASSERT(src0);
+ GGML_ASSERT(src0->extra);
+ GGML_ASSERT(dst);
+ GGML_ASSERT(dst->extra);
+ GGML_UNUSED(src1);
+
+ GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
+ GGML_ASSERT(ggml_is_contiguous(src0));
+
+ ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
+
+ ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
+ ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
+
+ cl_ulong offset0 = extra0->offset + src0->view_offs;
+ cl_ulong offsetd = extrad->offset + dst->view_offs;
+
+ const int ne00 = src0->ne[0];
+ const int ne01 = src0->ne[1];
+ const int ne02 = src0->ne[2];
+ const int ne03 = src0->ne[3];
+
+ const cl_ulong nb01 = src0->nb[1];
+ const cl_ulong nb02 = src0->nb[2];
+ const cl_ulong nb03 = src0->nb[3];
+
+ const cl_ulong nb1 = dst->nb[1];
+ const cl_ulong nb2 = dst->nb[2];
+ const cl_ulong nb3 = dst->nb[3];
+
+ cl_kernel kernel = backend_ctx->kernel_mean_f32;
+
+ CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
+ CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
+ CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
+ CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
+ CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
+ CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
+ CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
+ CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
+ CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
+ CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb1));
+ CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb2));
+ CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb3));
+
+ size_t global_work_size[] = {(size_t)ne01, (size_t)ne02, (size_t)ne03};
+ size_t local_work_size[] = {(size_t)64, 1, 1};
+
+ backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
+}
+
+static void ggml_cl_ssm_conv(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_ASSERT(src0);
+ GGML_ASSERT(src0->extra);
+ GGML_ASSERT(src1);
+ GGML_ASSERT(src1->extra);
+ GGML_ASSERT(dst);
+ GGML_ASSERT(dst->extra);
+
+ ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
+
+ ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
+ ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
+ ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
+
+ cl_ulong offset0 = extra0->offset + src0->view_offs;
+ cl_ulong offset1 = extra1->offset + src1->view_offs;
+ cl_ulong offsetd = extrad->offset + dst->view_offs;
+
+ int ne01 = src0->ne[1];
+ cl_ulong nb00 = src0->nb[0];
+ cl_ulong nb01 = src0->nb[1];
+ cl_ulong nb02 = src0->nb[2];
+
+ int ne10 = src1->ne[0];
+ cl_ulong nb11 = src1->nb[1];
+
+ int ne1 = dst->ne[1];
+ int ne2 = dst->ne[2];
+ cl_ulong nb0 = dst->nb[0];
+ cl_ulong nb1 = dst->nb[1];
+ cl_ulong nb2 = dst->nb[2];
+
+ cl_kernel kernel = backend_ctx->kernel_ssm_conv_f32_f32;
+
+ if (ne10 % 4 == 0) {
+ kernel = backend_ctx->kernel_ssm_conv_f32_f32_4;
+ }
+
+ CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
+ CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
+ CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
+ CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
+ CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
+ CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
+ CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
+ CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb11));
+ CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb0));
+ CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb1));
+ CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb2));
+
+ size_t global_work_size[] = {(size_t)ne01, (size_t)ne1, (size_t)ne2};
+ size_t local_work_size[] = {64, 1, 1};
+
+ size_t * local_work_size_ptr = local_work_size;
+ if (ne01 % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
+ local_work_size_ptr = nullptr;
+ }
+
+ backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
+}
+
static void ggml_cl_gelu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
}
func = ggml_cl_sub;
break;
+ case GGML_OP_SQR:
+ if (!any_on_device) {
+ return false;
+ }
+ func = ggml_cl_sqr;
+ break;
+ case GGML_OP_SQRT:
+ if (!any_on_device) {
+ return false;
+ }
+ func = ggml_cl_sqrt;
+ break;
+ case GGML_OP_MEAN:
+ if (!any_on_device) {
+ return false;
+ }
+ func = ggml_cl_mean;
+ break;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(tensor)) {
case GGML_UNARY_OP_GELU:
}
func = ggml_cl_conv_2d;
break;
+ case GGML_OP_SSM_CONV:
+ if (!any_on_device) {
+ return false;
+ }
+ func = ggml_cl_ssm_conv;
+ break;
case GGML_OP_CONCAT:
if (!any_on_device) {
return false;