]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
llama : support for Llama-3_1-Nemotron-51B (#10669)
authorymcki <redacted>
Mon, 23 Dec 2024 00:22:33 +0000 (08:22 +0800)
committerGitHub <redacted>
Mon, 23 Dec 2024 00:22:33 +0000 (01:22 +0100)
* conflict resolution

* move comments after bracket to its own line

convert_hf_to_gguf.py
gguf-py/gguf/constants.py
gguf-py/gguf/tensor_mapping.py
src/llama.cpp

index 66aa7f5b10eee4289166920ff8cf4abd84191686..d95fb12967eaaa570105fe665ad7f01b688ebdac 100755 (executable)
@@ -1692,6 +1692,184 @@ class LlamaModel(Model):
                 raise ValueError(f"Unprocessed experts: {experts}")
 
 
+@Model.register("DeciLMForCausalLM")
+class DeciModel(Model):
+    model_arch = gguf.MODEL_ARCH.DECI
+
+    @staticmethod
+    def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
+        # DeciLM-specific code
+        intermediate_size = int(2 * ffn_mult * n_embd / 3)
+        return DeciModel._find_multiple(intermediate_size, 256)
+
+    @staticmethod
+    def _find_multiple(n: int, k: int) -> int:
+        # DeciLM-specific code
+        if n % k == 0:
+            return n
+        return n + k - (n % k)
+
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
+
+        if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
+            _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
+            assert self.block_count == len(_block_configs)
+            self._num_kv_heads = list()
+            self._num_heads = list()
+            _ffn_multipliers = list()
+            # ***linear attention layer***
+            # if n_heads_in_group is None and replace_with_linear is True
+            # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
+            # ***attention-free layer***
+            # if n_heads_in_group is None and replace_with_linear is False
+            # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
+            # ***normal attention-layer***
+            # if n_heads_in_group is not None, then
+            # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
+            # _num_heads[il] is num_attention_head
+            for il in range(len(_block_configs)):
+                if _block_configs[il]["attention"]["n_heads_in_group"] is None:
+                    if _block_configs[il]["attention"]["replace_with_linear"] is True:
+                        self._num_kv_heads.append(0)
+                        self._num_heads.append(self.hparams["num_attention_heads"])
+                    else:
+                        self._num_kv_heads.append(0)
+                        self._num_heads.append(0)
+                else:
+                    self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
+                    self._num_heads.append(self.hparams["num_attention_heads"])
+                _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
+            assert self.block_count == len(self._num_kv_heads)
+            assert self.block_count == len(self._num_heads)
+            assert self.block_count == len(_ffn_multipliers)
+            assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
+            assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
+            assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
+            self._ffn_dims: list[int] = [
+                DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
+                for multiplier in _ffn_multipliers
+            ]
+
+    def set_vocab(self):
+        # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
+        # eos_token from '|eot_id|' to '|end_of_text|'
+        if self.hparams.get("vocab_size", 128256) == 128256:
+            tokens, toktypes, tokpre = self.get_vocab_base()
+            self.gguf_writer.add_tokenizer_model("gpt2")
+            self.gguf_writer.add_tokenizer_pre(tokpre)
+            self.gguf_writer.add_token_list(tokens)
+            self.gguf_writer.add_token_types(toktypes)
+
+            special_vocab = gguf.SpecialVocab(
+                self.dir_model, load_merges=True,
+                special_token_types = ['bos', 'eos', 'eom', 'eot']
+            )
+            special_vocab._set_special_token("bos", 128000)
+            special_vocab._set_special_token("eos", 128001)
+            special_vocab._set_special_token("eom", 128008)
+            special_vocab._set_special_token("eot", 128009)
+            special_vocab.add_to_gguf(self.gguf_writer)
+        else:
+            # DeciLM-7B
+            self._set_vocab_llama_hf()
+#            self._set_vocab_gpt2()
+
+    def set_gguf_parameters(self):
+        if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
+            assert self.block_count == len(self._num_kv_heads)
+            assert self.block_count == len(self._num_heads)
+            assert self.block_count == len(self._ffn_dims)
+            self.gguf_writer.add_head_count_kv(self._num_kv_heads)
+            self.gguf_writer.add_head_count(self._num_heads)
+            self.gguf_writer.add_feed_forward_length(self._ffn_dims)
+            self.gguf_writer.add_block_count(self.block_count)
+            self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
+            self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
+            self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
+            self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
+            self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
+            self.gguf_writer.add_file_type(self.ftype)
+        else: # DeciLM-7B
+            super().set_gguf_parameters()
+            if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
+                self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
+                assert self.block_count == len(self._num_kv_heads)
+                self.gguf_writer.add_head_count_kv(self._num_kv_heads)
+        hparams = self.hparams
+        self.gguf_writer.add_vocab_size(hparams["vocab_size"])
+
+        if "head_dim" in hparams:
+            rope_dim = hparams["head_dim"]
+        else:
+            rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
+        self.gguf_writer.add_rope_dimension_count(rope_dim)
+
+        if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
+            if self.hparams["rope_scaling"].get("type") == "linear":
+                self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
+                self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
+
+    @staticmethod
+    def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
+        if n_head_kv is not None and n_head != n_head_kv:
+            n_head = n_head_kv
+        return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
+                .swapaxes(1, 2)
+                .reshape(weights.shape))
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        n_head = self.hparams["num_attention_heads"]
+        if bid is not None:
+            if "num_key_value_heads_per_layer" in self.hparams:
+                n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
+            elif "block_configs" in self.hparams:
+                n_kv_head = self._num_kv_heads[bid]
+                n_head = self._num_heads[bid]
+            else:
+                n_kv_head = self.hparams.get("num_key_value_heads")
+        else:
+            n_kv_head = self.hparams.get("num_key_value_heads")
+
+        if name.endswith(("q_proj.weight", "q_proj.bias")):
+            data_torch = DeciModel.permute(data_torch, n_head, n_head)
+        if name.endswith(("k_proj.weight", "k_proj.bias")):
+            data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
+        return [(self.map_tensor_name(name), data_torch)]
+
+    def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
+        if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
+            if rope_scaling.get("rope_type", '').lower() == "llama3":
+                base = self.hparams.get("rope_theta", 10000.0)
+                dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
+                freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
+
+                factor = rope_scaling.get("factor", 8.0)
+                low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
+                high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
+                old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
+
+                low_freq_wavelen = old_context_len / low_freq_factor
+                high_freq_wavelen = old_context_len / high_freq_factor
+                assert low_freq_wavelen != high_freq_wavelen
+
+                rope_factors = []
+                for freq in freqs:
+                    wavelen = 2 * math.pi / freq
+                    if wavelen < high_freq_wavelen:
+                        rope_factors.append(1)
+                    elif wavelen > low_freq_wavelen:
+                        rope_factors.append(factor)
+                    else:
+                        smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
+                        rope_factors.append(1 / ((1 - smooth) / factor + smooth))
+
+                yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
+
+    def prepare_tensors(self):
+        super().prepare_tensors()
+
+
 @Model.register("BitnetForCausalLM")
 class BitnetModel(Model):
     model_arch = gguf.MODEL_ARCH.BITNET
index a40df974d1fcaad2c83105a64f48148249b3937b..273370370e6ca15891de82bdd6aa188f2ed093a2 100644 (file)
@@ -221,6 +221,7 @@ class GGUFType:
 
 class MODEL_ARCH(IntEnum):
     LLAMA            = auto()
+    DECI             = auto()
     FALCON           = auto()
     BAICHUAN         = auto()
     GROK             = auto()
@@ -402,6 +403,7 @@ class MODEL_TENSOR(IntEnum):
 
 MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
     MODEL_ARCH.LLAMA:            "llama",
+    MODEL_ARCH.DECI:             "deci",
     MODEL_ARCH.FALCON:           "falcon",
     MODEL_ARCH.BAICHUAN:         "baichuan",
     MODEL_ARCH.GROK:             "grok",
@@ -602,6 +604,26 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
         MODEL_TENSOR.FFN_DOWN_EXP,
         MODEL_TENSOR.FFN_UP_EXP,
     ],
+    MODEL_ARCH.DECI: [
+        MODEL_TENSOR.TOKEN_EMBD,
+        MODEL_TENSOR.OUTPUT_NORM,
+        MODEL_TENSOR.OUTPUT,
+        MODEL_TENSOR.ROPE_FREQS,
+        MODEL_TENSOR.ATTN_NORM,
+        MODEL_TENSOR.ATTN_Q,
+        MODEL_TENSOR.ATTN_K,
+        MODEL_TENSOR.ATTN_V,
+        MODEL_TENSOR.ATTN_OUT,
+        MODEL_TENSOR.ATTN_ROT_EMBD,
+        MODEL_TENSOR.FFN_GATE_INP,
+        MODEL_TENSOR.FFN_NORM,
+        MODEL_TENSOR.FFN_GATE,
+        MODEL_TENSOR.FFN_DOWN,
+        MODEL_TENSOR.FFN_UP,
+        MODEL_TENSOR.FFN_GATE_EXP,
+        MODEL_TENSOR.FFN_DOWN_EXP,
+        MODEL_TENSOR.FFN_UP_EXP,
+    ],
     MODEL_ARCH.GROK: [
         MODEL_TENSOR.TOKEN_EMBD,
         MODEL_TENSOR.OUTPUT_NORM,
@@ -1448,6 +1470,10 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
         MODEL_TENSOR.ROPE_FREQS,
         MODEL_TENSOR.ATTN_ROT_EMBD,
     ],
+    MODEL_ARCH.DECI: [
+        MODEL_TENSOR.ROPE_FREQS,
+        MODEL_TENSOR.ATTN_ROT_EMBD,
+    ],
     MODEL_ARCH.BAICHUAN: [
         MODEL_TENSOR.ROPE_FREQS,
         MODEL_TENSOR.ATTN_ROT_EMBD,
index 82cdb121a1f2657ebf0128b40a2ee1c943d61c8f..7009a11d46bc809dc5a9256edbe36b80ae0eed1f 100644 (file)
@@ -198,6 +198,7 @@ class TensorNameMap:
             "transformer.h.{bid}.self_attention.dense",                     # falcon
             "h.{bid}.self_attention.dense",                                 # bloom
             "model.layers.{bid}.self_attn.o_proj",                          # llama-hf nemotron olmoe olmo2
+            "model.layers.{bid}.self_attn.linear_attn",                     # deci
             "layers.{bid}.attention.wo",                                    # llama-pth
             "encoder.layer.{bid}.attention.output.dense",                   # bert
             "transformer.h.{bid}.attn.out_proj",                            # gpt-j
index 115ef9080b254bd68478a1a15369d93d88eeb25b..c1524d06bb04d7d86f0aef34409135cc95b60408 100644 (file)
@@ -146,6 +146,7 @@ static std::string format(const char * fmt, ...) {
 
 enum llm_arch {
     LLM_ARCH_LLAMA,
+    LLM_ARCH_DECI,
     LLM_ARCH_FALCON,
     LLM_ARCH_BAICHUAN,
     LLM_ARCH_GROK,
@@ -203,6 +204,7 @@ enum llm_arch {
 
 static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
     { LLM_ARCH_LLAMA,            "llama"            },
+    { LLM_ARCH_DECI,             "deci"            },
     { LLM_ARCH_FALCON,           "falcon"           },
     { LLM_ARCH_GROK,             "grok"             },
     { LLM_ARCH_GPT2,             "gpt2"             },
@@ -674,6 +676,32 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
             { LLM_TENSOR_FFN_UP_EXPS,     "blk.%d.ffn_up_exps" },
         },
     },
+    {
+        LLM_ARCH_DECI,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
+            { LLM_TENSOR_OUTPUT,          "output" },
+            { LLM_TENSOR_ROPE_FREQS,      "rope_freqs" },
+            { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
+            { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
+            { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
+            { LLM_TENSOR_ATTN_ROT_EMBD,   "blk.%d.attn_rot_embd" },
+            { LLM_TENSOR_FFN_GATE_INP,    "blk.%d.ffn_gate_inp" },
+            { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
+            { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
+            { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
+            { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
+            { LLM_TENSOR_FFN_GATE_EXP,    "blk.%d.ffn_gate.%d" },
+            { LLM_TENSOR_FFN_DOWN_EXP,    "blk.%d.ffn_down.%d" },
+            { LLM_TENSOR_FFN_UP_EXP,      "blk.%d.ffn_up.%d" },
+            { LLM_TENSOR_FFN_GATE_EXPS,   "blk.%d.ffn_gate_exps" },
+            { LLM_TENSOR_FFN_DOWN_EXPS,   "blk.%d.ffn_down_exps" },
+            { LLM_TENSOR_FFN_UP_EXPS,     "blk.%d.ffn_up_exps" },
+        },
+    },
     {
         LLM_ARCH_BAICHUAN,
         {
@@ -5694,7 +5722,7 @@ static void llm_load_hparams(
 
         ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
 
-        if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
+        if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_DECI || model.arch == LLM_ARCH_FALCON) {
             if (hparams.n_rot != hparams.n_embd_head_k) {
                 throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
             }
@@ -5734,6 +5762,15 @@ static void llm_load_hparams(
                     }
                 }
             } break;
+        case LLM_ARCH_DECI:
+            {
+                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+                switch (hparams.n_layer) {
+                    case 32: model.type = e_model::MODEL_7B; break;
+                    case 80: model.type = e_model::MODEL_70B; break;
+                    default: model.type = e_model::MODEL_UNKNOWN;
+                }
+            } break;
         case LLM_ARCH_MINICPM:
             {
                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@@ -7939,6 +7976,68 @@ static bool llm_load_tensors(
                         }
                     }
                 } break;
+            case LLM_ARCH_DECI:
+                {
+                    model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
+
+                    // output
+                    model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
+                    model.output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+                    // if output is NULL, init from the input tok embed
+                    if (model.output == NULL) {
+                        model.output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        auto & layer = model.layers[i];
+                        const int64_t n_embd_k_gqa  = hparams.n_embd_k_gqa(i);
+                        const int64_t n_embd_v_gqa  = hparams.n_embd_v_gqa(i);
+                        const int64_t n_embd_gqa    = hparams.n_embd_v_gqa(i);
+                        const int64_t n_ff          = hparams.n_ff(i);
+                        const int64_t n_head        = hparams.n_head(i);
+                        const int64_t n_head_kv     = hparams.n_head_kv(i);
+
+                        if (n_head_kv == 0 && n_head > 0) {
+                            // linear attention for DeciLMCausalModel
+                            layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
+                            layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
+                        }
+                        else if (n_head_kv > 0) {
+                            layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
+
+                            layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
+                            layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
+                            layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
+                            layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
+                        }
+
+                        // optional bias tensors
+                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_embd},     llama_model_loader::TENSOR_NOT_REQUIRED);
+                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                        layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd},     llama_model_loader::TENSOR_NOT_REQUIRED);
+
+                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
+
+                        if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
+                            layer.rope_long  = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG,  "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
+                            layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
+                        }
+                        else {
+                            layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
+                        }
+
+                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
+                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
+                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
+
+                        // optional MLP bias
+                        layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                        layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                        layer.ffn_up_b   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                    }
+                } break;
             case LLM_ARCH_MINICPM3:
                 {
                     const int64_t n_embd_head_qk_rope = hparams.n_rot;
@@ -11308,6 +11407,167 @@ struct llm_build_context {
         return gf;
     }
 
+    struct ggml_cgraph * build_deci() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
+
+        // mutable variable, needed during the last layer of the computation to skip unused tokens
+        int32_t n_tokens = this->n_tokens;
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * inpSA = inpL;
+            const int64_t n_head_kv = hparams.n_head_kv(il);
+            const int64_t n_head    = hparams.n_head(il);
+
+            if (n_head == 0) {
+                // attention-free layer of Llama-3_1-Nemotron-51B
+                cur = inpL;
+            } else {
+                // norm
+                cur = llm_build_norm(ctx0, inpL, hparams,
+                        model.layers[il].attn_norm, NULL,
+                        LLM_NORM_RMS, cb, il);
+                cb(cur, "attn_norm", il);
+            }
+
+            if (n_head > 0 && n_head_kv == 0) {
+                // "linear attention" of Llama-3_1-Nemotron-51B
+                cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo, cur);
+                cb(cur, "wo", il);
+            } else if (n_head > 0) {
+                // self-attention
+                // rope freq factors for llama3; may return nullptr for llama2 and other models
+                struct ggml_tensor * rope_factors = build_rope_factors(il);
+
+                // compute Q and K and RoPE them
+                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+                if (model.layers[il].bq) {
+                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+                    cb(Qcur, "Qcur", il);
+                }
+
+                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+                if (model.layers[il].bk) {
+                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+                    cb(Kcur, "Kcur", il);
+                }
+
+                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+                if (model.layers[il].bv) {
+                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+                    cb(Vcur, "Vcur", il);
+                }
+
+                Qcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, model.layers[il].bo,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                n_tokens = n_outputs;
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            // For Granite architecture
+            if (hparams.f_residual_scale) {
+                cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
+            }
+
+            // modified to support attention-free layer of Llama-3_1-Nemotron-51B
+            struct ggml_tensor * ffn_inp = cur;
+            if (n_head > 0) {
+                ffn_inp = ggml_add(ctx0, cur, inpSA);
+                cb(ffn_inp, "ffn_inp", il);
+            }
+
+            // feed-forward network
+            if (model.layers[il].ffn_gate_inp == nullptr) {
+                cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                        model.layers[il].ffn_norm, NULL,
+                        LLM_NORM_RMS, cb, il);
+                cb(cur, "ffn_norm", il);
+
+                cur = llm_build_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
+                        model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
+                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+                        NULL,
+                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+                cb(cur, "ffn_out", il);
+            }
+
+            // For Granite architecture
+            if (hparams.f_residual_scale) {
+                cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
+            }
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cb(cur, "ffn_out", il);
+
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+
+        // For Granite architecture
+        if (hparams.f_logit_scale) {
+            cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
+        }
+
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
     struct ggml_cgraph * build_baichuan() {
         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
 
@@ -17422,6 +17682,10 @@ static struct ggml_cgraph * llama_build_graph(
             {
                 result = llm.build_llama();
             } break;
+        case LLM_ARCH_DECI:
+            {
+                result = llm.build_deci();
+            } break;
         case LLM_ARCH_BAICHUAN:
             {
                 result = llm.build_baichuan();
@@ -20797,6 +21061,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
 
         // use what we call a normal RoPE, operating on pairs of consecutive head values
         case LLM_ARCH_LLAMA:
+        case LLM_ARCH_DECI:
         case LLM_ARCH_BAICHUAN:
         case LLM_ARCH_STARCODER:
         case LLM_ARCH_PLAMO: