cl_program program_upscale;
cl_program program_concat;
cl_program program_tsembd;
+ cl_program program_mul_mv_id_q4_0_f32_8x_flat;
cl_kernel kernel_add, kernel_add_row;
cl_kernel kernel_mul, kernel_mul_row;
cl_kernel kernel_concat_f32_contiguous;
cl_kernel kernel_concat_f32_non_contiguous;
cl_kernel kernel_timestep_embedding;
+ cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat;
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
// Transpose kernels
GGML_LOG_CONT(".");
}
- // repeat
+ // repeat
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
}
}
+ // mul_mv_id_q4_0_f32_8x_flat
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "mul_mv_id_q4_0_f32_8x_flat.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("mul_mv_id_q4_0_f32_8x_flat.cl");
+#endif
+ backend_ctx->program_mul_mv_id_q4_0_f32_8x_flat =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_mul_mv_id_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_id_q4_0_f32_8x_flat, "kernel_mul_mv_id_q4_0_f32_8x_flat", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
// Adreno kernels
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
// transpose
return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
}
return false;
+ case GGML_OP_MUL_MAT_ID:
+ if (op->src[0]->type == GGML_TYPE_Q4_0) {
+ if (op->src[1]->type == GGML_TYPE_F32) {
+ return ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
+ }
+ }
+ return false;
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
}
}
+static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_ASSERT(src0);
+ GGML_ASSERT(src0->extra);
+ GGML_ASSERT(src1);
+ GGML_ASSERT(src1->extra);
+ GGML_ASSERT(dst);
+ GGML_ASSERT(dst->extra);
+
+ const ggml_tensor * src2 = dst->src[2];
+ GGML_ASSERT(src2);
+ GGML_ASSERT(src2->extra);
+
+ ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
+ cl_command_queue queue = backend_ctx->queue;
+
+ ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
+ ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
+ ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
+
+ cl_ulong offset1 = extra1->offset + src1->view_offs;
+ cl_ulong offset2 = extra2->offset + src2->view_offs;
+ cl_ulong offsetd = extrad->offset + dst->view_offs;
+
+#ifdef GGML_OPENCL_SOA_Q
+ ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
+#endif
+
+ const int ne00 = src0->ne[0];
+ const int ne01 = src0->ne[1];
+ const int ne02 = src0->ne[2];
+ const int ne03 = src0->ne[3];
+
+ const cl_ulong nb00 = src0->nb[0];
+ const cl_ulong nb02 = src0->nb[2];
+
+ const int ne10 = src1->ne[0];
+ const int ne11 = src1->ne[1];
+ const int ne12 = src1->ne[2];
+ const int ne13 = src1->ne[3];
+
+ const cl_ulong nb11 = src1->nb[1];
+ const cl_ulong nb12 = src1->nb[2];
+
+ const int ne20 = src2->ne[0];
+ const int ne21 = src2->ne[1];
+
+ const cl_ulong nb21 = src2->nb[1];
+
+ const int ne0 = dst->ne[0];
+ const int ne1 = dst->ne[1];
+
+ const int r2 = ne12/ne02;
+ const int r3 = ne13/ne03;
+ const int dst_rows = ne20*ne21; // ne20 = n_used_experts, ne21 = n_rows
+
+ GGML_ASSERT(ne00 == ne10);
+
+ int sgs = 32; // subgroup size
+ int nsg = 1; // number of subgroups
+ int nrows = 1; // number of row in src1
+ int ndst = 4; // number of values produced by each subgroup
+
+ cl_kernel kernel;
+
+ // subgroup mat vec
+ switch (src0->type) {
+ case GGML_TYPE_Q4_0: {
+ kernel = backend_ctx->kernel_mul_mv_id_q4_0_f32_8x_flat;
+
+ if (backend_ctx->gpu_family == INTEL) {
+ sgs = 16;
+ nsg = 1;
+ ndst = 8;
+ } else if (backend_ctx->gpu_family == ADRENO) {
+ sgs = 64;
+ nsg = 1;
+ ndst = 8;
+ } else {
+ GGML_ASSERT(false && "TODO: Unknown GPU");
+ }
+
+ CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
+ CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
+ CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
+ CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
+ CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
+ CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
+ CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
+ CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
+ CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb00));
+ CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
+ CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
+ CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
+ CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
+ CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb11));
+ CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb12));
+ CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne20));
+ CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne21));
+ CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb21));
+ CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne0));
+ CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne1));
+ CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r2));
+ CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &r3));
+
+ break;
+ }
+ default:
+ GGML_ASSERT(false && "not implemented");;
+ }
+
+ int _ne1 = 1;
+ int ne123 = dst_rows;
+
+ size_t global_work_size[] = {(size_t)(ne01+ndst*nsg-1)/(ndst*nsg)*sgs, (size_t)(_ne1+nrows-1)/nrows*nsg, (size_t)ne123};
+ size_t local_work_size[] = {(size_t)sgs, (size_t)nsg, 1};
+
+#ifdef GGML_OPENCL_PROFILING
+ cl_event evt;
+ CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
+
+ g_profiling_info.emplace_back();
+ populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
+#else
+ CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
+#endif
+}
+
static void ggml_cl_scale(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
}
func = ggml_cl_mul_mat;
break;
+ case GGML_OP_MUL_MAT_ID:
+ if (!any_on_device) {
+ return false;
+ }
+ func = ggml_cl_mul_mat_id;
+ break;
case GGML_OP_SCALE:
if (!any_on_device) {
return false;
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+#ifdef cl_intel_subgroups
+#pragma OPENCL EXTENSION cl_intel_subgroups : enable
+#else
+#pragma OPENCL EXTENSION cl_khr_subgroups : enable
+#endif
+
+#ifdef cl_intel_required_subgroup_size
+#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
+#define INTEL_GPU 1
+#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
+#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
+#elif defined(cl_qcom_reqd_sub_group_size)
+#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
+#define ADRENO_GPU 1
+#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
+#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
+#endif
+
+#define QK4_0 32
+
+typedef char int8_t;
+typedef uchar uint8_t;
+typedef short int16_t;
+typedef ushort uint16_t;
+typedef int int32_t;
+typedef uint uint32_t;
+
+//------------------------------------------------------------------------------
+// block_q4_0
+//------------------------------------------------------------------------------
+struct block_q4_0
+{
+ half d;
+ uint8_t qs[QK4_0 / 2];
+};
+
+// This function requires the original shuffled weights.
+// As a reminder, the original weights are shuffled so that (q[0], q[16]) are
+// packed together in a byte, so are (q[1], q[17]) and so on.
+inline float block_q_4_0_dot_y_flat(
+ global uchar * x,
+ global half * dh,
+ float sumy,
+ float16 yl,
+ int il
+) {
+ float d = *dh;
+ global ushort * qs = ((global ushort *)x + il/2);
+ float acc = 0.f;
+
+ acc += yl.s0 * (qs[0] & 0x000F);
+ acc += yl.s1 * (qs[0] & 0x0F00);
+ acc += yl.s8 * (qs[0] & 0x00F0);
+ acc += yl.s9 * (qs[0] & 0xF000);
+
+ acc += yl.s2 * (qs[1] & 0x000F);
+ acc += yl.s3 * (qs[1] & 0x0F00);
+ acc += yl.sa * (qs[1] & 0x00F0);
+ acc += yl.sb * (qs[1] & 0xF000);
+
+ acc += yl.s4 * (qs[2] & 0x000F);
+ acc += yl.s5 * (qs[2] & 0x0F00);
+ acc += yl.sc * (qs[2] & 0x00F0);
+ acc += yl.sd * (qs[2] & 0xF000);
+
+ acc += yl.s6 * (qs[3] & 0x000F);
+ acc += yl.s7 * (qs[3] & 0x0F00);
+ acc += yl.se * (qs[3] & 0x00F0);
+ acc += yl.sf * (qs[3] & 0xF000);
+
+ return d * (sumy * -8.f + acc);
+}
+
+//
+// This variant outputs 8 values.
+//
+#undef N_DST
+#undef N_SIMDGROUP
+#undef N_SIMDWIDTH
+
+#ifdef INTEL_GPU
+#define N_DST 8 // each SIMD group works on 8 rows
+#define N_SIMDGROUP 1 // number of SIMD groups in a thread group
+#define N_SIMDWIDTH 16 // subgroup size
+#elif defined (ADRENO_GPU)
+#define N_DST 8
+#define N_SIMDGROUP 1
+#define N_SIMDWIDTH 64
+#endif
+
+inline void mul_vec_q_n_f32_8x_flat(
+ global char * src0_q,
+ global half * src0_d,
+ global float * src1,
+ global float * dst,
+ int ne00,
+ int ne01,
+ int ne02,
+ int ne10,
+ int ne12,
+ int ne0,
+ int ne1,
+ int r2,
+ int r3
+) {
+ const ulong nb = ne00/QK4_0;
+
+ int r0 = get_group_id(0);
+ int r1 = get_group_id(1);
+ int im = 0;
+
+ int first_row = (r0 * N_SIMDGROUP + get_sub_group_id()) * N_DST;
+
+ int i12 = im%ne12;
+ int i13 = im/ne12;
+
+ // The number of scales is the same as the number of blocks.
+ ulong offset0_d = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
+ // Each block contains QK4_0/2 uchars, hence offset for qs is as follows.
+ ulong offset0_q = (first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02)) * QK4_0/2;
+
+ global uchar * x = (global uchar *) src0_q + offset0_q;
+ global half * d = (global half *) src0_d + offset0_d;
+ global float * y = (global float *) src1 + r1*ne10 + im*ne00*ne1;
+
+ float16 yl;
+ float8 sumf = 0.f;
+
+ int ix = get_sub_group_local_id()/2;
+ int il = 8*(get_sub_group_local_id()%2);
+
+ global float * yb = y + ix*QK4_0 + il;
+
+ for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) {
+ float sumy = 0.f;
+
+ sumy += yb[0];
+ sumy += yb[1];
+ sumy += yb[2];
+ sumy += yb[3];
+ sumy += yb[4];
+ sumy += yb[5];
+ sumy += yb[6];
+ sumy += yb[7];
+
+ sumy += yb[16];
+ sumy += yb[17];
+ sumy += yb[18];
+ sumy += yb[19];
+ sumy += yb[20];
+ sumy += yb[21];
+ sumy += yb[22];
+ sumy += yb[23];
+
+ yl.s0 = yb[0];
+ yl.s1 = yb[1]/256.f;
+
+ yl.s2 = yb[2];
+ yl.s3 = yb[3]/256.f;
+
+ yl.s4 = yb[4];
+ yl.s5 = yb[5]/256.f;
+
+ yl.s6 = yb[6];
+ yl.s7 = yb[7]/256.f;
+
+ yl.s8 = yb[16]/16.f;
+ yl.s9 = yb[17]/4096.f;
+
+ yl.sa = yb[18]/16.f;
+ yl.sb = yb[19]/4096.f;
+
+ yl.sc = yb[20]/16.f;
+ yl.sd = yb[21]/4096.f;
+
+ yl.se = yb[22]/16.f;
+ yl.sf = yb[23]/4096.f;
+
+ sumf.s0 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 0*nb*QK4_0/2, d + ib + 0*nb, sumy, yl, il);
+ sumf.s1 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 1*nb*QK4_0/2, d + ib + 1*nb, sumy, yl, il);
+ sumf.s2 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 2*nb*QK4_0/2, d + ib + 2*nb, sumy, yl, il);
+ sumf.s3 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 3*nb*QK4_0/2, d + ib + 3*nb, sumy, yl, il);
+
+ sumf.s4 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 4*nb*QK4_0/2, d + ib + 4*nb, sumy, yl, il);
+ sumf.s5 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 5*nb*QK4_0/2, d + ib + 5*nb, sumy, yl, il);
+ sumf.s6 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 6*nb*QK4_0/2, d + ib + 6*nb, sumy, yl, il);
+ sumf.s7 += block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 7*nb*QK4_0/2, d + ib + 7*nb, sumy, yl, il);
+
+ yb += QK4_0 * (N_SIMDWIDTH/2);
+ }
+
+ float8 tot = (float8)(
+ sub_group_reduce_add(sumf.s0), sub_group_reduce_add(sumf.s1),
+ sub_group_reduce_add(sumf.s2), sub_group_reduce_add(sumf.s3),
+ sub_group_reduce_add(sumf.s4), sub_group_reduce_add(sumf.s5),
+ sub_group_reduce_add(sumf.s6), sub_group_reduce_add(sumf.s7)
+ );
+
+ if (get_sub_group_local_id() == 0) {
+ if (first_row + 0 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 0] = tot.s0;
+ }
+ if (first_row + 1 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 1] = tot.s1;
+ }
+ if (first_row + 2 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 2] = tot.s2;
+ }
+ if (first_row + 3 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 3] = tot.s3;
+ }
+
+ if (first_row + 4 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 4] = tot.s4;
+ }
+ if (first_row + 5 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 5] = tot.s5;
+ }
+ if (first_row + 6 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 6] = tot.s6;
+ }
+ if (first_row + 7 < ne01) {
+ dst[r1*ne0 + im*ne0*ne1 + first_row + 7] = tot.s7;
+ }
+ }
+}
+
+#ifdef INTEL_GPU
+REQD_SUBGROUP_SIZE_16
+#elif defined (ADRENO_GPU)
+REQD_SUBGROUP_SIZE_64
+#endif
+kernel void kernel_mul_mv_id_q4_0_f32_8x_flat(
+ global char * src0_q,
+ global half * src0_d,
+ global float * src1,
+ ulong offset1,
+ global char * src2,
+ ulong offset2,
+ global float * dst,
+ ulong offsetd,
+ int ne00,
+ int ne01,
+ int ne02,
+ ulong nb00,
+ ulong nb02,
+ int ne10,
+ int ne11,
+ int ne12,
+ ulong nb11,
+ ulong nb12,
+ int ne20,
+ int ne21,
+ ulong nb21,
+ int ne0,
+ int ne1,
+ int r2,
+ int r3
+) {
+ src1 = (global float *)((global char *)src1 + offset1);
+ src2 = (global char *)((global char *)src2 + offset2);
+ dst = (global float *)((global char *)dst + offsetd);
+
+ const int iid1 = get_group_id(2)/ne20;
+ const int idx = get_group_id(2)%ne20;
+
+ const int i02 = ((global int *)(src2 + iid1*nb21))[idx];
+
+ const int i11 = idx%ne11;
+ const int i12 = iid1;
+
+ const int i1 = idx;
+ const int i2 = i12;
+
+ global char * src0_q_cur = src0_q + (i02*nb02/nb00)*(QK4_0/2);
+ global half * src0_d_cur = src0_d + (i02*nb02/nb00);
+ global float * src1_cur = (global float *)((global char *) src1 + i11*nb11 + i12*nb12);
+ global float * dst_cur = dst + i1*ne0 + i2*ne1*ne0;
+
+ mul_vec_q_n_f32_8x_flat(src0_q_cur, src0_d_cur, src1_cur, dst_cur, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3);
+}