raise ValueError(f"Unprocessed experts: {experts}")
+@Model.register("DeciLMForCausalLM")
+class DeciModel(Model):
+ model_arch = gguf.MODEL_ARCH.DECI
+
+ @staticmethod
+ def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
+ # DeciLM-specific code
+ intermediate_size = int(2 * ffn_mult * n_embd / 3)
+ return DeciModel._find_multiple(intermediate_size, 256)
+
+ @staticmethod
+ def _find_multiple(n: int, k: int) -> int:
+ # DeciLM-specific code
+ if n % k == 0:
+ return n
+ return n + k - (n % k)
+
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+
+ if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
+ _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
+ assert self.block_count == len(_block_configs)
+ self._num_kv_heads = list()
+ self._num_heads = list()
+ _ffn_multipliers = list()
+ # ***linear attention layer***
+ # if n_heads_in_group is None and replace_with_linear is True
+ # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
+ # ***attention-free layer***
+ # if n_heads_in_group is None and replace_with_linear is False
+ # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
+ # ***normal attention-layer***
+ # if n_heads_in_group is not None, then
+ # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
+ # _num_heads[il] is num_attention_head
+ for il in range(len(_block_configs)):
+ if _block_configs[il]["attention"]["n_heads_in_group"] is None:
+ if _block_configs[il]["attention"]["replace_with_linear"] is True:
+ self._num_kv_heads.append(0)
+ self._num_heads.append(self.hparams["num_attention_heads"])
+ else:
+ self._num_kv_heads.append(0)
+ self._num_heads.append(0)
+ else:
+ self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
+ self._num_heads.append(self.hparams["num_attention_heads"])
+ _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
+ assert self.block_count == len(self._num_kv_heads)
+ assert self.block_count == len(self._num_heads)
+ assert self.block_count == len(_ffn_multipliers)
+ assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
+ assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
+ assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
+ self._ffn_dims: list[int] = [
+ DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
+ for multiplier in _ffn_multipliers
+ ]
+
+ def set_vocab(self):
+ # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
+ # eos_token from '|eot_id|' to '|end_of_text|'
+ if self.hparams.get("vocab_size", 128256) == 128256:
+ tokens, toktypes, tokpre = self.get_vocab_base()
+ self.gguf_writer.add_tokenizer_model("gpt2")
+ self.gguf_writer.add_tokenizer_pre(tokpre)
+ self.gguf_writer.add_token_list(tokens)
+ self.gguf_writer.add_token_types(toktypes)
+
+ special_vocab = gguf.SpecialVocab(
+ self.dir_model, load_merges=True,
+ special_token_types = ['bos', 'eos', 'eom', 'eot']
+ )
+ special_vocab._set_special_token("bos", 128000)
+ special_vocab._set_special_token("eos", 128001)
+ special_vocab._set_special_token("eom", 128008)
+ special_vocab._set_special_token("eot", 128009)
+ special_vocab.add_to_gguf(self.gguf_writer)
+ else:
+ # DeciLM-7B
+ self._set_vocab_llama_hf()
+# self._set_vocab_gpt2()
+
+ def set_gguf_parameters(self):
+ if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
+ assert self.block_count == len(self._num_kv_heads)
+ assert self.block_count == len(self._num_heads)
+ assert self.block_count == len(self._ffn_dims)
+ self.gguf_writer.add_head_count_kv(self._num_kv_heads)
+ self.gguf_writer.add_head_count(self._num_heads)
+ self.gguf_writer.add_feed_forward_length(self._ffn_dims)
+ self.gguf_writer.add_block_count(self.block_count)
+ self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
+ self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
+ self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
+ self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
+ self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
+ self.gguf_writer.add_file_type(self.ftype)
+ else: # DeciLM-7B
+ super().set_gguf_parameters()
+ if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
+ self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
+ assert self.block_count == len(self._num_kv_heads)
+ self.gguf_writer.add_head_count_kv(self._num_kv_heads)
+ hparams = self.hparams
+ self.gguf_writer.add_vocab_size(hparams["vocab_size"])
+
+ if "head_dim" in hparams:
+ rope_dim = hparams["head_dim"]
+ else:
+ rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
+ self.gguf_writer.add_rope_dimension_count(rope_dim)
+
+ if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
+ if self.hparams["rope_scaling"].get("type") == "linear":
+ self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
+ self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
+
+ @staticmethod
+ def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
+ if n_head_kv is not None and n_head != n_head_kv:
+ n_head = n_head_kv
+ return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
+ .swapaxes(1, 2)
+ .reshape(weights.shape))
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ n_head = self.hparams["num_attention_heads"]
+ if bid is not None:
+ if "num_key_value_heads_per_layer" in self.hparams:
+ n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
+ elif "block_configs" in self.hparams:
+ n_kv_head = self._num_kv_heads[bid]
+ n_head = self._num_heads[bid]
+ else:
+ n_kv_head = self.hparams.get("num_key_value_heads")
+ else:
+ n_kv_head = self.hparams.get("num_key_value_heads")
+
+ if name.endswith(("q_proj.weight", "q_proj.bias")):
+ data_torch = DeciModel.permute(data_torch, n_head, n_head)
+ if name.endswith(("k_proj.weight", "k_proj.bias")):
+ data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
+ return [(self.map_tensor_name(name), data_torch)]
+
+ def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
+ if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
+ if rope_scaling.get("rope_type", '').lower() == "llama3":
+ base = self.hparams.get("rope_theta", 10000.0)
+ dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
+ freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
+
+ factor = rope_scaling.get("factor", 8.0)
+ low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
+ high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
+ old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
+
+ low_freq_wavelen = old_context_len / low_freq_factor
+ high_freq_wavelen = old_context_len / high_freq_factor
+ assert low_freq_wavelen != high_freq_wavelen
+
+ rope_factors = []
+ for freq in freqs:
+ wavelen = 2 * math.pi / freq
+ if wavelen < high_freq_wavelen:
+ rope_factors.append(1)
+ elif wavelen > low_freq_wavelen:
+ rope_factors.append(factor)
+ else:
+ smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
+ rope_factors.append(1 / ((1 - smooth) / factor + smooth))
+
+ yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
+
+ def prepare_tensors(self):
+ super().prepare_tensors()
+
+
@Model.register("BitnetForCausalLM")
class BitnetModel(Model):
model_arch = gguf.MODEL_ARCH.BITNET
enum llm_arch {
LLM_ARCH_LLAMA,
+ LLM_ARCH_DECI,
LLM_ARCH_FALCON,
LLM_ARCH_BAICHUAN,
LLM_ARCH_GROK,
static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_LLAMA, "llama" },
+ { LLM_ARCH_DECI, "deci" },
{ LLM_ARCH_FALCON, "falcon" },
{ LLM_ARCH_GROK, "grok" },
{ LLM_ARCH_GPT2, "gpt2" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
},
},
+ {
+ LLM_ARCH_DECI,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
+ { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
+ { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
+ { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
+ { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
+ { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
+ { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
+ },
+ },
{
LLM_ARCH_BAICHUAN,
{
ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
- if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
+ if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_DECI || model.arch == LLM_ARCH_FALCON) {
if (hparams.n_rot != hparams.n_embd_head_k) {
throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
}
}
}
} break;
+ case LLM_ARCH_DECI:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+ switch (hparams.n_layer) {
+ case 32: model.type = e_model::MODEL_7B; break;
+ case 80: model.type = e_model::MODEL_70B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
case LLM_ARCH_MINICPM:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
}
}
} break;
+ case LLM_ARCH_DECI:
+ {
+ model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
+
+ // output
+ model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
+ model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+ // if output is NULL, init from the input tok embed
+ if (model.output == NULL) {
+ model.output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ auto & layer = model.layers[i];
+ const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(i);
+ const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(i);
+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);
+ const int64_t n_ff = hparams.n_ff(i);
+ const int64_t n_head = hparams.n_head(i);
+ const int64_t n_head_kv = hparams.n_head_kv(i);
+
+ if (n_head_kv == 0 && n_head > 0) {
+ // linear attention for DeciLMCausalModel
+ layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
+ layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
+ }
+ else if (n_head_kv > 0) {
+ layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
+
+ layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
+ layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
+ layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
+ layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
+ }
+
+ // optional bias tensors
+ layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+ layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
+
+ if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
+ layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
+ layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
+ }
+ else {
+ layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
+ }
+
+ layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
+
+ // optional MLP bias
+ layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ }
+ } break;
case LLM_ARCH_MINICPM3:
{
const int64_t n_embd_head_qk_rope = hparams.n_rot;
return gf;
}
+ struct ggml_cgraph * build_deci() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
+
+ // mutable variable, needed during the last layer of the computation to skip unused tokens
+ int32_t n_tokens = this->n_tokens;
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+ const int64_t n_head_kv = hparams.n_head_kv(il);
+ const int64_t n_head = hparams.n_head(il);
+
+ if (n_head == 0) {
+ // attention-free layer of Llama-3_1-Nemotron-51B
+ cur = inpL;
+ } else {
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+ }
+
+ if (n_head > 0 && n_head_kv == 0) {
+ // "linear attention" of Llama-3_1-Nemotron-51B
+ cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo, cur);
+ cb(cur, "wo", il);
+ } else if (n_head > 0) {
+ // self-attention
+ // rope freq factors for llama3; may return nullptr for llama2 and other models
+ struct ggml_tensor * rope_factors = build_rope_factors(il);
+
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+ if (model.layers[il].bq) {
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+ cb(Qcur, "Qcur", il);
+ }
+
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+ if (model.layers[il].bk) {
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+ cb(Kcur, "Kcur", il);
+ }
+
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+ if (model.layers[il].bv) {
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+ cb(Vcur, "Vcur", il);
+ }
+
+ Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ n_tokens = n_outputs;
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ // For Granite architecture
+ if (hparams.f_residual_scale) {
+ cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
+ }
+
+ // modified to support attention-free layer of Llama-3_1-Nemotron-51B
+ struct ggml_tensor * ffn_inp = cur;
+ if (n_head > 0) {
+ ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+ }
+
+ // feed-forward network
+ if (model.layers[il].ffn_gate_inp == nullptr) {
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
+ model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+ }
+
+ // For Granite architecture
+ if (hparams.f_residual_scale) {
+ cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
+ }
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cb(cur, "ffn_out", il);
+
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+
+ // For Granite architecture
+ if (hparams.f_logit_scale) {
+ cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
+ }
+
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
struct ggml_cgraph * build_baichuan() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
{
result = llm.build_llama();
} break;
+ case LLM_ARCH_DECI:
+ {
+ result = llm.build_deci();
+ } break;
case LLM_ARCH_BAICHUAN:
{
result = llm.build_baichuan();
// use what we call a normal RoPE, operating on pairs of consecutive head values
case LLM_ARCH_LLAMA:
+ case LLM_ARCH_DECI:
case LLM_ARCH_BAICHUAN:
case LLM_ARCH_STARCODER:
case LLM_ARCH_PLAMO: