if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
self.gguf_writer.add_expert_used_count(n_experts_used)
logger.info(f"gguf: experts used count = {n_experts_used}")
+ if (n_expert_groups := self.hparams.get("n_group")) is not None:
+ self.gguf_writer.add_expert_group_count(n_expert_groups)
+ logger.info(f"gguf: expert groups count = {n_expert_groups}")
+ if (n_group_used := self.hparams.get("topk_group")) is not None:
+ self.gguf_writer.add_expert_group_used_count(n_group_used)
+ logger.info(f"gguf: expert groups used count = {n_group_used}")
if (head_dim := self.hparams.get("head_dim")) is not None:
self.gguf_writer.add_key_length(head_dim)
self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
self.gguf_writer.add_expert_count(hparams["num_experts"])
self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
- self.gguf_writer.add_expert_group_count(hparams["n_group"])
- self.gguf_writer.add_expert_group_used_count(hparams["topk_group"])
self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
if hparams["score_function"] == "sigmoid":
LLAMA_LOG_INFO("%s: n_ff = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_ff(il); }, hparams.n_layer).c_str());
LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
+ LLAMA_LOG_INFO("%s: n_expert_groups = %d\n", __func__, hparams.n_expert_groups);
+ LLAMA_LOG_INFO("%s: n_group_used = %d\n", __func__, hparams.n_group_used);
LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
- LLAMA_LOG_INFO("%s: n_expert_groups = %d\n", __func__, hparams.n_expert_groups);
- LLAMA_LOG_INFO("%s: n_group_used = %d\n", __func__, hparams.n_group_used);
LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));