]> git.djapps.eu Git - pkg/ggml/sources/whisper.cpp/commitdiff
talk-llama : sync llama.cpp
authorGeorgi Gerganov <redacted>
Mon, 19 May 2025 10:39:12 +0000 (13:39 +0300)
committerGeorgi Gerganov <redacted>
Mon, 19 May 2025 11:58:39 +0000 (14:58 +0300)
ggml-ci

examples/talk-llama/llama-arch.cpp
examples/talk-llama/llama-context.cpp
examples/talk-llama/llama-kv-cache.cpp
examples/talk-llama/llama-kv-cache.h
examples/talk-llama/llama-model-loader.cpp
examples/talk-llama/llama-model.cpp
examples/talk-llama/llama-quant.cpp
examples/talk-llama/llama.cpp

index f2bc8ca76850278ce2f4b320300e503dec4158cc..abf436adac41665824c97c062d2a0c8349785b2d 100644 (file)
@@ -1481,6 +1481,9 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
             { LLM_TENSOR_FFN_GATE_EXPS,   "blk.%d.ffn_gate_exps" },
             { LLM_TENSOR_FFN_DOWN_EXPS,   "blk.%d.ffn_down_exps" },
             { LLM_TENSOR_FFN_UP_EXPS,     "blk.%d.ffn_up_exps" },
+            { LLM_TENSOR_FFN_GATE_SHEXP,  "blk.%d.ffn_gate_shexp" },
+            { LLM_TENSOR_FFN_DOWN_SHEXP,  "blk.%d.ffn_down_shexp" },
+            { LLM_TENSOR_FFN_UP_SHEXP,    "blk.%d.ffn_up_shexp" },
         },
     },
     {
index 62246c10dab089f4583f0174492792eb27e7c543..a3b84a6a82e74dd1014f5abb88f6e95f0e3d9fe5 100644 (file)
@@ -1704,10 +1704,12 @@ size_t llama_context::state_write_data(llama_io_write_i & io) {
         }
     }
 
-    LLAMA_LOG_DEBUG("%s: - writing KV self\n", __func__);
     llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
 
-    kv_self->state_write(io);
+    if (kv_self != nullptr) {
+        LLAMA_LOG_DEBUG("%s: - writing KV self\n", __func__);
+        kv_self->state_write(io);
+    }
 
     return io.n_bytes();
 }
index 3dcad65bb6a8532fba298648f45119b21fc9b42d..265db2527c7ca5d012cd5c305bd8ecefdbba983a 100644 (file)
@@ -441,6 +441,13 @@ void llama_kv_cache_unified::defrag_sched(float thold) {
 
 void llama_kv_cache_unified::set_full() {
     n = size;
+
+    // when simulating a full KV cache, the specific value of the "head" pointer is not important because it does not
+    //   affect the shapes of the tensors in the compute graph - it only affects the offsets of the K/V views.
+    //   we should only guarantee that the head position won't cause out-of-bounds view of the K, V tensors, so
+    //   setting it to 0 is the simplest way to achieve that
+    // ref: https://github.com/ggml-org/llama.cpp/issues/13359
+    head = 0;
 }
 
 llama_sbatch llama_kv_cache_unified::sbatch_init(
@@ -1712,6 +1719,7 @@ void llama_kv_cache_recurrent::defrag_sched(float thold) {
 
 void llama_kv_cache_recurrent::set_full() {
     n = size;
+    head = 0;
 }
 
 llama_sbatch llama_kv_cache_recurrent::sbatch_init(
index bf3b4b6a4430f00088d5bbdae82cccffb8778c3e..e83e12c09f2b1d545c53b45b5c1518ca1ad8001a 100644 (file)
@@ -171,11 +171,8 @@ public:
     void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override;
     void state_read (llama_io_read_i  & io, llama_seq_id seq_id = -1) override;
 
-    // Note: The value of head isn't only used to optimize searching
-    // for a free KV slot. llama_decode_impl also uses it, so it
-    // cannot be freely changed after a slot has been allocated.
-    uint32_t head = 0;
-    uint32_t size = 0;
+    uint32_t head = 0; // the location where the batch will be placed in the cache (see find_slot())
+    uint32_t size = 0; // total number of cells, shared across all sequences
     uint32_t used = 0; // used cells (i.e. at least one seq_id)
 
     // computed before each graph build
@@ -343,11 +340,8 @@ public:
     void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override;
     void state_read (llama_io_read_i  & io, llama_seq_id seq_id = -1) override;
 
-    // Note: The value of head isn't only used to optimize searching
-    // for a free KV slot. llama_decode_impl also uses it, so it
-    // cannot be freely changed after a slot has been allocated.
-    uint32_t head = 0;
-    uint32_t size = 0;
+    uint32_t head = 0; // the location where the batch will be placed in the cache (see find_slot())
+    uint32_t size = 0; // total number of cells, shared across all sequences
     uint32_t used = 0; // used cells (i.e. at least one seq_id)
 
     // computed before each graph build
index 4cce51668b42d09ed155ae421d6a2a618f403d90..ddb1b03675b289acdf53f66c4e5cb1c2ad80b589 100644 (file)
@@ -469,7 +469,7 @@ llama_model_loader::llama_model_loader(
 
     meta.reset(gguf_init_from_file(fname.c_str(), params));
     if (!meta) {
-        throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
+        throw std::runtime_error(format("%s: failed to load model from %s", __func__, fname.c_str()));
     }
 
     get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
@@ -528,7 +528,7 @@ llama_model_loader::llama_model_loader(
             };
             gguf_context_ptr ctx_gguf { gguf_init_from_file(fname_split, split_params) };
             if (!ctx_gguf) {
-                throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, fname_split));
+                throw std::runtime_error(format("%s: failed to load GGUF split from %s", __func__, fname_split));
             }
 
             // check idx
@@ -822,13 +822,18 @@ void llama_model_loader::init_mappings(bool prefetch, llama_mlocks * mlock_mmaps
         mappings.reserve(files.size());
         mmaps_used.reserve(files.size());
         for (const auto & file : files) {
-            auto * reg = ggml_backend_dev_backend_reg(ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU));
-            if (!reg) {
-                throw std::runtime_error(format("%s: no CPU backend found", __func__));
+            bool is_numa = false;
+
+            auto * dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
+            if (dev) {
+                auto * reg = ggml_backend_dev_backend_reg(dev);
+                auto * is_numa_fn = (decltype(ggml_is_numa) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_is_numa");
+                if (is_numa_fn) {
+                    is_numa = is_numa_fn();
+                }
             }
 
-            auto * is_numa_fn = (decltype(ggml_is_numa) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_is_numa");
-            std::unique_ptr<llama_mmap> mapping = std::make_unique<llama_mmap>(file.get(), prefetch ? -1 : 0, is_numa_fn());
+            std::unique_ptr<llama_mmap> mapping = std::make_unique<llama_mmap>(file.get(), prefetch ? -1 : 0, is_numa);
             mmaps_used.emplace_back(mapping->size(), 0);
             if (mlock_mmaps) {
                 std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
index 3a4e72a36b0730417d8dd670b706053aa3f01b88..7fd094b63f26921ee06bae90c3c440b717f1dbee 100644 (file)
@@ -1389,6 +1389,9 @@ void llama_model::load_hparams(llama_model_loader & ml) {
                     // Add additional layer/vocab/etc checks here for other model sizes
                     default: type = LLM_TYPE_UNKNOWN;
                 }
+
+                // For Granite MoE Shared
+                ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, /* required */ false);
             } break;
         case LLM_ARCH_CHAMELEON:
             {
@@ -1772,6 +1775,13 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
                             layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd,   n_ff, n_expert}, TENSOR_NOT_REQUIRED);
                             layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {  n_ff, n_embd, n_expert}, 0);
                             layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd,   n_ff, n_expert}, 0);
+
+                            // For Granite MoE Shared
+                            if (hparams.n_ff_shexp > 0) {
+                                layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
+                                layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
+                                layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
+                            }
                         }
                     }
                 } break;
@@ -4385,10 +4395,13 @@ void llama_model::print_info() const {
         LLAMA_LOG_INFO("%s: n_ff_exp         = %d\n",     __func__, hparams.n_ff_exp);
     }
 
-    if (arch == LLM_ARCH_MINICPM || arch == LLM_ARCH_GRANITE || arch == LLM_ARCH_GRANITE_MOE) {
+    if (arch == LLM_ARCH_MINICPM ||
+        arch == LLM_ARCH_GRANITE ||
+        arch == LLM_ARCH_GRANITE_MOE) {
         LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
         LLAMA_LOG_INFO("%s: f_residual_scale  = %f\n", __func__, hparams.f_residual_scale);
         LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
+        LLAMA_LOG_INFO("%s: n_ff_shexp        = %d\n", __func__, hparams.n_ff_shexp);
     }
 
     if (arch == LLM_ARCH_BAILINGMOE) {
@@ -4598,11 +4611,6 @@ struct llm_build_llama : public llm_graph_context {
                 inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
             }
 
-            // For Granite architecture
-            if (hparams.f_residual_scale) {
-                cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
-            }
-
             ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
             cb(ffn_inp, "ffn_inp", il);
 
@@ -4674,11 +4682,6 @@ struct llm_build_llama : public llm_graph_context {
                 cb(cur, "ffn_moe_out", il);
             }
 
-            // For Granite architecture
-            if (hparams.f_residual_scale) {
-                cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
-            }
-
             cur = ggml_add(ctx0, cur, ffn_inp);
             cb(cur, "ffn_out", il);
 
@@ -4701,11 +4704,6 @@ struct llm_build_llama : public llm_graph_context {
         // lm_head
         cur = build_lora_mm(model.output, cur);
 
-        // For Granite architecture
-        if (hparams.f_logit_scale) {
-            cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
-        }
-
         cb(cur, "result_output", -1);
         res->t_logits = cur;
 
@@ -4816,11 +4814,6 @@ struct llm_build_deci : public llm_graph_context {
                 continue;
             }
 
-            // For Granite architecture
-            if (hparams.f_residual_scale) {
-                cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
-            }
-
             // modified to support attention-free layer of Llama-3_1-Nemotron-51B
             ggml_tensor * ffn_inp = cur;
             if (n_head > 0) {
@@ -4844,11 +4837,6 @@ struct llm_build_deci : public llm_graph_context {
                 cb(cur, "ffn_out", il);
             }
 
-            // For Granite architecture
-            if (hparams.f_residual_scale) {
-                cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
-            }
-
             cur = ggml_add(ctx0, cur, ffn_inp);
             cb(cur, "ffn_out", il);
 
@@ -4871,11 +4859,6 @@ struct llm_build_deci : public llm_graph_context {
         // lm_head
         cur = build_lora_mm(model.output, cur);
 
-        // For Granite architecture
-        if (hparams.f_logit_scale) {
-            cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
-        }
-
         cb(cur, "result_output", -1);
         res->t_logits = cur;
 
@@ -12214,6 +12197,194 @@ struct llm_build_arwkv7 : public llm_build_rwkv7_base {
     }
 };
 
+
+struct llm_build_granite : public llm_graph_context {
+    llm_build_granite(
+        const llama_model & model,
+        const llm_graph_params & params,
+        ggml_cgraph * gf,
+        const bool use_rope = true)
+        : llm_graph_context(params) {
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        ggml_tensor * cur;
+        ggml_tensor * inpL;
+
+        inpL = build_inp_embd(model.tok_embd);
+
+        // inp_pos - built only if rope enabled
+        ggml_tensor * inp_pos = nullptr;
+        if (use_rope) {
+            inp_pos = build_inp_pos();
+        }
+
+        auto * inp_attn = build_attn_inp_kv_unified();
+
+        const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
+        for (int il = 0; il < n_layer; ++il) {
+            ggml_tensor * inpSA = inpL;
+
+            // norm
+            cur = build_norm(inpL,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                // compute Q and K and (optionally) RoPE them
+                ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+                if (model.layers[il].bq) {
+                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+                    cb(Qcur, "Qcur", il);
+                }
+
+                ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+                if (model.layers[il].bk) {
+                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+                    cb(Kcur, "Kcur", il);
+                }
+
+                ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+                if (model.layers[il].bv) {
+                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+                    cb(Vcur, "Vcur", il);
+                }
+
+                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
+                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+                Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
+
+                if (use_rope) {
+                    ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
+                    Qcur = ggml_rope_ext(
+                            ctx0, Qcur, inp_pos, rope_factors,
+                            n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                            ext_factor, attn_factor, beta_fast, beta_slow
+                            );
+
+                    Kcur = ggml_rope_ext(
+                            ctx0, Kcur, inp_pos, rope_factors,
+                            n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                            ext_factor, attn_factor, beta_fast, beta_slow
+                            );
+                }
+
+                cb(Qcur, "Qcur", il);
+                cb(Kcur, "Kcur", il);
+                cb(Vcur, "Vcur", il);
+
+                cur = build_attn(inp_attn, gf,
+                        model.layers[il].wo, model.layers[il].bo,
+                        Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
+                cb(cur, "attn_out", il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            // For Granite architectures - scale residual
+            cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
+            ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward network (non-MoE)
+            if (model.layers[il].ffn_gate_inp == nullptr) {
+
+                cur = build_norm(ffn_inp,
+                        model.layers[il].ffn_norm, NULL,
+                        LLM_NORM_RMS, il);
+                cb(cur, "ffn_norm", il);
+
+                cur = build_ffn(cur,
+                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
+                        model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
+                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+                        NULL,
+                        LLM_FFN_SILU, LLM_FFN_PAR, il);
+                cb(cur, "ffn_out", il);
+
+            } else {
+                // MoE branch
+                cur = build_norm(ffn_inp,
+                        model.layers[il].ffn_norm, NULL,
+                        LLM_NORM_RMS, il);
+                cb(cur, "ffn_norm", il);
+
+                ggml_tensor * moe_out = build_moe_ffn(cur,
+                        model.layers[il].ffn_gate_inp,
+                        model.layers[il].ffn_up_exps,
+                        model.layers[il].ffn_gate_exps,
+                        model.layers[il].ffn_down_exps,
+                        nullptr,
+                        n_expert, n_expert_used,
+                        LLM_FFN_SILU, true,
+                        false, 0.0,
+                        LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
+                        il);
+                cb(moe_out, "ffn_moe_out", il);
+
+                // For Granite MoE Shared
+                if (hparams.n_ff_shexp > 0) {
+                    ggml_tensor * ffn_shexp = build_ffn(cur,
+                        model.layers[il].ffn_up_shexp,   NULL, NULL,
+                        model.layers[il].ffn_gate_shexp, NULL, NULL,
+                        model.layers[il].ffn_down_shexp, NULL, NULL,
+                        NULL,
+                        LLM_FFN_SILU, LLM_FFN_PAR, il);
+                    cb(ffn_shexp, "ffn_shexp", il);
+
+                    cur = ggml_add(ctx0, moe_out, ffn_shexp);
+                    cb(cur, "ffn_out", il);
+                } else {
+                    cur = moe_out;
+                }
+            }
+
+            // For Granite architectures - scale residual
+            cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cb(cur, "ffn_out", il);
+
+            cur = build_cvec(cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = build_norm(cur,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, -1);
+
+        cb(cur, "result_norm", -1);
+        res->t_embd = cur;
+
+        // lm_head
+        cur = build_lora_mm(model.output, cur);
+
+        // For Granite architectures - scale logits
+        cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
+        cb(cur, "result_output", -1);
+        res->t_logits = cur;
+
+        ggml_build_forward_expand(gf, cur);
+    }
+};
+
 // ref: https://github.com/facebookresearch/chameleon
 // based on the original build_llama() function, changes:
 //   * qk-norm
@@ -12921,8 +13092,6 @@ llm_graph_result_ptr llama_model::build_graph(
         case LLM_ARCH_LLAMA:
         case LLM_ARCH_LLAMA4:
         case LLM_ARCH_MINICPM:
-        case LLM_ARCH_GRANITE:
-        case LLM_ARCH_GRANITE_MOE:
             {
                 llm = std::make_unique<llm_build_llama>(*this, params, gf);
             } break;
@@ -13153,6 +13322,11 @@ llm_graph_result_ptr llama_model::build_graph(
             {
                 llm = std::make_unique<llm_build_arwkv7>(*this, params, gf);
             } break;
+        case LLM_ARCH_GRANITE:
+        case LLM_ARCH_GRANITE_MOE:
+            {
+                llm = std::make_unique<llm_build_granite>(*this, params, gf);
+            } break;
         case LLM_ARCH_CHAMELEON:
             {
                 llm = std::make_unique<llm_build_chameleon>(*this, params, gf);
index 820d5128e29ba700702ef31447be9ddeb7c52d53..159b1307a4c5d70ba49d476743350feaf0f7a231 100644 (file)
 #include <thread>
 #include <unordered_map>
 
+// Quantization types. Changes to this struct must be replicated in quantize.cpp
+struct tensor_quantization {
+    std::string name;
+    ggml_type quant = GGML_TYPE_COUNT;
+};
+
 static void zeros(std::ofstream & file, size_t n) {
     char zero = 0;
     for (size_t i = 0; i < n; ++i) {
@@ -48,12 +54,6 @@ struct quantize_state_impl {
         {}
 };
 
-// changes to this struct must be replicated in quantize.cpp
-struct tensor_quantization {
-    std::string name;
-    ggml_type quant = GGML_TYPE_COUNT;
-};
-
 static void llama_tensor_dequantize_impl(
     ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
     const size_t nelements, const int nthread
@@ -796,17 +796,19 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
                 // unless the user specifies a type
                 if (params->tensor_types) {
                     const std::vector<tensor_quantization> & tensor_types = *static_cast<const std::vector<tensor_quantization> *>(params->tensor_types);
+                    const std::string tensor_name(tensor->name);
                     for (const auto & [tname, qtype] : tensor_types) {
-                        if (std::regex pattern(tname); std::regex_search(tensor->name, pattern)) {
-                            if (qtype != new_type) {
-                                LLAMA_LOG_DEBUG("(overriding %s -> %s), ", ggml_type_name(new_type), ggml_type_name(qtype));
+                        if (std::regex pattern(tname); std::regex_search(tensor_name, pattern)) {
+                            if  (qtype != new_type) {
+                                LLAMA_LOG_DEBUG("(overriding %s) ", ggml_type_name(new_type));
+                                new_type = qtype;
+                                break; // if two or more types are specified for the tensor, first match wins
                             }
-                            new_type = qtype;
-                            break;
                         }
                     }
                 }
             }
+
             if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
                 new_type = params->token_embedding_type;
             }
index 9fdddf7b071f83925ae7d4662046fa6340f91fd9..2f06e0f8ce12d2d309f5c61cdc8219cec27d06b5 100644 (file)
@@ -140,6 +140,11 @@ static struct llama_model * llama_model_load_from_file_impl(
         struct llama_model_params params) {
     ggml_time_init();
 
+    if (!params.vocab_only && ggml_backend_reg_count() == 0) {
+        LLAMA_LOG_ERROR("%s: no backends are loaded. hint: use ggml_backend_load() or ggml_backend_load_all() to load a backend before calling this function\n", __func__);
+        return nullptr;
+    }
+
     unsigned cur_percentage = 0;
     if (params.progress_callback == NULL) {
         params.progress_callback_user_data = &cur_percentage;