#include <cstdio>
#include <cstring>
-#include <map>
+#include <vector>
#include <string>
-static const std::map<std::string, llama_ftype> LLAMA_FTYPE_MAP = {
- {"q4_0", LLAMA_FTYPE_MOSTLY_Q4_0},
- {"q4_1", LLAMA_FTYPE_MOSTLY_Q4_1},
- {"q5_0", LLAMA_FTYPE_MOSTLY_Q5_0},
- {"q5_1", LLAMA_FTYPE_MOSTLY_Q5_1},
- {"q8_0", LLAMA_FTYPE_MOSTLY_Q8_0},
- {"q2_K", LLAMA_FTYPE_MOSTLY_Q2_K},
- {"q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M},
- {"q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S},
- {"q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M},
- {"q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L},
- {"q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M},
- {"q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S},
- {"q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M},
- {"q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M},
- {"q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S},
- {"q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M},
- {"q6_K", LLAMA_FTYPE_MOSTLY_Q6_K},
+struct quant_option {
+ std::string name;
+ llama_ftype ftype;
+ std::string desc;
};
-bool try_parse_ftype(const std::string & ftype_str, llama_ftype & ftype, std::string & ftype_str_out) {
- auto it = LLAMA_FTYPE_MAP.find(ftype_str);
- if (it != LLAMA_FTYPE_MAP.end()) {
- ftype = it->second;
- ftype_str_out = it->first;
- return true;
+static const std::vector<struct quant_option> QUANT_OPTIONS = {
+ {
+ "Q4_0",
+ LLAMA_FTYPE_MOSTLY_Q4_0,
+ " 3.50G, +0.2499 ppl @ 7B - small, very high quality loss - legacy, prefer using Q3_K_M",
+ },
+ {
+ "Q4_1",
+ LLAMA_FTYPE_MOSTLY_Q4_1,
+ " 3.90G, +0.1846 ppl @ 7B - small, substantial quality loss - legacy, prefer using Q3_K_L",
+ },
+ {
+ "Q5_0",
+ LLAMA_FTYPE_MOSTLY_Q5_0,
+ " 4.30G, +0.0796 ppl @ 7B - medium, balanced quality - legacy, prefer using Q4_K_M",
+ },
+ {
+ "Q5_1",
+ LLAMA_FTYPE_MOSTLY_Q5_1,
+ " 4.70G, +0.0415 ppl @ 7B - medium, low quality loss - legacy, prefer using Q5_K_M",
+ },
+#ifdef GGML_USE_K_QUANTS
+ {
+ "Q2_K",
+ LLAMA_FTYPE_MOSTLY_Q2_K,
+ " 2.67G, +0.8698 ppl @ 7B - smallest, extreme quality loss - not recommended",
+ },
+ {
+ "Q3_K",
+ LLAMA_FTYPE_MOSTLY_Q3_K_M,
+ "alias for Q3_K_M"
+ },
+ {
+ "Q3_K_S",
+ LLAMA_FTYPE_MOSTLY_Q3_K_S,
+ " 2.75G, +0.5505 ppl @ 7B - very small, very high quality loss",
+ },
+ {
+ "Q3_K_M",
+ LLAMA_FTYPE_MOSTLY_Q3_K_M,
+ " 3.06G, +0.2437 ppl @ 7B - very small, very high quality loss",
+ },
+ {
+ "Q3_K_L",
+ LLAMA_FTYPE_MOSTLY_Q3_K_L,
+ " 3.35G, +0.1803 ppl @ 7B - small, substantial quality loss",
+ },
+ {
+ "Q4_K",
+ LLAMA_FTYPE_MOSTLY_Q4_K_M,
+ "alias for Q4_K_M",
+ },
+ {
+ "Q4_K_S",
+ LLAMA_FTYPE_MOSTLY_Q4_K_S,
+ " 3.56G, +0.1149 ppl @ 7B - small, significant quality loss",
+ },
+ {
+ "Q4_K_M",
+ LLAMA_FTYPE_MOSTLY_Q4_K_M,
+ " 3.80G, +0.0535 ppl @ 7B - medium, balanced quality - *recommended*",
+ },
+ {
+ "Q5_K",
+ LLAMA_FTYPE_MOSTLY_Q5_K_M,
+ "alias for Q5_K_M",
+ },
+ {
+ "Q5_K_S",
+ LLAMA_FTYPE_MOSTLY_Q5_K_S,
+ " 4.33G, +0.0353 ppl @ 7B - large, low quality loss - *recommended*",
+ },
+ {
+ "Q5_K_M",
+ LLAMA_FTYPE_MOSTLY_Q5_K_M,
+ " 4.45G, +0.0142 ppl @ 7B - large, very low quality loss - *recommended*",
+ },
+ {
+ "Q6_K",
+ LLAMA_FTYPE_MOSTLY_Q6_K,
+ " 5.15G, +0.0044 ppl @ 7B - very large, extremely low quality loss",
+ },
+#endif
+ {
+ "Q8_0",
+ LLAMA_FTYPE_MOSTLY_Q8_0,
+ " 6.70G, +0.0004 ppl @ 7B - very large, extremely low quality loss - not recommended",
+ },
+ {
+ "F16",
+ LLAMA_FTYPE_MOSTLY_F16,
+ "13.00G @ 7B - extremely large, virtually no quality loss - not recommended",
+ },
+ {
+ "F32",
+ LLAMA_FTYPE_ALL_F32,
+ "26.00G @ 7B - absolutely huge, lossless - not recommended",
+ },
+};
+
+
+bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) {
+ std::string ftype_str;
+
+ for (auto ch : ftype_str_in) {
+ ftype_str.push_back(std::toupper(ch));
+ }
+ for (auto & it : QUANT_OPTIONS) {
+ if (it.name == ftype_str) {
+ ftype = it.ftype;
+ ftype_str_out = it.name;
+ return true;
+ }
}
- // try to parse as an integer
try {
int ftype_int = std::stoi(ftype_str);
- for (auto it = LLAMA_FTYPE_MAP.begin(); it != LLAMA_FTYPE_MAP.end(); it++) {
- if (it->second == ftype_int) {
- ftype = it->second;
- ftype_str_out = it->first;
+ for (auto & it : QUANT_OPTIONS) {
+ if (it.ftype == ftype_int) {
+ ftype = it.ftype;
+ ftype_str_out = it.name;
return true;
}
}
}
// usage:
-// ./quantize models/llama/ggml-model.bin [models/llama/ggml-model-quant.bin] type [nthreads]
+// ./quantize [--allow-requantize] [--leave-output-tensor] models/llama/ggml-model.bin [models/llama/ggml-model-quant.bin] type [nthreads]
//
void usage(const char * executable) {
- fprintf(stderr, "usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.bin [model-quant.bin] type [nthreads]\n", executable);
+ fprintf(stderr, "usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.bin [model-quant.bin] type [nthreads]\n\n", executable);
fprintf(stderr, " --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
fprintf(stderr, " --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
- fprintf(stderr, "Allowed quantization types:\n");
- for (auto it = LLAMA_FTYPE_MAP.begin(); it != LLAMA_FTYPE_MAP.end(); it++) {
- fprintf(stderr, " type = \"%s\" or %d\n", it->first.c_str(), it->second);
+ fprintf(stderr, "\nAllowed quantization types:\n");
+ for (auto & it : QUANT_OPTIONS) {
+ printf(" %2d or %-6s : %s\n", it.ftype, it.name.c_str(), it.desc.c_str());
}
exit(1);
}
case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break;
case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break;
case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;
+ case LLAMA_FTYPE_MOSTLY_F16: quantized_type = GGML_TYPE_F16; break;
+ case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break;
+#ifdef GGML_USE_K_QUANTS
// K-quants
case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break;
case LLAMA_FTYPE_MOSTLY_Q3_K_S:
case LLAMA_FTYPE_MOSTLY_Q5_K_S:
case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break;
case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break;
+#endif
default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
}
/*vocab_only*/ false));
llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), params->ftype);
+#ifdef GGML_USE_K_QUANTS
int n_attention_wv = 0;
int n_feed_forward_w2 = 0;
for (auto& tensor : model_loader->tensors_map.tensors) {
int i_attention_wv = 0;
int i_feed_forward_w2 = 0;
+#endif
size_t total_size_org = 0;
size_t total_size_new = 0;
// quantize only 2D tensors
quantize &= (tensor.ne.size() == 2);
-
- // uncomment this to keep the output layer in FP16
- if (!params->quantize_output_tensor && tensor.name == "output.weight") {
- quantize = false;
- }
- quantize = quantize && quantized_type != tensor.type;
+ quantize &= params->quantize_output_tensor || tensor.name != "output.weight";
+ quantize &= quantized_type != tensor.type;
enum ggml_type new_type;
void * new_data;
printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0);
} else {
new_type = quantized_type;
+#ifdef GGML_USE_K_QUANTS
if (tensor.name == "output.weight") {
- new_type = GGML_TYPE_Q6_K;
- }
- else if (tensor.name.find("attention.wv.weight") != std::string::npos) {
+ new_type = GGML_TYPE_Q6_K;
+ } else if (tensor.name.find("attention.wv.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
(i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8 ||
(i_attention_wv - n_attention_wv/8)%3 == 2)) new_type = GGML_TYPE_Q6_K;
++i_attention_wv;
- }
- if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) {
+ } else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
(i_feed_forward_w2 < n_feed_forward_w2/8 || i_feed_forward_w2 >= 7*n_feed_forward_w2/8 ||
(i_feed_forward_w2 - n_feed_forward_w2/8)%3 == 2)) new_type = GGML_TYPE_Q6_K;
++i_feed_forward_w2;
- }
- if (tensor.name.find("attention.wo.weight") != std::string::npos) {
+ } else if (tensor.name.find("attention.wo.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
}
+#endif
float * f32_data;
size_t nelements = tensor.ne.at(0) * tensor.ne.at(1);