--- /dev/null
+#include "common.h"
+#include "llama.h"
+
+#include <cmath>
+#include <cstdio>
+#include <string>
+#include <vector>
+
+int main(int argc, char ** argv){
+ gpt_params params;
+
+ if (!gpt_params_parse(argc, argv, params)) {
+ return 1;
+ }
+
+ // max/min n-grams size to search for in prompt
+ const int ngram_max = 4;
+ const int ngram_min = 1;
+
+ // length of the candidate / draft sequence, if match is found
+ const int n_draft = params.n_draft;
+
+ const bool dump_kv_cache = params.dump_kv_cache;
+
+#ifndef LOG_DISABLE_LOGS
+ log_set_target(log_filename_generator("lookup", "log"));
+ LOG_TEE("Log start\n");
+ log_dump_cmdline(argc, argv);
+#endif // LOG_DISABLE_LOGS
+
+ // init llama.cpp
+ llama_backend_init(params.numa);
+
+ llama_model * model = NULL;
+ llama_context * ctx = NULL;
+
+ // load the model
+ std::tie(model, ctx) = llama_init_from_gpt_params(params);
+
+ // tokenize the prompt
+ const bool add_bos = llama_should_add_bos_token(model);
+ LOG("add_bos tgt: %d\n", add_bos);
+
+ std::vector<llama_token> inp;
+ inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
+
+ const int max_context_size = llama_n_ctx(ctx);
+ const int max_tokens_list_size = max_context_size - 4;
+
+ if ((int) inp.size() > max_tokens_list_size) {
+ fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
+ return 1;
+ }
+
+ fprintf(stderr, "\n\n");
+
+ for (auto id : inp) {
+ fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
+ }
+
+ fflush(stderr);
+
+ const int n_input = inp.size();
+
+ const auto t_enc_start = ggml_time_us();
+
+ llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1, 0, 0));
+ llama_decode(ctx, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0));
+
+ const auto t_enc_end = ggml_time_us();
+
+ int n_predict = 0;
+ int n_drafted = 0;
+ int n_accept = 0;
+
+ int n_past = inp.size();
+
+ bool has_eos = false;
+
+ struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
+
+ std::vector<llama_token> draft;
+
+ llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, 1);
+
+ // debug
+ struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, 1);
+
+ const auto t_dec_start = ggml_time_us();
+
+ while (true) {
+ // debug
+ if (dump_kv_cache) {
+ llama_kv_cache_view_update(ctx, &kvc_view);
+ dump_kv_cache_view_seqs(kvc_view, 40);
+ }
+
+ // print current draft sequence
+ LOG("drafted %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, draft).c_str());
+
+ int i_dft = 0;
+ while (true) {
+ // sample from the target model
+ llama_token id = llama_sampling_sample(ctx_sampling, ctx, NULL, i_dft);
+
+ llama_sampling_accept(ctx_sampling, ctx, id, true);
+
+ const std::string token_str = llama_token_to_piece(ctx, id);
+
+ if (!params.use_color) {
+ printf("%s", token_str.c_str());
+ }
+
+ if (id == llama_token_eos(model)) {
+ has_eos = true;
+ }
+
+ ++n_predict;
+
+ // check if the target token matches the draft
+ if (i_dft < (int) draft.size() && id == draft[i_dft]) {
+ LOG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n", i_dft, id, token_str.c_str());
+ ++n_accept;
+ ++n_past;
+ ++i_dft;
+ inp.push_back(id);
+
+ if (params.use_color) {
+ // color accepted draft token
+ printf("\033[34m%s\033[0m", token_str.c_str());
+ fflush(stdout);
+ }
+ continue;
+ }
+
+ if (params.use_color) {
+ printf("%s", token_str.c_str());
+ }
+ fflush(stdout);
+
+
+ LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str());
+
+ draft.clear();
+ draft.push_back(id);
+ inp.push_back(id);
+ break;
+ }
+
+ if ((params.n_predict > 0 && n_predict > params.n_predict) || has_eos) {
+ break;
+ }
+
+ // KV cache management
+ // clean the cache of draft tokens that weren't accepted
+ llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
+
+ llama_batch_clear(batch_tgt);
+ llama_batch_add(batch_tgt, draft[0], n_past, { 0 }, true);
+
+ // generate n_pred tokens through prompt lookup
+ auto prompt_lookup = [&]() -> void {
+ int inp_size = inp.size();
+ for (int ngram_size = ngram_max ; ngram_size > ngram_min; --ngram_size){
+ const llama_token * ngram = &inp[inp_size - ngram_size];
+
+ for (int i = 0; i <= (int) inp_size - (ngram_size * 2); ++i) {
+ bool match = true;
+ for (int j = 0; j < ngram_size; ++j) {
+ if (inp[i + j] != ngram[j]) {
+ match = false;
+ break;
+ }
+ }
+
+ if (match) {
+ const int startIdx = i + ngram_size;
+ const int endIdx = startIdx + n_draft;
+ if (endIdx < inp_size) {
+ for (int j = startIdx; j < endIdx; ++j) {
+ LOG(" - draft candidate %d: %d\n", j, inp[j]);
+ draft.push_back(inp[j]);
+ llama_batch_add(batch_tgt, inp[j], n_past + (j - startIdx) + 1, { 0 }, true);
+ ++n_drafted;
+ }
+ return;
+ }
+ }
+ }
+ }
+ return;
+ };
+
+ prompt_lookup();
+
+ llama_decode(ctx, batch_tgt);
+ ++n_past;
+
+ draft.erase(draft.begin());
+ }
+
+ auto t_dec_end = ggml_time_us();
+
+ LOG_TEE("\n\n");
+
+ LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
+ LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
+
+ LOG_TEE("\n");
+ LOG_TEE("n_draft = %d\n", n_draft);
+ LOG_TEE("n_predict = %d\n", n_predict);
+ LOG_TEE("n_drafted = %d\n", n_drafted);
+ LOG_TEE("n_accept = %d\n", n_accept);
+ LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
+
+ LOG_TEE("\ntarget:\n");
+ llama_print_timings(ctx);
+
+ llama_sampling_free(ctx_sampling);
+ llama_batch_free(batch_tgt);
+
+ llama_free(ctx);
+ llama_free_model(model);
+
+ llama_backend_free();
+
+ fprintf(stderr, "\n\n");
+
+ return 0;
+}