-#include "norm.hpp"
+#include "softmax.hpp"
-template <bool vals_smem, int ncols_template, int block_size_template>
-static void soft_max_f32(const float * x, const float * mask, float * dst, const int ncols_par,
+template <bool vals_smem, int ncols_template, int block_size_template, typename T>
+static void soft_max_f32(const float * x, const T * mask, float * dst, const int ncols_par,
const int nrows_y, const float scale, const float max_bias, const float m0,
const float m1, uint32_t n_head_log2, const sycl::nd_item<3> &item_ct1, float *buf) {
const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
slope = sycl::pow(base, float(exp));
}
- float *vals = vals_smem ? buf + std::max(nwarps, WARP_SIZE) : dst + rowx * ncols;
+ float *vals = vals_smem ? buf + sycl::max(nwarps, WARP_SIZE) : dst + rowx * ncols;
float max_val = -INFINITY;
for (int col0 = 0; col0 < ncols; col0 += block_size) {
const int ix = rowx*ncols + col;
const int iy = rowy*ncols + col;
- const float val = x[ix]*scale + (mask ? slope*mask[iy] : 0.0f);
+ const float val = x[ix]*scale + (mask ? slope*static_cast<float>(mask[iy]) : 0.0f);
vals[col] = val;
max_val = sycl::max(max_val, val);
item_ct1.barrier(sycl::access::fence_space::local_space);
max_val = buf[lane_id];
for (size_t i = 1; i < nreduce; i += 1) {
- max_val = std::max(max_val, buf[lane_id + i * WARP_SIZE]);
+ max_val = sycl::max(max_val, buf[lane_id + i * WARP_SIZE]);
}
max_val = warp_reduce_max(max_val, item_ct1);
}
}
}
-template <bool vals_smem, int ncols_template, int block_size_template>
-static void soft_max_f32_submitter(const float * x, const float * mask, float * dst, const int ncols_par,
+template <bool vals_smem, int ncols_template, int block_size_template, typename T>
+static void soft_max_f32_submitter(const float * x, const T * mask, float * dst, const int ncols_par,
const int nrows_y, const float scale, const float max_bias, const float m0,
const float m1, uint32_t n_head_log2, sycl::range<3> block_nums, sycl::range<3> block_dims,
const size_t n_local_scratch, queue_ptr stream) {
});
}
-static void soft_max_f32_sycl(const float * x, const float * mask,
+template<typename T>
+static void soft_max_f32_sycl(const float * x, const T * mask,
float * dst, const int ncols_x, const int nrows_x,
const int nrows_y, const float scale, const float max_bias,
queue_ptr stream, int device) {
}
}
-void ggml_sycl_op_soft_max(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd,
- const queue_ptr &main_stream) {
+void ggml_sycl_op_soft_max(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
-#pragma message("TODO: add ggml_sycl_op_soft_max() F16 src1 support")
-#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021")
- GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
+ GGML_ASSERT(!dst->src[1] || dst->src[1]->type == GGML_TYPE_F16 || dst->src[1]->type == GGML_TYPE_F32); // src1 contains mask and it is optional
- const int64_t ne00 = src0->ne[0];
- const int64_t nrows_x = ggml_nrows(src0);
- const int64_t nrows_y = src0->ne[1];
+ const int64_t ne00 = dst->src[0]->ne[0];
+ const int64_t nrows_x = ggml_nrows(dst->src[0]);
+ const int64_t nrows_y = dst->src[0]->ne[1];
float scale = 1.0f;
float max_bias = 0.0f;
memcpy(&scale, dst->op_params + 0, sizeof(float));
memcpy(&max_bias, dst->op_params + 1, sizeof(float));
- soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00,
- nrows_x, nrows_y, scale, max_bias, main_stream, ctx.device);
+ const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
+ float * dst_dd = static_cast<float *>(dst->data);
+
+ ggml_sycl_set_device(ctx.device);
+ dpct::queue_ptr main_stream = ctx.stream();
+
+ if (dst->src[1] && dst->src[1]->type == GGML_TYPE_F16) {
+ const sycl::half * src1_dd = static_cast<sycl::half *>(dst->src[1]->data);
+ soft_max_f32_sycl<sycl::half>(src0_dd, src1_dd, dst_dd, ne00, nrows_x, nrows_y, scale, max_bias,
+ main_stream, ctx.device);
+ } else if (dst->src[1] && dst->src[1]->type == GGML_TYPE_F32) {
+ const float * src1_dd = static_cast<const float *>(dst->src[1]->data);
+ soft_max_f32_sycl<float>(src0_dd, src1_dd, dst_dd, ne00, nrows_x, nrows_y, scale, max_bias, main_stream, ctx.device);
+ } else {
+ /* mask unavailable */
+ soft_max_f32_sycl<float>(src0_dd, nullptr, dst_dd, ne00, nrows_x, nrows_y, scale, max_bias, main_stream, ctx.device);
+ }
}
const ggml_type type;
const std::array<int64_t, 4> ne;
const bool mask;
+ const ggml_type m_prec;
const float scale;
const float max_bias;
std::string vars() override {
- return VARS_TO_STR5(type, ne, mask, scale, max_bias);
+ return VARS_TO_STR6(type, ne, mask, m_prec, scale, max_bias);
}
// the 1024 test with bias occasionally fails:
test_soft_max(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 5, 4, 3},
bool mask = false,
+ ggml_type m_prec = GGML_TYPE_F32,
float scale = 1.0f,
float max_bias = 0.0f)
- : type(type), ne(ne), mask(mask), scale(scale), max_bias(max_bias) {}
+ : type(type), ne(ne), mask(mask), m_prec(m_prec), scale(scale), max_bias(max_bias) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_tensor * mask = nullptr;
if (this->mask) {
- mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ne[0], ne[1]);
+ mask = ggml_new_tensor_2d(ctx, m_prec, ne[0], ne[1]);
ggml_set_name(mask, "mask");
}
for (float scale : {1.0f, 0.1f}) {
for (int64_t ne0 : {16, 1024}) {
for (int64_t ne1 : {16, 1024}) {
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, scale, max_bias));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, scale, max_bias));
+ if (mask) {
+ for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, m_prec, scale, max_bias));
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, m_prec, scale, max_bias));
+ }
+ } else {
+ /* The precision of mask here doesn't matter as boolean mask is false */
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, GGML_TYPE_F32, scale, max_bias));
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, GGML_TYPE_F32, scale, max_bias));
+ }
}
}
}
}
}
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, 0.1f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, 0.1f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 8.0f));
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 0.0f));
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 0.0f));
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, GGML_TYPE_F32, 0.1f, 0.0f));
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 0.0f));
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 0.0f));
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 8.0f));
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 8.0f));
for (float max_bias : {0.0f, 8.0f}) {
for (float scale : {1.0f, 0.1f}) {
test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, 1.0f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, 1.0f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, 1.0f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, 1.0f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, 1.0f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, 1.0f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, 1.0f, 0.0f));
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));