stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, n_warp) *
sycl::range<3>(1, 1, WARP_SIZE),
sycl::range<3>(1, 1, WARP_SIZE)),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]]{
+ [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]]{
dequantize_block_q4_0_reorder(vx, y, k, item_ct1);
});
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
dequantize_mul_mat_vec<1, 1, convert_f16>(vx, y, dst, ncols,
nrows, item_ct1);
});
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
dequantize_mul_mat_vec_reorder<QK4_0, QR4_0, dequantize_q4_0_reorder>(
vx, y, dst, ncols, nrows, item_ct1);
});
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>(
vx, y, dst, ncols, nrows, item_ct1);
});
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>(
vx, y, dst, ncols, nrows, item_ct1);
});
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>(
vx, y, dst, ncols, nrows, item_ct1);
});
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>(
vx, y, dst, ncols, nrows, item_ct1);
});
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>(
vx, y, dst, ncols, nrows, item_ct1);
});
const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE);
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] {
+ [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(QK_WARP_SIZE)]] {
dequantize_mul_mat_vec_q2_k(vx, y, dst, ncols, nrows, item_ct1);
});
}
const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE);
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] {
+ [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(QK_WARP_SIZE)]] {
dequantize_mul_mat_vec_q3_k(vx, y, dst, ncols, nrows, item_ct1);
});
}
const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE);
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] {
+ [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(QK_WARP_SIZE)]] {
dequantize_mul_mat_vec_q4_k(vx, y, dst, ncols, nrows, item_ct1);
});
}
const sycl::range<3> block_dims(1, 1, QK_WARP_SIZE);
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] {
+ [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(QK_WARP_SIZE)]] {
dequantize_mul_mat_vec_q5_k(vx, y, dst, ncols, item_ct1);
});
}
const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE);
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] {
+ [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(QK_WARP_SIZE)]] {
dequantize_mul_mat_vec_q6_k(vx, y, dst, ncols, nrows, item_ct1);
});
}
default:
printf("ggml_sycl_op_dequantize_mul_mat_vec unsupported GGML_TYPE %d\n", src0->type);
GGML_ABORT("fatal error");
- break;
}
GGML_UNUSED(src1);
#include "common.hpp"
#include "element_wise.hpp"
-void acc_f32(const float * x, const float * y, float * dst, const int ne,
+static void acc_f32(const float * x, const float * y, float * dst, const int ne,
const int ne10, const int ne11, const int ne12,
const int nb1, const int nb2, int offset, const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
}
}
-void gelu_f32(const float * x, float * dst, const int k,
+static void gelu_f32(const float * x, float * dst, const int k,
const sycl::nd_item<3> &item_ct1) {
const float GELU_COEF_A = 0.044715f;
const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
sycl::tanh(SQRT_2_OVER_PI * xi * (1.0f + GELU_COEF_A * xi * xi)));
}
-void silu_f32(const float * x, float * dst, const int k,
+static void silu_f32(const float * x, float * dst, const int k,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
dst[i] = x[i] / (1.0f + sycl::native::exp(-x[i]));
}
-void gelu_quick_f32(const float *x, float *dst, int k,
+static void gelu_quick_f32(const float *x, float *dst, int k,
const sycl::nd_item<3> &item_ct1) {
const float GELU_QUICK_COEF = -1.702f;
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
dst[i] = x[i] * (1.0f / (1.0f + sycl::native::exp(GELU_QUICK_COEF * x[i])));
}
-void tanh_f32(const float *x, float *dst, int k,
+static void tanh_f32(const float *x, float *dst, int k,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
dst[i] = sycl::tanh((float)(x[i]));
}
-void relu_f32(const float * x, float * dst, const int k,
+static void relu_f32(const float * x, float * dst, const int k,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
dst[i] = sycl::fmax((float)(x[i]), (float)0);
}
-void sigmoid_f32(const float * x, float * dst, const int k,
+static void sigmoid_f32(const float * x, float * dst, const int k,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
dst[i] = 1.0f / (1.0f + sycl::native::exp(-x[i]));
}
-void sqrt_f32(const float * x, float * dst, const int k,
+static void sqrt_f32(const float * x, float * dst, const int k,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
dst[i] = sycl::sqrt(x[i]);
}
-void sin_f32(const float * x, float * dst, const int k,
+static void sin_f32(const float * x, float * dst, const int k,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
dst[i] = sycl::sin(x[i]);
}
-void cos_f32(const float * x, float * dst, const int k,
+static void cos_f32(const float * x, float * dst, const int k,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
dst[i] = sycl::cos(x[i]);
}
-void hardsigmoid_f32(const float * x, float * dst, const int k,
+static void hardsigmoid_f32(const float * x, float * dst, const int k,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
dst[i] = sycl::fmin(1.0f, sycl::fmax(0.0f, (x[i] + 3.0f) / 6.0f));
}
-void hardswish_f32(const float * x, float * dst, const int k,
+static void hardswish_f32(const float * x, float * dst, const int k,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
dst[i] = x[i] * sycl::fmin(1.0f, sycl::fmax(0.0f, (x[i] + 3.0f) / 6.0f));
}
-void exp_f32(const float * x, float * dst, const int k,
+static void exp_f32(const float * x, float * dst, const int k,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
dst[i] = sycl::exp(x[i]);
}
-void log_f32(const float * x, float * dst, const int k,
+static void log_f32(const float * x, float * dst, const int k,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
}
}
-void neg_f32(const float * x, float * dst, const int k,
+static void neg_f32(const float * x, float * dst, const int k,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
dst[i] = -x[i];
}
-void step_f32(const float * x, float * dst, const int k,
+static void step_f32(const float * x, float * dst, const int k,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
dst[i] = x[i] > 0.0f;
}
-void leaky_relu_f32(const float *x, float *dst, const int k, const float negative_slope,
+static void leaky_relu_f32(const float *x, float *dst, const int k, const float negative_slope,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
sycl::fmin((float)(x[i]), 0.0f) * negative_slope;
}
-void sqr_f32(const float * x, float * dst, const int k,
+static void sqr_f32(const float * x, float * dst, const int k,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
dst[i] = x[i] * x[i];
}
-void upscale_f32(const float *x, float *dst, const int nb00, const int nb01,
+static void upscale_f32(const float *x, float *dst, const int nb00, const int nb01,
const int nb02, const int nb03, const int ne10, const int ne11,
const int ne12, const int ne13, const float sf0, const float sf1,
const float sf2, const float sf3, const sycl::nd_item<1> &item_ct1) {
dst[index] = *(const float *)((const char *)x + i03 * nb03 + i02 * nb02 + i01 * nb01 + i00 * nb00);
}
-void pad_f32(const float *x, float *dst, const int ne0, const int ne00, const int ne01, const int ne02,
+static void pad_f32(const float *x, float *dst, const int ne0, const int ne00, const int ne01, const int ne02,
const sycl::nd_item<3> &item_ct1) {
int nidx = item_ct1.get_local_id(2) +
item_ct1.get_group(2) * item_ct1.get_local_range(2);
-void acc_f32_sycl(const float *x, const float *y, float *dst,
+static void acc_f32_sycl(const float *x, const float *y, float *dst,
const int n_elements, const int ne10, const int ne11,
const int ne12, const int nb1, const int nb2,
const int offset, queue_ptr stream) {
});
}
-void gelu_f32_sycl(const float *x, float *dst, const int k,
+static void gelu_f32_sycl(const float *x, float *dst, const int k,
queue_ptr stream) {
const int num_blocks = (k + SYCL_GELU_BLOCK_SIZE - 1) / SYCL_GELU_BLOCK_SIZE;
stream->parallel_for(
});
}
-void silu_f32_sycl(const float *x, float *dst, const int k,
+static void silu_f32_sycl(const float *x, float *dst, const int k,
queue_ptr stream) {
const int num_blocks = (k + SYCL_SILU_BLOCK_SIZE - 1) / SYCL_SILU_BLOCK_SIZE;
stream->parallel_for(
});
}
-void gelu_quick_f32_sycl(const float *x, float *dst, const int k,
+static void gelu_quick_f32_sycl(const float *x, float *dst, const int k,
queue_ptr stream) {
const int num_blocks = (k + SYCL_GELU_BLOCK_SIZE - 1) / SYCL_GELU_BLOCK_SIZE;
stream->parallel_for(
});
}
-void tanh_f32_sycl(const float *x, float *dst, const int k,
+static void tanh_f32_sycl(const float *x, float *dst, const int k,
queue_ptr stream) {
const int num_blocks = (k + SYCL_TANH_BLOCK_SIZE - 1) / SYCL_TANH_BLOCK_SIZE;
stream->parallel_for(
});
}
-void relu_f32_sycl(const float *x, float *dst, const int k,
+static void relu_f32_sycl(const float *x, float *dst, const int k,
queue_ptr stream) {
const int num_blocks = (k + SYCL_RELU_BLOCK_SIZE - 1) / SYCL_RELU_BLOCK_SIZE;
stream->parallel_for(
});
}
-void hardsigmoid_f32_sycl(const float *x, float *dst, const int k,
+static void hardsigmoid_f32_sycl(const float *x, float *dst, const int k,
queue_ptr stream) {
const int num_blocks = (k + SYCL_HARDSIGMOID_BLOCK_SIZE - 1) / SYCL_HARDSIGMOID_BLOCK_SIZE;
stream->parallel_for(
});
}
-void hardswish_f32_sycl(const float *x, float *dst, const int k,
+static void hardswish_f32_sycl(const float *x, float *dst, const int k,
queue_ptr stream) {
const int num_blocks = (k + SYCL_HARDSWISH_BLOCK_SIZE - 1) / SYCL_HARDSWISH_BLOCK_SIZE;
stream->parallel_for(
});
}
-void exp_f32_sycl(const float *x, float *dst, const int k,
+static void exp_f32_sycl(const float *x, float *dst, const int k,
queue_ptr stream) {
const int num_blocks = (k + SYCL_EXP_BLOCK_SIZE - 1) / SYCL_EXP_BLOCK_SIZE;
stream->parallel_for(
});
}
-void log_f32_sycl(const float *x, float *dst, const int k,
+static void log_f32_sycl(const float *x, float *dst, const int k,
queue_ptr stream) {
const int num_blocks = (k + SYCL_EXP_BLOCK_SIZE - 1) / SYCL_EXP_BLOCK_SIZE;
stream->parallel_for(
});
}
-void neg_f32_sycl(const float *x, float *dst, const int k,
+static void neg_f32_sycl(const float *x, float *dst, const int k,
queue_ptr stream) {
const int num_blocks = (k + SYCL_NEG_BLOCK_SIZE - 1) / SYCL_NEG_BLOCK_SIZE;
stream->parallel_for(
});
}
-void step_f32_sycl(const float *x, float *dst, const int k,
+static void step_f32_sycl(const float *x, float *dst, const int k,
queue_ptr stream) {
const int num_blocks = (k + SYCL_NEG_BLOCK_SIZE - 1) / SYCL_NEG_BLOCK_SIZE;
stream->parallel_for(
});
}
-void sigmoid_f32_sycl(const float *x, float *dst, const int k,
+static void sigmoid_f32_sycl(const float *x, float *dst, const int k,
queue_ptr stream) {
const int num_blocks = (k + SYCL_SIGMOID_BLOCK_SIZE - 1) / SYCL_SIGMOID_BLOCK_SIZE;
stream->parallel_for(
});
}
-void sqrt_f32_sycl(const float *x, float *dst, const int k,
+static void sqrt_f32_sycl(const float *x, float *dst, const int k,
queue_ptr stream) {
const int num_blocks = (k + SYCL_SQRT_BLOCK_SIZE - 1) / SYCL_SQRT_BLOCK_SIZE;
stream->parallel_for(
});
}
-void sin_f32_sycl(const float *x, float *dst, const int k,
+static void sin_f32_sycl(const float *x, float *dst, const int k,
queue_ptr stream) {
const int num_blocks = (k + SYCL_SIN_BLOCK_SIZE - 1) / SYCL_SIN_BLOCK_SIZE;
stream->parallel_for(
});
}
-void cos_f32_sycl(const float *x, float *dst, const int k,
+static void cos_f32_sycl(const float *x, float *dst, const int k,
queue_ptr stream) {
const int num_blocks = (k + SYCL_SIN_BLOCK_SIZE - 1) / SYCL_SIN_BLOCK_SIZE;
stream->parallel_for(
});
}
-void leaky_relu_f32_sycl(const float *x, float *dst, const int k,
+static void leaky_relu_f32_sycl(const float *x, float *dst, const int k,
const float negative_slope,
queue_ptr stream) {
const int num_blocks = (k + SYCL_RELU_BLOCK_SIZE - 1) / SYCL_RELU_BLOCK_SIZE;
});
}
-void sqr_f32_sycl(const float *x, float *dst, const int k,
+static void sqr_f32_sycl(const float *x, float *dst, const int k,
queue_ptr stream) {
const int num_blocks = (k + SYCL_SQR_BLOCK_SIZE - 1) / SYCL_SQR_BLOCK_SIZE;
stream->parallel_for(
});
}
-void upscale_f32_sycl(const float *x, float *dst, const int nb00, const int nb01,
+static void upscale_f32_sycl(const float *x, float *dst, const int nb00, const int nb01,
const int nb02, const int nb03, const int ne10, const int ne11,
const int ne12, const int ne13, const float sf0, const float sf1,
const float sf2, const float sf3, queue_ptr stream) {
});
}
-void pad_f32_sycl(const float *x, float *dst, const int ne00,
+static void pad_f32_sycl(const float *x, float *dst, const int ne00,
const int ne01, const int ne02, const int ne0,
const int ne1, const int ne2, queue_ptr stream) {
int num_blocks = (ne0 + SYCL_PAD_BLOCK_SIZE - 1) / SYCL_PAD_BLOCK_SIZE;
const size_t nrows = ne01;
const sycl::half* src0_dq = (const sycl::half*)(src0_q + nrows * ncols / 2);
stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]]{
+ [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]]{
k_get_rows_reorder<qk, qr, dq_reorder>(
src0_dd, src0_dq, src1_dd, dst_dd, ne00, ne12, s1, s2,
s3, nb01, nb02, nb03, s10, s11, s12, item_ct1);
// TODO: k-quants
GGML_LOG_ERROR("%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
GGML_ABORT("fatal error");
- break;
}
}
return info;
}
-void print_device_detail(int id, sycl::device &device, std::string device_type) {
+static void print_device_detail(int id, sycl::device &device, std::string device_type) {
dpct::device_info prop;
SYCL_CHECK(CHECK_TRY_ERROR(
global_mem_size, device.get_info<sycl::info::device::driver_version>().c_str());
}
-void print_device_opt_feature(int device_count) {
+static void print_device_opt_feature(int device_count) {
GGML_LOG_INFO("SYCL Optimization Feature:\n");
GGML_LOG_INFO(
"|ID| Device Type|Reorder|\n");
std::exit(1);
}
-void dev2dev_memcpy(sycl::queue &q_dst, sycl::queue &q_src, void *ptr_dst,
+static void dev2dev_memcpy(sycl::queue &q_dst, sycl::queue &q_src, void *ptr_dst,
const void *ptr_src, size_t size) {
char *host_buf = (char *)malloc(size);
q_src.memcpy(host_buf, (const char *)ptr_src, size).wait();
return &ggml_backend_sycl_buffer_types[device];
}
-ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(ggml_backend_sycl_context * ctx) {
+static ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(ggml_backend_sycl_context * ctx) {
GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_buffer_type\n");
int device = ctx->device;
stream->parallel_for(
sycl::nd_range<3>(num_blocks * block_size, block_size),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
quantize_q8_1<QUANT_BLOCK_TILE>(x, vy, kx, kx_padded, item_ct1);
});
}
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_p021_f16_f32(vx, y, dst, ncols_x, nrows_x, nchannels_x,
nchannels_y, item_ct1);
});
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_nc_f16_f32(vx, y, dst, ncols_x, nrows_x,
row_stride_x, channel_stride_x,
nchannels_y / nchannels_x, item_ct1);
const sycl::range<3> block_nums(1, nrows, 1);
stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
k_sum_rows_f32(x, dst, ncols, item_ct1);
});
}
return false;
}
-bool ggml_sycl_supports_dmmv(enum ggml_type type) {
+static bool ggml_sycl_supports_dmmv(enum ggml_type type) {
switch (type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
}
-void ggml_sycl_set_main_device(const int main_device) try {
+static void ggml_sycl_set_main_device(const int main_device) try {
if (dpct::get_current_device_id() == static_cast<unsigned int> (main_device)) {
return;
}
std::exit(1);
}
-bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct ggml_tensor * dst) {
+static bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct ggml_tensor * dst) {
if (!g_sycl_loaded) return false;
if (dst->src[0] != nullptr && ggml_backend_buffer_is_sycl_split(dst->src[0]->buffer)) {
std::exit(1);
}
-void reorder_qw(char *data_device, const int ncols, const int nrows,
+static void reorder_qw(char *data_device, const int ncols, const int nrows,
size_t size, size_t offset, dpct::queue_ptr stream) {
auto tmp_buf = sycl::malloc_shared<char>(size, *stream);
SYCL_CHECK(
stream->parallel_for(
size / sizeof(block_q4_0),
- [=](auto i) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [=](auto i) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
const block_q4_0* x = (const block_q4_0*)tmp_buf;
const int ib = i;
sycl::free(tmp_buf, *stream);
}
-void reorder_qw(ggml_tensor * src0, dpct::queue_ptr stream) {
+static void reorder_qw(ggml_tensor * src0, dpct::queue_ptr stream) {
char*data_device = (char*)src0->data;
size_t ncols = src0->ne[0];
size_t nrows = src0->ne[1];
reorder_qw(data_device, ncols, nrows, size, 0, stream);
}
-void opt_for_reorder(ggml_tensor * dst, dpct::queue_ptr stream) {
+static void opt_for_reorder(ggml_tensor * dst, dpct::queue_ptr stream) {
ggml_tensor *src0 = dst->src[0];
ggml_tensor *src1 = dst->src[1];
}
}
-void optimize_graph_once(ggml_cgraph * cgraph, ggml_backend_sycl_context * ctx) {
+static void optimize_graph_once(ggml_cgraph * cgraph, ggml_backend_sycl_context * ctx) {
dpct::queue_ptr stream = ctx->stream();
if (ctx->optimized_graph) {
return;
return true;
}
return false;
- } break;
+ }
case GGML_OP_UNARY:
switch (ggml_get_unary_op(op)) {
case GGML_UNARY_OP_NEG:
default:
return false;
}
- break;
case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID:
{
return false;
}
return true;
- } break;
+ }
case GGML_OP_OUT_PROD:
return op->type == GGML_TYPE_F32 && op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->ne[2] == 1 && op->ne[3] == 1;
case GGML_OP_GET_ROWS:
default:
return false;
}
- } break;
+ }
case GGML_OP_CPY:
{
ggml_type src0_type = op->src[0]->type;
return true;
}
return false;
- } break;
+ }
case GGML_OP_CONCAT:
{
ggml_type src0_type = op->src[0]->type;
return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
- } break;
+ }
case GGML_OP_DUP:
case GGML_OP_ARGMAX:
case GGML_OP_NONE:
break;
default:
GGML_ABORT("fatal error");
- break;
}
GGML_UNUSED(src1);
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q<QK4_0, QI4_0, block_q4_0,
VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>(
vx, vy, dst, ncols, nrows, item_ct1);
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q<QK4_0, QI4_1, block_q4_1,
VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>(
vx, vy, dst, ncols, nrows, item_ct1);
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q<QK5_0, QI5_0, block_q5_0,
VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>(
vx, vy, dst, ncols, nrows, item_ct1);
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q<QK5_1, QI5_1, block_q5_1,
VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>(
vx, vy, dst, ncols, nrows, item_ct1);
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q<QK8_0, QI8_0, block_q8_0,
VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>(
vx, vy, dst, ncols, nrows, item_ct1);
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q<QK_K, QI2_K, block_q2_K,
VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>(
vx, vy, dst, ncols, nrows, item_ct1);
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q<QK_K, QI3_K, block_q3_K,
VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>(
vx, vy, dst, ncols, nrows, item_ct1);
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q<QK_K, QI4_K, block_q4_K,
VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>(
vx, vy, dst, ncols, nrows, item_ct1);
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q<QK_K, QI5_K, block_q5_K,
VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>(
vx, vy, dst, ncols, nrows, item_ct1);
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q<QK_K, QI6_K, block_q6_K,
VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>(
vx, vy, dst, ncols, nrows, item_ct1);
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q_iq2_xxs_q8_1<QK_K, QI2_XXS/2, block_iq2_xxs, 1>(
vx, vy, dst, ncols, nrows, item_ct1);
});
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q_iq2_xs_q8_1<QK_K, QI2_XS/2, block_iq2_xs, 1>(
vx, vy, dst, ncols, nrows, item_ct1);
});
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q_iq2_s_q8_1<QK_K, QI2_S/2, block_iq2_s, 1>(
vx, vy, dst, ncols, nrows, item_ct1);
});
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q_iq3_xxs_q8_1<QK_K, QI3_XXS/2, block_iq3_xxs, 1>(
vx, vy, dst, ncols, nrows, item_ct1);
});
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q_iq3_s_q8_1<QK_K, QI3_S/2, block_iq3_s, 1>(
vx, vy, dst, ncols, nrows, item_ct1);
});
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q_iq1_s_q8_1<QK_K, QI1_S, block_iq1_s, 1>(
vx, vy, dst, ncols, nrows, item_ct1);
});
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q_iq1_m_q8_1<QK_K, QI1_S, block_iq1_m, 1>(
vx, vy, dst, ncols, nrows, item_ct1);
});
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q_iq4_nl_q8_1<QK4_NL, QI4_NL, block_iq4_nl, 2>(
vx, vy, dst, ncols, nrows, item_ct1);
});
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q_iq4_xs_q8_1<QK_K, QI4_XS/4, block_iq4_xs, 1>(
vx, vy, dst, ncols, nrows, item_ct1);
});
break;
default:
GGML_ABORT("fatal error");
- break;
}
}
GGML_UNUSED(src1);
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
norm_f32(x, dst, ncols, eps, item_ct1,
nullptr, WARP_SIZE);
});
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
norm_f32(x, dst, ncols, eps, item_ct1,
get_pointer(s_sum_acc_ct1), work_group_size);
});
sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
group_norm_f32(
x, dst, group_size, ne_elements, eps_ct4, item_ct1,
nullptr, WARP_SIZE);
sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
group_norm_f32(x, dst, group_size, ne_elements,
eps_ct4, item_ct1,
get_pointer(s_sum_acc_ct1), work_group_size);
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
rms_norm_f32(x, dst, ncols, eps, item_ct1,
nullptr, WARP_SIZE);
});
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
rms_norm_f32(x, dst, ncols, eps, item_ct1,
get_pointer(s_sum_acc_ct1), work_group_size);
});
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
soft_max_f32<vals_smem, ncols_template, block_size_template>(x, mask, dst, ncols_par,
nrows_y, scale, max_bias, m0,
m1, n_head_log2, item_ct1,