]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
llama-params-fit: fix last devices with low VRAM (#18494)
authorJohannes Gäßler <redacted>
Tue, 6 Jan 2026 19:02:30 +0000 (20:02 +0100)
committerGitHub <redacted>
Tue, 6 Jan 2026 19:02:30 +0000 (20:02 +0100)
src/llama.cpp

index 98fb770844cc6afab23f3a519f57165648848dd2..0162ae8d58c8d4086b4bc5c1dcb994a037ad4993 100644 (file)
@@ -359,6 +359,11 @@ static void llama_params_fit_impl(
 
         // for the first partial layer varying parts can overflow, all further layers use LAYER_FRACTION_MOE:
         layer_fraction_t overflow_type = LAYER_FRACTION_MOE;
+
+        uint32_t n_full() const {
+            assert(n_layer >= n_part);
+            return n_layer - n_part;
+        }
     };
 
     const size_t ntbo = llama_max_tensor_buft_overrides();
@@ -382,7 +387,7 @@ static void llama_params_fit_impl(
 
         size_t itbo = 0;
         for (size_t id = 0; id < nd; id++) {
-            il0 += ngl_per_device[id].n_layer - ngl_per_device[id].n_part;
+            il0 += ngl_per_device[id].n_full();
             for (uint32_t il = il0; il < il0 + ngl_per_device[id].n_part; il++) {
                 if (itbo + 1 >= ntbo) {
                     tensor_buft_overrides[itbo].pattern = nullptr;
@@ -393,7 +398,7 @@ static void llama_params_fit_impl(
                         + std::to_string(ntbo) + " is insufficient for model");
                 }
                 tensor_buft_overrides[itbo].pattern = get_overflow_pattern(il, il == il0 ? ngl_per_device[id].overflow_type : LAYER_FRACTION_MOE);
-                tensor_buft_overrides[itbo].buft = overflow_bufts[id];
+                tensor_buft_overrides[itbo].buft = il == il0 ? overflow_bufts[id] : ggml_backend_cpu_buffer_type();
                 itbo++;
             }
             il0 += ngl_per_device[id].n_part;
@@ -468,20 +473,14 @@ static void llama_params_fit_impl(
         LLAMA_LOG_DEBUG("%s: id=%zu, target=%" PRId64 " MiB\n", __func__, id, targets[id]/MiB);
     }
 
-    std::vector<ggml_backend_buffer_type_t> overflow_bufts; // which bufts the partial layers of a device overflow to:
+    std::vector<ggml_backend_buffer_type_t> overflow_bufts; // which bufts the first partial layer of a device overflows to:
     overflow_bufts.reserve(nd);
-    for (size_t id = 0; id < nd - 1; ++id) {
-        overflow_bufts.push_back(ggml_backend_dev_buffer_type(devs[id + 1]));
+    for (size_t id = 0; id < nd; id++) {
+        overflow_bufts.push_back(ggml_backend_cpu_buffer_type());
     }
-    overflow_bufts.push_back(ggml_backend_cpu_buffer_type());
 
     std::vector<ngl_t> ngl_per_device(nd);
     std::vector<int64_t> mem = get_memory_for_layers(__func__, ngl_per_device, overflow_bufts);
-    if (hp_nex > 0) {
-        for (size_t id = 0; id < nd; id++) {
-            ngl_per_device[id].overflow_type = LAYER_FRACTION_MOE;
-        }
-    }
 
     // optimize the number of layers per device using the method of false position:
     //   - ngl_per_device has 0 layers for each device, lower bound
@@ -512,9 +511,6 @@ static void llama_params_fit_impl(
             if (mem_high[id] > targets[id]) {
                 assert(ngl_per_device_high[id].n_layer > ngl_per_device[id].n_layer);
                 uint32_t delta = ngl_per_device_high[id].n_layer - ngl_per_device[id].n_layer;
-                if (hp_nex > 0 && size_t(id) == nd - 1) {
-                    delta--;
-                }
                 LLAMA_LOG_DEBUG("%s: start filling device %" PRIu32 ", delta=%" PRIu32 "\n", __func__, id, delta);
                 while (delta > 1) {
                     uint32_t step_size = int64_t(delta) * (targets[id] - mem[id]) / (mem_high[id] - mem[id]);
@@ -524,7 +520,8 @@ static void llama_params_fit_impl(
                     std::vector<ngl_t> ngl_per_device_test = ngl_per_device;
                     ngl_per_device_test[id].n_layer += step_size;
                     if (hp_nex) {
-                        ngl_per_device_test[id].n_part += step_size;
+                        ngl_per_device_test[id].n_part += size_t(id) == nd - 1 && ngl_per_device_test[id].n_part == 0 ?
+                            step_size - 1 : step_size; // the first layer is the output layer which must always be full
                     }
                     const std::vector<int64_t> mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts);
 
@@ -573,7 +570,7 @@ static void llama_params_fit_impl(
     assert(id_dense_start < nd);
 
     LLAMA_LOG_INFO("%s: converting dense-only layers to full layers and filling them front-to-back with overflow to next device/system memory:\n", __func__);
-    for (size_t id = 0; id <= id_dense_start; id++) {
+    for (size_t id = 0; id <= id_dense_start && id_dense_start < nd; id++) {
         std::vector<ngl_t> ngl_per_device_high = ngl_per_device;
         for (size_t jd = id_dense_start; jd < nd; jd++) {
             const uint32_t n_layer_move = jd < nd - 1 ? ngl_per_device_high[jd].n_layer : ngl_per_device_high[jd].n_layer - 1;
@@ -585,12 +582,8 @@ static void llama_params_fit_impl(
         std::vector<int64_t> mem_high = get_memory_for_layers(__func__, ngl_per_device_high, overflow_bufts);
 
         if (mem_high[id] > targets[id]) {
-            assert(ngl_per_device_high[id].n_layer >= ngl_per_device_high[id].n_part);
-            assert(ngl_per_device[id].n_layer >= ngl_per_device[id].n_part);
-            assert((ngl_per_device_high[id].n_layer - ngl_per_device_high[id].n_part)
-                   >= ngl_per_device[id].n_layer - ngl_per_device[id].n_part);
-            uint32_t delta = (ngl_per_device_high[id].n_layer - ngl_per_device_high[id].n_part)
-                - (ngl_per_device[id].n_layer - ngl_per_device[id].n_part);
+            assert(ngl_per_device_high[id].n_full() >= ngl_per_device[id].n_full());
+            uint32_t delta = ngl_per_device_high[id].n_full() - ngl_per_device[id].n_full();
             while (delta > 1) {
                 uint32_t step_size = int64_t(delta) * (targets[id] - mem[id]) / (mem_high[id] - mem[id]);
                 step_size = std::max(step_size, uint32_t(1));
@@ -606,7 +599,7 @@ static void llama_params_fit_impl(
                     ngl_per_device_test[id].n_layer += n_convert_jd;
                     n_converted_test += n_convert_jd;
 
-                    if (ngl_per_device_test[id_dense_start_test].n_layer > 0) {
+                    if (ngl_per_device_test[id_dense_start_test].n_part > 0) {
                         break;
                     }
                 }
@@ -625,8 +618,8 @@ static void llama_params_fit_impl(
                     LLAMA_LOG_DEBUG("%s: set ngl_per_device_high[%zu].(n_layer, n_part)=(%" PRIu32 ", %" PRIu32 "), id_dense_start_high=%zu\n",
                         __func__, id, ngl_per_device_high[id].n_layer, ngl_per_device_high[id].n_part, id_dense_start_high);
                 }
-                delta = (ngl_per_device_high[id].n_layer - ngl_per_device_high[id].n_part)
-                    - (ngl_per_device[id].n_layer - ngl_per_device[id].n_part);
+                assert(ngl_per_device_high[id].n_full() >= ngl_per_device[id].n_full());
+                delta = ngl_per_device_high[id].n_full() - ngl_per_device[id].n_full();
             }
         } else {
             ngl_per_device = ngl_per_device_high;
@@ -644,14 +637,19 @@ static void llama_params_fit_impl(
             ngl_per_device_test[id_dense_start_test].n_part--;
             ngl_per_device_test[id].n_layer++;
             ngl_per_device_test[id].n_part++;
-            if (ngl_per_device_test[id_dense_start_test].n_layer == 0) {
+            if (ngl_per_device_test[id_dense_start_test].n_part == 0) {
                 id_dense_start_test++;
             }
             ngl_per_device_test[id].overflow_type = LAYER_FRACTION_UP;
+            std::vector<ggml_backend_buffer_type_t> overflow_bufts_test = overflow_bufts;
+            if (id < nd - 1) {
+                overflow_bufts_test[id] = ggml_backend_dev_buffer_type(devs[id + 1]);
+            }
             LLAMA_LOG_DEBUG("%s: trying to fit one extra layer with overflow_type=LAYER_FRACTION_UP\n", __func__);
-            std::vector<int64_t> mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts);
+            std::vector<int64_t> mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts_test);
             if (mem_test[id] < targets[id] && (id + 1 == nd || mem_test[id + 1] < targets[id + 1])) {
                 ngl_per_device = ngl_per_device_test;
+                overflow_bufts = overflow_bufts_test;
                 mem            = mem_test;
                 id_dense_start = id_dense_start_test;
                 LLAMA_LOG_DEBUG("%s: set ngl_per_device[%zu].(n_layer, n_part, overflow_type)=(%" PRIu32 ", %" PRIu32 ", UP), id_dense_start=%zu\n",
@@ -659,9 +657,10 @@ static void llama_params_fit_impl(
 
                 ngl_per_device_test[id].overflow_type = LAYER_FRACTION_GATE;
                 LLAMA_LOG_DEBUG("%s: trying to fit one extra layer with overflow_type=LAYER_FRACTION_GATE\n", __func__);
-                mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts);
+                mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts_test);
                 if (mem_test[id] < targets[id] && (id + 1 == nd || mem_test[id + 1] < targets[id + 1])) {
                     ngl_per_device = ngl_per_device_test;
+                    overflow_bufts = overflow_bufts_test;
                     mem            = mem_test;
                     id_dense_start = id_dense_start_test;
                     LLAMA_LOG_DEBUG("%s: set ngl_per_device[%zu].(n_layer, n_part, overflow_type)=(%" PRIu32 ", %" PRIu32 ", GATE), id_dense_start=%zu\n",
@@ -670,9 +669,10 @@ static void llama_params_fit_impl(
             } else {
                 ngl_per_device_test[id].overflow_type = LAYER_FRACTION_ATTN;
                 LLAMA_LOG_DEBUG("%s: trying to fit one extra layer with overflow_type=LAYER_FRACTION_ATTN\n", __func__);
-                mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts);
+                mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts_test);
                 if (mem_test[id] < targets[id] && (id + 1 == nd || mem_test[id + 1] < targets[id + 1])) {
                     ngl_per_device = ngl_per_device_test;
+                    overflow_bufts = overflow_bufts_test;
                     mem            = mem_test;
                     id_dense_start = id_dense_start_test;
                     LLAMA_LOG_DEBUG("%s: set ngl_per_device[%zu].(n_layer, n_part, overflow_type)=(%" PRIu32 ", %" PRIu32 ", ATTN), id_dense_start=%zu\n",
@@ -687,6 +687,14 @@ static void llama_params_fit_impl(
             __func__, dev_names[id].c_str(), ngl_per_device[id].n_layer, ngl_per_device[id].n_part, mem[id]/MiB, projected_margin/MiB);
     }
 
+    // print info for devices that were not changed during the conversion from dense only to full layers:
+    for (size_t id = id_dense_start + 1; id < nd; id++) {
+        const int64_t projected_margin = dmds_full[id].free - mem[id];
+        LLAMA_LOG_INFO(
+            "%s:   - %s: %2" PRIu32 " layers (%2" PRIu32 " overflowing), %6" PRId64 " MiB used, %6" PRId64 " MiB free\n",
+            __func__, dev_names[id].c_str(), ngl_per_device[id].n_layer, ngl_per_device[id].n_part, mem[id]/MiB, projected_margin/MiB);
+    }
+
     set_ngl_tensor_split_tbo(ngl_per_device, overflow_bufts, *mparams);
 }