return any(p in name for p in ["audio", "codebook", "conformer", "depth_embedding", "depthformer", "depth_linear"])
+@ModelBase.register("Lfm2Model")
+class LFM2ColBertModel(LFM2Model):
+ model_arch = gguf.MODEL_ARCH.LFM2
+ dense_tensor_name = "dense_2"
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ if not name.startswith(self.dense_tensor_name):
+ name = "model." + name
+
+ return super().modify_tensors(data_torch, name, bid)
+
+ def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
+ # dense tensor is stored in a separate safetensors file
+ from safetensors.torch import load_file
+ tensors_file = self.dir_model / "1_Dense" / "model.safetensors"
+ assert tensors_file.is_file()
+ tensor = load_file(tensors_file)["linear.weight"]
+ self.gguf_writer.add_embedding_length_out(tensor.shape[0])
+ yield f"{self.dense_tensor_name}.weight", tensor.clone()
+
+
@ModelBase.register("Lfm2MoeForCausalLM")
class LFM2MoeModel(TextModel):
model_arch = gguf.MODEL_ARCH.LFM2MOE
}
}
-static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd, int embd_norm) {
+static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd_out, int embd_norm) {
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
// clear previous kv_cache values (irrelevant for embeddings)
GGML_ASSERT(embd != NULL && "failed to get sequence embeddings");
}
- float * out = output + embd_pos * n_embd;
- common_embd_normalize(embd, out, n_embd, embd_norm);
+ float * out = output + embd_pos * n_embd_out;
+ common_embd_normalize(embd, out, n_embd_out, embd_norm);
}
}
}
// allocate output
- const int n_embd = llama_model_n_embd(model);
- std::vector<float> embeddings(n_embd_count * n_embd, 0);
+ const int n_embd_out = llama_model_n_embd_out(model);
+ std::vector<float> embeddings(n_embd_count * n_embd_out, 0);
float * emb = embeddings.data();
// break into batches
// encode if at capacity
if (batch.n_tokens + n_toks > n_batch || s >= n_seq_max) {
- float * out = emb + e * n_embd;
- batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize);
+ float * out = emb + e * n_embd_out;
+ batch_decode(ctx, batch, out, s, n_embd_out, params.embd_normalize);
e += pooling_type == LLAMA_POOLING_TYPE_NONE ? batch.n_tokens : s;
s = 0;
common_batch_clear(batch);
}
// final batch
- float * out = emb + e * n_embd;
- batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize);
+ float * out = emb + e * n_embd_out;
+ batch_decode(ctx, batch, out, s, n_embd_out, params.embd_normalize);
if (params.embd_out.empty()) {
LOG("\n");
if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
for (int j = 0; j < n_embd_count; j++) {
LOG("embedding %d: ", j);
- for (int i = 0; i < std::min(3, n_embd); i++) {
+ for (int i = 0; i < std::min(3, n_embd_out); i++) {
if (params.embd_normalize == 0) {
- LOG("%6.0f ", emb[j * n_embd + i]);
+ LOG("%6.0f ", emb[j * n_embd_out + i]);
} else {
- LOG("%9.6f ", emb[j * n_embd + i]);
+ LOG("%9.6f ", emb[j * n_embd_out + i]);
}
}
LOG(" ... ");
- for (int i = n_embd - 3; i < n_embd; i++) {
+ for (int i = n_embd_out - 3; i < n_embd_out; i++) {
if (params.embd_normalize == 0) {
- LOG("%6.0f ", emb[j * n_embd + i]);
+ LOG("%6.0f ", emb[j * n_embd_out + i]);
} else {
- LOG("%9.6f ", emb[j * n_embd + i]);
+ LOG("%9.6f ", emb[j * n_embd_out + i]);
}
}
LOG("\n");
for (uint32_t i = 0; i < n_cls_out; i++) {
// NOTE: if you change this log - update the tests in ci/run.sh
if (n_cls_out == 1) {
- LOG("rerank score %d: %8.3f\n", j, emb[j * n_embd]);
+ LOG("rerank score %d: %8.3f\n", j, emb[j * n_embd_out]);
} else {
- LOG("rerank score %d: %8.3f [%s]\n", j, emb[j * n_embd + i], cls_out_labels[i].c_str());
+ LOG("rerank score %d: %8.3f [%s]\n", j, emb[j * n_embd_out + i], cls_out_labels[i].c_str());
}
}
}
// print the first part of the embeddings or for a single prompt, the full embedding
for (int j = 0; j < n_prompts; j++) {
LOG("embedding %d: ", j);
- for (int i = 0; i < (n_prompts > 1 ? std::min(16, n_embd) : n_embd); i++) {
+ for (int i = 0; i < (n_prompts > 1 ? std::min(16, n_embd_out) : n_embd_out); i++) {
if (params.embd_normalize == 0) {
- LOG("%6.0f ", emb[j * n_embd + i]);
+ LOG("%6.0f ", emb[j * n_embd_out + i]);
} else {
- LOG("%9.6f ", emb[j * n_embd + i]);
+ LOG("%9.6f ", emb[j * n_embd_out + i]);
}
}
LOG("\n");
LOG("\n");
for (int i = 0; i < n_prompts; i++) {
for (int j = 0; j < n_prompts; j++) {
- float sim = common_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
+ float sim = common_embd_similarity_cos(emb + i * n_embd_out, emb + j * n_embd_out, n_embd_out);
LOG("%6.2f ", sim);
}
LOG("%1.10s", prompts[i].c_str());
if (notArray) LOG(" {\n \"object\": \"embedding\",\n \"index\": %d,\n \"embedding\": ",j);
LOG("[");
for (int i = 0;;) { // at least one iteration (n_embd > 0)
- LOG(params.embd_normalize == 0 ? "%1.0f" : "%1.7f", emb[j * n_embd + i]);
+ LOG(params.embd_normalize == 0 ? "%1.0f" : "%1.7f", emb[j * n_embd_out + i]);
i++;
- if (i < n_embd) LOG(","); else break;
+ if (i < n_embd_out) LOG(","); else break;
}
LOG(notArray ? "]\n }" : "]");
j++;
for (int i = 0;;) { // at least two iteration (n_embd_count > 1)
LOG(" [");
for (int j = 0;;) { // at least two iteration (n_embd_count > 1)
- float sim = common_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
+ float sim = common_embd_similarity_cos(emb + i * n_embd_out, emb + j * n_embd_out, n_embd_out);
LOG("%6.2f", sim);
j++;
if (j < n_embd_count) LOG(", "); else break;
if (notArray) LOG("\n}\n");
} else if (params.embd_out == "raw") {
- print_raw_embeddings(emb, n_embd_count, n_embd, model, pooling_type, params.embd_normalize);
+ print_raw_embeddings(emb, n_embd_count, n_embd_out, model, pooling_type, params.embd_normalize);
}
LOG("\n");
std::vector<float> embd_out;
if (embedding_mode) {
- const int n_embd = llama_model_n_embd(model);
+ const int n_embd_out = llama_model_n_embd_out(model);
const int n_embd_count = pooling_enabled ? 1 : batch.n_tokens;
- const int n_embeddings = n_embd * n_embd_count;
+ const int n_embeddings = n_embd_out * n_embd_count;
float * embeddings;
type = "-embeddings";
embeddings = llama_get_embeddings(ctx);
}
- printf("Embedding dimension: %d\n", n_embd);
+ printf("Embedding dimension: %d\n", n_embd_out);
printf("\n");
// Print embeddings in the specified format
printf("embedding %d: ", j);
// Print first 3 values
- for (int i = 0; i < 3 && i < n_embd; i++) {
- printf("%9.6f ", embeddings[j * n_embd + i]);
+ for (int i = 0; i < 3 && i < n_embd_out; i++) {
+ printf("%9.6f ", embeddings[j * n_embd_out + i]);
}
printf(" ... ");
// Print last 3 values
- for (int i = n_embd - 3; i < n_embd; i++) {
+ for (int i = n_embd_out - 3; i < n_embd_out; i++) {
if (i >= 0) {
- printf("%9.6f ", embeddings[j * n_embd + i]);
+ printf("%9.6f ", embeddings[j * n_embd_out + i]);
}
}
struct llama_batch batch = llama_batch_init(n_batch, 0, 1);
// allocate output
- const int n_embd = llama_model_n_embd(model);
- std::vector<float> embeddings(n_chunks * n_embd, 0);
+ const int n_embd_out = llama_model_n_embd_out(model);
+ std::vector<float> embeddings(n_chunks * n_embd_out, 0);
float * emb = embeddings.data();
// break into batches
// encode if at capacity
if (batch.n_tokens + n_toks > n_batch || s >= llama_n_seq_max(ctx)) {
- float * out = emb + p * n_embd;
- batch_process(ctx, batch, out, s, n_embd);
+ float * out = emb + p * n_embd_out;
+ batch_process(ctx, batch, out, s, n_embd_out);
common_batch_clear(batch);
p += s;
s = 0;
}
// final batch
- float * out = emb + p * n_embd;
- batch_process(ctx, batch, out, s, n_embd);
+ float * out = emb + p * n_embd_out;
+ batch_process(ctx, batch, out, s, n_embd_out);
// save embeddings to chunks
for (int i = 0; i < n_chunks; i++) {
- chunks[i].embedding = std::vector<float>(emb + i * n_embd, emb + (i + 1) * n_embd);
+ chunks[i].embedding = std::vector<float>(emb + i * n_embd_out, emb + (i + 1) * n_embd_out);
// clear tokens as they are no longer needed
chunks[i].tokens.clear();
}
batch_add_seq(query_batch, query_tokens, 0);
- std::vector<float> query_emb(n_embd, 0);
- batch_process(ctx, query_batch, query_emb.data(), 1, n_embd);
+ std::vector<float> query_emb(n_embd_out, 0);
+ batch_process(ctx, query_batch, query_emb.data(), 1, n_embd_out);
common_batch_clear(query_batch);
{
std::vector<std::pair<int, float>> similarities;
for (int i = 0; i < n_chunks; i++) {
- float sim = common_embd_similarity_cos(chunks[i].embedding.data(), query_emb.data(), n_embd);
+ float sim = common_embd_similarity_cos(chunks[i].embedding.data(), query_emb.data(), n_embd_out);
similarities.push_back(std::make_pair(i, sim));
}
VOCAB_SIZE = "{arch}.vocab_size"
CONTEXT_LENGTH = "{arch}.context_length"
EMBEDDING_LENGTH = "{arch}.embedding_length"
+ EMBEDDING_LENGTH_OUT = "{arch}.embedding_length_out"
FEATURES_LENGTH = "{arch}.features_length"
BLOCK_COUNT = "{arch}.block_count"
LEADING_DENSE_BLOCK_COUNT = "{arch}.leading_dense_block_count"
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.OUTPUT,
+ MODEL_TENSOR.DENSE_2_OUT, # LFM2-ColBert-350M
],
MODEL_ARCH.LFM2MOE: [
MODEL_TENSOR.TOKEN_EMBD,
def add_embedding_length(self, length: int) -> None:
self.add_uint32(Keys.LLM.EMBEDDING_LENGTH.format(arch=self.arch), length)
+ def add_embedding_length_out(self, length: int) -> None:
+ self.add_uint32(Keys.LLM.EMBEDDING_LENGTH_OUT.format(arch=self.arch), length)
+
def add_features_length(self, length: int) -> None:
self.add_uint32(Keys.LLM.FEATURES_LENGTH.format(arch=self.arch), length)
LLAMA_API int32_t llama_model_n_ctx_train(const struct llama_model * model);
LLAMA_API int32_t llama_model_n_embd (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_embd_inp (const struct llama_model * model);
+ LLAMA_API int32_t llama_model_n_embd_out (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_layer (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_head (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_head_kv (const struct llama_model * model);
{ LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
{ LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
{ LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
+ { LLM_KV_EMBEDDING_LENGTH_OUT, "%s.embedding_length_out" },
{ LLM_KV_FEATURES_LENGTH, "%s.features_length" },
{ LLM_KV_BLOCK_COUNT, "%s.block_count" },
{ LLM_KV_LEADING_DENSE_BLOCK_COUNT, "%s.leading_dense_block_count" },
LLM_TENSOR_TOKEN_EMBD,
LLM_TENSOR_OUTPUT_NORM_LFM2,
LLM_TENSOR_OUTPUT,
+ LLM_TENSOR_DENSE_2_OUT,
};
case LLM_ARCH_LFM2MOE:
return {
LLM_KV_VOCAB_SIZE,
LLM_KV_CONTEXT_LENGTH,
LLM_KV_EMBEDDING_LENGTH,
+ LLM_KV_EMBEDDING_LENGTH_OUT,
LLM_KV_FEATURES_LENGTH,
LLM_KV_BLOCK_COUNT,
LLM_KV_LEADING_DENSE_BLOCK_COUNT,
throw std::runtime_error(format("corrupt output buffer (j=%" PRId64 ", n_outputs=%d)", j, n_outputs));
}
- return embd + j*model.hparams.n_embd;
+ const uint32_t n_embd_out = model.hparams.get_n_embd_out();
+ return embd + j*n_embd_out;
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
#ifndef NDEBUG
{
// extract token embeddings
GGML_ASSERT(embd != nullptr);
+ const uint32_t n_embd_out = hparams.get_n_embd_out();
- GGML_ASSERT(n_tokens*n_embd <= (int64_t) embd_size);
- ggml_backend_tensor_get_async(backend_embd, t_embd, embd, 0, n_tokens*n_embd*sizeof(float));
+ GGML_ASSERT(n_tokens*n_embd_out <= (int64_t) embd_size);
+ ggml_backend_tensor_get_async(backend_embd, t_embd, embd, 0, n_tokens*n_embd_out*sizeof(float));
} break;
case LLAMA_POOLING_TYPE_MEAN:
case LLAMA_POOLING_TYPE_CLS:
{
// extract token embeddings
GGML_ASSERT(embd != nullptr);
- float * embd_out = embd + n_outputs_prev*n_embd;
+ const uint32_t n_embd_out = hparams.get_n_embd_out();
+ float * embd_out = embd + n_outputs_prev*n_embd_out;
if (n_outputs) {
GGML_ASSERT( n_outputs_prev + n_outputs <= n_outputs_all);
- GGML_ASSERT((n_outputs_prev + n_outputs)*n_embd <= (int64_t) embd_size);
- ggml_backend_tensor_get_async(backend_embd, t_embd, embd_out, 0, n_outputs*n_embd*sizeof(float));
+ GGML_ASSERT((n_outputs_prev + n_outputs)*n_embd_out <= (int64_t) embd_size);
+ ggml_backend_tensor_get_async(backend_embd, t_embd, embd_out, 0, n_outputs*n_embd_out*sizeof(float));
}
} break;
case LLAMA_POOLING_TYPE_MEAN:
const int64_t n_outputs_max = std::max<int64_t>(n_outputs, n_seq_max());
- const auto n_batch = cparams.n_batch;
- const auto n_vocab = vocab.n_tokens();
- const auto n_embd = hparams.n_embd;
+ const auto n_batch = cparams.n_batch;
+ const auto n_vocab = vocab.n_tokens();
+ const auto n_embd_out = hparams.get_n_embd_out();
bool has_logits = true;
bool has_embd = cparams.embeddings;
// Allocate CPU logits buffer only if needed by sequences in this batch
logits_size = (has_logits && cpu_logits) ? n_vocab*n_outputs_max : 0;
- embd_size = has_embd ? n_embd*n_outputs_max : 0;
+ embd_size = has_embd ? n_embd_out*n_outputs_max : 0;
// TODO: avoid this branching by working with the worst-case
if (!has_sampling) {
void llm_graph_context::build_dense_out(
ggml_tensor * dense_2,
ggml_tensor * dense_3) const {
- if (!cparams.embeddings || dense_2 == nullptr || dense_3 == nullptr) {
+ if (!cparams.embeddings || !(dense_2 || dense_3)) {
return;
}
ggml_tensor * cur = res->t_embd_pooled != nullptr ? res->t_embd_pooled : res->t_embd;
GGML_ASSERT(cur != nullptr && "missing t_embd_pooled/t_embd");
- cur = ggml_mul_mat(ctx0, dense_2, cur);
- cur = ggml_mul_mat(ctx0, dense_3, cur);
+ if (dense_2) {
+ cur = ggml_mul_mat(ctx0, dense_2, cur);
+ }
+ if (dense_3) {
+ cur = ggml_mul_mat(ctx0, dense_3, cur);
+ }
cb(cur, "result_embd_pooled", -1);
res->t_embd_pooled = cur;
ggml_build_forward_expand(gf, cur);
return n_embd_inp;
}
+uint32_t llama_hparams::get_n_embd_out() const {
+ return n_embd_out > 0 ? n_embd_out : n_embd;
+}
+
uint32_t llama_hparams::n_embd_k_gqa(uint32_t il) const {
const uint32_t n_head_kv = this->n_head_kv(il);
// for Classifiers
uint32_t n_cls_out = 1;
+ // output embedding dimension (0 = use n_embd)
+ uint32_t n_embd_out = 0;
+
// llama4 smallthinker
uint32_t n_moe_layer_step = 0;
uint32_t n_no_rope_layer_step = 4;
// dimension of main + auxiliary input embeddings
uint32_t n_embd_inp() const;
+ // dimension of output embeddings
+ uint32_t get_n_embd_out() const;
+
// dimension of key embeddings across all k-v heads
uint32_t n_embd_k_gqa(uint32_t il = 0) const;
add_kv(LLM_KV_VOCAB_SIZE, vocab.n_tokens());
add_kv(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
add_kv(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
+ if (hparams.n_embd_out > 0) {
+ add_kv(LLM_KV_EMBEDDING_LENGTH_OUT, hparams.n_embd_out);
+ }
add_kv(LLM_KV_BLOCK_COUNT, hparams.n_layer);
add_kv(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
add_kv(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, true);
ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
+ ml.get_key(LLM_KV_EMBEDDING_LENGTH_OUT, hparams.n_embd_out, false);
ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
layer.shortconv.out_proj = create_tensor(tn(LLM_TENSOR_SHORTCONV_OUTPROJ, "weight", i), {n_embd, n_embd}, 0);
}
}
+
+ // for LFM2-ColBert-350M
+ dense_2_out_layers = create_tensor(tn(LLM_TENSOR_DENSE_2_OUT, "weight"), {n_embd, hparams.get_n_embd_out()}, TENSOR_NOT_REQUIRED);
} break;
case LLM_ARCH_SMALLTHINKER:
{
return model->hparams.n_embd_inp();
}
+int32_t llama_model_n_embd_out(const llama_model * model) {
+ return model->hparams.get_n_embd_out();
+}
+
int32_t llama_model_n_layer(const llama_model * model) {
return model->hparams.n_layer;
}
res->n_tokens = slot.task->n_tokens();
res->res_type = slot.task->params.res_type;
- const int n_embd = llama_model_n_embd(model);
+ const int n_embd_out = llama_model_n_embd_out(model);
- std::vector<float> embd_res(n_embd, 0.0f);
+ std::vector<float> embd_res(n_embd_out, 0.0f);
for (int i = 0; i < batch.n_tokens; ++i) {
if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
if (embd == nullptr) {
SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
- res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
+ res->embedding.push_back(std::vector<float>(n_embd_out, 0.0f));
continue;
}
// normalize only when there is pooling
if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
- common_embd_normalize(embd, embd_res.data(), n_embd, slot.task->params.embd_normalize);
+ common_embd_normalize(embd, embd_res.data(), n_embd_out, slot.task->params.embd_normalize);
res->embedding.push_back(embd_res);
break;
}
- res->embedding.emplace_back(embd, embd + n_embd);
+ res->embedding.emplace_back(embd, embd + n_embd_out);
}
SLT_DBG(slot, "%s", "sending embeddings\n");