## Features
-- Written in C
-- 16-bit float support
-- Integer quantization support (4-bit, 5-bit, 8-bit, etc.)
+- Low-level cross-platform implementation
+- Integer quantization support
+- Broad hardware support
- Automatic differentiation
- ADAM and L-BFGS optimizers
-- Optimized for Apple Silicon
-- On x86 architectures utilizes AVX / AVX2 intrinsics
-- On ppc64 architectures utilizes VSX intrinsics
- No third-party dependencies
- Zero memory allocations during runtime
-## Updates
-
-- [X] Example of GPT-2 inference [examples/gpt-2](https://github.com/ggerganov/ggml/tree/master/examples/gpt-2)
-- [X] Example of GPT-J inference [examples/gpt-j](https://github.com/ggerganov/ggml/tree/master/examples/gpt-j)
-- [X] Example of Whisper inference [ggerganov/whisper.cpp](https://github.com/ggerganov/whisper.cpp)
-- [X] Example of LLaMA inference [ggerganov/llama.cpp](https://github.com/ggerganov/llama.cpp)
-- [X] Example of LLaMA training [ggerganov/llama.cpp/examples/baby-llama](https://github.com/ggerganov/llama.cpp/tree/master/examples/baby-llama)
-- [X] Example of Falcon inference [cmp-nct/ggllm.cpp](https://github.com/cmp-nct/ggllm.cpp)
-- [X] Example of BLOOM inference [NouamaneTazi/bloomz.cpp](https://github.com/NouamaneTazi/bloomz.cpp)
-- [X] Example of RWKV inference [saharNooby/rwkv.cpp](https://github.com/saharNooby/rwkv.cpp)
-- [X] Example of SAM inference [examples/sam](https://github.com/ggerganov/ggml/tree/master/examples/sam)
-- [X] Example of BERT inference [skeskinen/bert.cpp](https://github.com/skeskinen/bert.cpp)
-- [X] Example of BioGPT inference [PABannier/biogpt.cpp](https://github.com/PABannier/biogpt.cpp)
-- [X] Example of Encodec inference [PABannier/encodec.cpp](https://github.com/PABannier/encodec.cpp)
-- [X] Example of CLIP inference [monatis/clip.cpp](https://github.com/monatis/clip.cpp)
-- [X] Example of MiniGPT4 inference [Maknee/minigpt4.cpp](https://github.com/Maknee/minigpt4.cpp)
-- [X] Example of ChatGLM inference [li-plus/chatglm.cpp](https://github.com/li-plus/chatglm.cpp)
-- [X] Example of Stable Diffusion inference [leejet/stable-diffusion.cpp](https://github.com/leejet/stable-diffusion.cpp)
-- [X] Example of Qwen inference [QwenLM/qwen.cpp](https://github.com/QwenLM/qwen.cpp)
-- [X] Example of YOLO inference [examples/yolo](https://github.com/ggerganov/ggml/tree/master/examples/yolo)
-- [X] Example of ViT inference [staghado/vit.cpp](https://github.com/staghado/vit.cpp)
-- [X] Example of multiple LLMs inference [foldl/chatllm.cpp](https://github.com/foldl/chatllm.cpp)
-- [X] SeamlessM4T inference *(in development)* https://github.com/facebookresearch/seamless_communication/tree/main/ggml
-
-## Python environment setup and building the examples
+## Build
```bash
git clone https://github.com/ggerganov/ggml
cd ggml
-# Install python dependencies in a virtual environment
-python3.10 -m venv ggml_env
-source ./ggml_env/bin/activate
+
+# install python dependencies in a virtual environment
+python3.10 -m venv .venv
+source .venv/bin/activate
pip install -r requirements.txt
-# Build the examples
+
+# build the examples
mkdir build && cd build
cmake ..
cmake --build . --config Release -j 8
## GPT inference (example)
-With ggml you can efficiently run [GPT-2](examples/gpt-2) and [GPT-J](examples/gpt-j) inference on the CPU.
-
-Here is how to run the example programs:
-
```bash
-# Run the GPT-2 small 117M model
+# run the GPT-2 small 117M model
../examples/gpt-2/download-ggml-model.sh 117M
./bin/gpt-2-backend -m models/gpt-2-117M/ggml-model.bin -p "This is an example"
-
-# Run the GPT-J 6B model (requires 12GB disk space and 16GB CPU RAM)
-../examples/gpt-j/download-ggml-model.sh 6B
-./bin/gpt-j -m models/gpt-j-6B/ggml-model.bin -p "This is an example"
-
-# Run the Cerebras-GPT 111M model
-# Download from: https://huggingface.co/cerebras
-python3 ../examples/gpt-2/convert-cerebras-to-ggml.py /path/to/Cerebras-GPT-111M/
-./bin/gpt-2 -m /path/to/Cerebras-GPT-111M/ggml-model-f16.bin -p "This is an example"
```
-The inference speeds that I get for the different models on my 32GB MacBook M1 Pro are as follows:
-
-| Model | Size | Time / Token |
-| --- | --- | --- |
-| GPT-2 | 117M | 5 ms |
-| GPT-2 | 345M | 12 ms |
-| GPT-2 | 774M | 23 ms |
-| GPT-2 | 1558M | 42 ms |
-| --- | --- | --- |
-| GPT-J | 6B | 125 ms |
-
For more information, checkout the corresponding programs in the [examples](examples) folder.
-## Using Metal (only with GPT-2)
-
-For GPT-2 models, offloading to GPU is possible. Note that it will not improve inference performances but will reduce power consumption and free up the CPU for other tasks.
-
-To enable GPU offloading on MacOS:
-
-```bash
-cmake -DGGML_METAL=ON -DBUILD_SHARED_LIBS=Off ..
-
-# add -ngl 1
-./bin/gpt-2 -t 4 -ngl 100 -m models/gpt-2-117M/ggml-model.bin -p "This is an example"
-```
-
-## Using cuBLAS
+## Using CUDA
```bash
# fix the path to point to your CUDA compiler
```
```bash
-# Create directories
+# create directories
adb shell 'mkdir /data/local/tmp/bin'
adb shell 'mkdir /data/local/tmp/models'
-# Push the compiled binaries to the folder
+# push the compiled binaries to the folder
adb push bin/* /data/local/tmp/bin/
-# Push the ggml library
+# push the ggml library
adb push src/libggml.so /data/local/tmp/
-# Push model files
+# push model files
adb push models/gpt-2-117M/ggml-model.bin /data/local/tmp/models/
-
-# Now lets do some inference ...
adb shell
-
-# Now we are in shell
cd /data/local/tmp
export LD_LIBRARY_PATH=/data/local/tmp
./bin/gpt-2-backend -m models/ggml-model.bin -p "this is an example"
## Resources
-- [GGML - Large Language Models for Everyone](https://github.com/rustformers/llm/blob/main/crates/ggml/README.md): a description of the GGML format provided by the maintainers of the `llm` Rust crate, which provides Rust bindings for GGML
-- [marella/ctransformers](https://github.com/marella/ctransformers): Python bindings for GGML models.
-- [go-skynet/go-ggml-transformers.cpp](https://github.com/go-skynet/go-ggml-transformers.cpp): Golang bindings for GGML models
-- [smspillaz/ggml-gobject](https://github.com/smspillaz/ggml-gobject): GObject-introspectable wrapper for use of GGML on the GNOME platform.
+- [Introduction to ggml](https://huggingface.co/blog/introduction-to-ggml)
+- [The GGUF file format](https://github.com/ggerganov/ggml/blob/master/docs/gguf.md)