We still have the heads up in `README.md` regarding `bpe` tokenizers and this patch is needed for
- a couple of tokenizer tests
- some more `special` and `non-special` added tokens handling (as far as I understand it)
* Update special token handling
* Add mpt
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size
+added_vocab = tokenizer.get_added_vocab()
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
for i in range(vocab_size):
- tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]")
- scores.append(0.0) # dummy
- toktypes.append(gguf.TokenType.NORMAL)
+ if i not in reverse_vocab:
+ tokens.append(f"[PAD{i}]")
+ toktypes.append(gguf.TokenType.USER_DEFINED)
+ elif reverse_vocab[i] in added_vocab:
+ tokens.append(reverse_vocab[i])
+ if tokenizer.added_tokens_decoder[i].special:
+ toktypes.append(gguf.TokenType.CONTROL)
+ else:
+ toktypes.append(gguf.TokenType.USER_DEFINED)
+ else:
+ tokens.append(reverse_vocab[i])
+ toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens)
-gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True, n_vocab = len(tokens))
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size
+added_vocab = tokenizer.get_added_vocab()
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
for i in range(vocab_size):
- tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]")
- scores.append(0.0) # dummy
- toktypes.append(gguf.TokenType.NORMAL)
+ if i not in reverse_vocab:
+ tokens.append(f"[PAD{i}]")
+ toktypes.append(gguf.TokenType.USER_DEFINED)
+ elif reverse_vocab[i] in added_vocab:
+ tokens.append(reverse_vocab[i])
+ if tokenizer.added_tokens_decoder[i].special:
+ toktypes.append(gguf.TokenType.CONTROL)
+ else:
+ toktypes.append(gguf.TokenType.USER_DEFINED)
+ else:
+ tokens.append(reverse_vocab[i])
+ toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens)
-gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True, n_vocab = len(tokens))
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.USER_DEFINED)
elif reverse_vocab[i] in added_vocab:
- # NOTE: wouldn't we like to distinguish CONTROL tokens here?
tokens.append(reverse_vocab[i])
- toktypes.append(gguf.TokenType.USER_DEFINED)
+ if tokenizer.added_tokens_decoder[i].special:
+ toktypes.append(gguf.TokenType.CONTROL)
+ else:
+ toktypes.append(gguf.TokenType.USER_DEFINED)
else:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL)
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size
+added_vocab = tokenizer.get_added_vocab()
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
for i in range(vocab_size):
- tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]")
- scores.append(0.0) # dummy
- toktypes.append(gguf.TokenType.NORMAL)
+ if i not in reverse_vocab:
+ tokens.append(f"[PAD{i}]")
+ toktypes.append(gguf.TokenType.USER_DEFINED)
+ elif reverse_vocab[i] in added_vocab:
+ tokens.append(reverse_vocab[i])
+ if tokenizer.added_tokens_decoder[i].special:
+ toktypes.append(gguf.TokenType.CONTROL)
+ else:
+ toktypes.append(gguf.TokenType.USER_DEFINED)
+ else:
+ tokens.append(reverse_vocab[i])
+ toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens)
-gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True, n_vocab = len(tokens))
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size
+added_vocab = tokenizer.get_added_vocab()
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
for i in range(vocab_size):
- tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]")
- scores.append(0.0) # dummy
- toktypes.append(gguf.TokenType.NORMAL)
+ if i not in reverse_vocab:
+ tokens.append(f"[PAD{i}]")
+ toktypes.append(gguf.TokenType.USER_DEFINED)
+ elif reverse_vocab[i] in added_vocab:
+ tokens.append(reverse_vocab[i])
+ if tokenizer.added_tokens_decoder[i].special:
+ toktypes.append(gguf.TokenType.CONTROL)
+ else:
+ toktypes.append(gguf.TokenType.USER_DEFINED)
+ else:
+ tokens.append(reverse_vocab[i])
+ toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens)
-gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
-
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True, n_vocab = len(tokens))
special_vocab.add_to_gguf(gguf_writer)