--- /dev/null
+//
+// MIT license
+// Copyright (C) 2024 Intel Corporation
+// SPDX-License-Identifier: MIT
+//
+
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+
+#ifndef GGML_SYCL_DPCT_HELPER_HPP
+#define GGML_SYCL_DPCT_HELPER_HPP
+
+#include <sycl/sycl.hpp>
+#include <sycl/half_type.hpp>
+#include <oneapi/mkl.hpp>
+#include <map>
+
+#include "ggml.h"
+
+#if defined(__linux__)
+#include <sys/mman.h>
+#elif defined(_WIN64)
+#ifndef NOMINMAX
+#define NOMINMAX
+#endif
+#include <windows.h>
+#else
+#error "Only support Windows and Linux."
+#endif
+
+#if defined(__linux__)
+#include <unistd.h>
+#include <sys/syscall.h>
+#endif
+#if defined(_WIN64)
+#ifndef NOMINMAX
+#define NOMINMAX
+#endif
+#include <windows.h>
+#endif
+
+#define DPCT_COMPATIBILITY_TEMP (900)
+
+#if defined(_MSC_VER)
+#define __dpct_align__(n) __declspec(align(n))
+#define __dpct_inline__ __forceinline
+#else
+#define __dpct_align__(n) __attribute__((aligned(n)))
+#define __dpct_inline__ __inline__ __attribute__((always_inline))
+#endif
+
+#if defined(_MSC_VER)
+#define __dpct_noinline__ __declspec(noinline)
+#else
+#define __dpct_noinline__ __attribute__((noinline))
+#endif
+
+inline std::string get_device_type_name(const sycl::device &Device) {
+ auto DeviceType = Device.get_info<sycl::info::device::device_type>();
+ switch (DeviceType) {
+ case sycl::info::device_type::cpu:
+ return "cpu";
+ case sycl::info::device_type::gpu:
+ return "gpu";
+ case sycl::info::device_type::host:
+ return "host";
+ case sycl::info::device_type::accelerator:
+ return "acc";
+ default:
+ return "unknown";
+ }
+}
+
+inline std::string get_device_backend_and_type(const sycl::device &device) {
+ std::stringstream device_type;
+ sycl::backend backend = device.get_backend();
+ device_type << backend << ":" << get_device_type_name(device);
+ return device_type.str();
+}
+
+namespace dpct
+{
+ typedef sycl::queue *queue_ptr;
+ typedef sycl::event *event_ptr;
+ typedef char *device_ptr;
+ typedef uint8_t byte_t;
+ typedef sycl::buffer<byte_t> buffer_t;
+
+ /// SYCL default exception handler
+ inline auto exception_handler = [](sycl::exception_list exceptions)
+ {
+ for (std::exception_ptr const &e : exceptions)
+ {
+ try
+ {
+ std::rethrow_exception(e);
+ }
+ catch (sycl::exception const &e)
+ {
+ std::cerr << "Caught asynchronous SYCL exception:" << std::endl
+ << e.what() << std::endl
+ << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ }
+ }
+ };
+
+ enum error_code
+ {
+ success = 0,
+ default_error = 999
+ };
+
+ enum memcpy_direction
+ {
+ host_to_host,
+ host_to_device,
+ device_to_host,
+ device_to_device,
+ automatic
+ };
+
+ enum memory_region
+ {
+ global = 0, // device global memory
+ constant, // device constant memory
+ local, // device local memory
+ shared, // memory which can be accessed by host and device
+ };
+
+ enum class library_data_t : unsigned char
+ {
+ real_float = 0,
+ complex_float,
+ real_double,
+ complex_double,
+ real_half,
+ complex_half,
+ real_bfloat16,
+ complex_bfloat16,
+ real_int4,
+ complex_int4,
+ real_uint4,
+ complex_uint4,
+ real_int8,
+ complex_int8,
+ real_uint8,
+ complex_uint8,
+ real_int16,
+ complex_int16,
+ real_uint16,
+ complex_uint16,
+ real_int32,
+ complex_int32,
+ real_uint32,
+ complex_uint32,
+ real_int64,
+ complex_int64,
+ real_uint64,
+ complex_uint64,
+ real_int8_4,
+ real_int8_32,
+ real_uint8_4,
+ library_data_t_size
+ };
+
+ template <typename T>
+ struct DataType
+ {
+ using T2 = T;
+ };
+ template <typename T>
+ struct DataType<sycl::vec<T, 2>>
+ {
+ using T2 = std::complex<T>;
+ };
+
+ static void destroy_event(event_ptr event)
+ {
+ delete event;
+ }
+
+ static inline unsigned int get_tid()
+ {
+#if defined(__linux__)
+ return syscall(SYS_gettid);
+#elif defined(_WIN64)
+ return GetCurrentThreadId();
+#else
+#error "Only support Windows and Linux."
+#endif
+ }
+
+ namespace detail
+ {
+ static void get_version(const sycl::device &dev, int &major, int &minor)
+ {
+ // Version string has the following format:
+ // a. OpenCL<space><major.minor><space><vendor-specific-information>
+ // b. <major.minor>
+ // c. <AmdGcnArchName> e.g gfx1030
+ std::string ver;
+ ver = dev.get_info<sycl::info::device::version>();
+ std::string::size_type i = 0;
+ while (i < ver.size()) {
+ if (isdigit(ver[i]))
+ break;
+ i++;
+ }
+ major = std::stoi(&(ver[i]));
+ while (i < ver.size()) {
+ if (ver[i] == '.')
+ break;
+ i++;
+ }
+ if (i < ver.size()) {
+ // a. and b.
+ i++;
+ minor = std::stoi(&(ver[i]));
+ } else {
+ // c.
+ minor = 0;
+ }
+ }
+
+ template <typename tag, typename T>
+ class generic_error_type
+ {
+ public:
+ generic_error_type() = default;
+ generic_error_type(T value) : value{value} {}
+ operator T() const { return value; }
+
+ private:
+ T value;
+ };
+
+ } // namespace detail
+
+ /// Pitched 2D/3D memory data.
+ class pitched_data
+ {
+ public:
+ pitched_data() : pitched_data(nullptr, 0, 0, 0) {}
+ pitched_data(void *data, size_t pitch, size_t x, size_t y)
+ : _data(data), _pitch(pitch), _x(x), _y(y) {}
+
+ void *get_data_ptr() { return _data; }
+ void set_data_ptr(void *data) { _data = data; }
+
+ size_t get_pitch() { return _pitch; }
+ void set_pitch(size_t pitch) { _pitch = pitch; }
+
+ size_t get_x() { return _x; }
+ void set_x(size_t x) { _x = x; };
+
+ size_t get_y() { return _y; }
+ void set_y(size_t y) { _y = y; }
+
+ private:
+ void *_data;
+ size_t _pitch, _x, _y;
+ };
+
+ class device_info
+ {
+ public:
+ // get interface
+ const char *get_name() const { return _name; }
+ char *get_name() { return _name; }
+ template <typename WorkItemSizesTy = sycl::range<3>,
+ std::enable_if_t<std::is_same_v<WorkItemSizesTy, sycl::range<3>> ||
+ std::is_same_v<WorkItemSizesTy, int *>,
+ int> = 0>
+ auto get_max_work_item_sizes() const
+ {
+ if constexpr (std::is_same_v<WorkItemSizesTy, sycl::range<3>>)
+ return sycl::range<3>(_max_work_item_sizes_i[0],
+ _max_work_item_sizes_i[1],
+ _max_work_item_sizes_i[2]);
+ else
+ {
+ return _max_work_item_sizes_i;
+ }
+ }
+ template <typename WorkItemSizesTy = sycl::range<3>,
+ std::enable_if_t<std::is_same_v<WorkItemSizesTy, sycl::range<3>> ||
+ std::is_same_v<WorkItemSizesTy, int *>,
+ int> = 0>
+ auto get_max_work_item_sizes()
+ {
+ if constexpr (std::is_same_v<WorkItemSizesTy, sycl::range<3>>)
+ return sycl::range<3>(_max_work_item_sizes_i[0],
+ _max_work_item_sizes_i[1],
+ _max_work_item_sizes_i[2]);
+ else
+ {
+ return _max_work_item_sizes_i;
+ }
+ }
+ bool get_host_unified_memory() const { return _host_unified_memory; }
+ int get_major_version() const { return _major; }
+ int get_minor_version() const { return _minor; }
+ int get_integrated() const { return _integrated; }
+ int get_max_clock_frequency() const { return _frequency; }
+ int get_max_compute_units() const { return _max_compute_units; }
+ int get_max_work_group_size() const { return _max_work_group_size; }
+ int get_max_sub_group_size() const { return _max_sub_group_size; }
+ int get_max_work_items_per_compute_unit() const
+ {
+ return _max_work_items_per_compute_unit;
+ }
+ int get_max_register_size_per_work_group() const
+ {
+ return _max_register_size_per_work_group;
+ }
+ template <typename NDRangeSizeTy = size_t *,
+ std::enable_if_t<std::is_same_v<NDRangeSizeTy, size_t *> ||
+ std::is_same_v<NDRangeSizeTy, int *>,
+ int> = 0>
+ auto get_max_nd_range_size() const
+ {
+ if constexpr (std::is_same_v<NDRangeSizeTy, size_t *>)
+ return _max_nd_range_size;
+ else
+ return _max_nd_range_size_i;
+ }
+ template <typename NDRangeSizeTy = size_t *,
+ std::enable_if_t<std::is_same_v<NDRangeSizeTy, size_t *> ||
+ std::is_same_v<NDRangeSizeTy, int *>,
+ int> = 0>
+ auto get_max_nd_range_size()
+ {
+ if constexpr (std::is_same_v<NDRangeSizeTy, size_t *>)
+ return _max_nd_range_size;
+ else
+ return _max_nd_range_size_i;
+ }
+ size_t get_global_mem_size() const { return _global_mem_size; }
+ size_t get_local_mem_size() const { return _local_mem_size; }
+ size_t get_max_mem_alloc_size() const { return _max_mem_alloc_size; }
+ /// Returns the maximum clock rate of device's global memory in kHz. If
+ /// compiler does not support this API then returns default value 3200000 kHz.
+ unsigned int get_memory_clock_rate() const { return _memory_clock_rate; }
+ /// Returns the maximum bus width between device and memory in bits. If
+ /// compiler does not support this API then returns default value 64 bits.
+ unsigned int get_memory_bus_width() const { return _memory_bus_width; }
+ uint32_t get_device_id() const { return _device_id; }
+ std::array<unsigned char, 16> get_uuid() const { return _uuid; }
+ /// Returns global memory cache size in bytes.
+ unsigned int get_global_mem_cache_size() const
+ {
+ return _global_mem_cache_size;
+ }
+
+ // set interface
+ void set_name(const char *name)
+ {
+ size_t length = strlen(name);
+ if (length < 256)
+ {
+ std::memcpy(_name, name, length + 1);
+ }
+ else
+ {
+ std::memcpy(_name, name, 255);
+ _name[255] = '\0';
+ }
+ }
+ void set_max_work_item_sizes(const sycl::range<3> max_work_item_sizes)
+ {
+ for (int i = 0; i < 3; ++i)
+ _max_work_item_sizes_i[i] = max_work_item_sizes[i];
+ }
+ [[deprecated]] void
+ set_max_work_item_sizes(const sycl::id<3> max_work_item_sizes)
+ {
+ for (int i = 0; i < 3; ++i)
+ {
+ _max_work_item_sizes_i[i] = max_work_item_sizes[i];
+ }
+ }
+ void set_host_unified_memory(bool host_unified_memory)
+ {
+ _host_unified_memory = host_unified_memory;
+ }
+ void set_major_version(int major) { _major = major; }
+ void set_minor_version(int minor) { _minor = minor; }
+ void set_integrated(int integrated) { _integrated = integrated; }
+ void set_max_clock_frequency(int frequency) { _frequency = frequency; }
+ void set_max_compute_units(int max_compute_units)
+ {
+ _max_compute_units = max_compute_units;
+ }
+ void set_global_mem_size(size_t global_mem_size)
+ {
+ _global_mem_size = global_mem_size;
+ }
+ void set_local_mem_size(size_t local_mem_size)
+ {
+ _local_mem_size = local_mem_size;
+ }
+ void set_max_mem_alloc_size(size_t max_mem_alloc_size)
+ {
+ _max_mem_alloc_size = max_mem_alloc_size;
+ }
+ void set_max_work_group_size(int max_work_group_size)
+ {
+ _max_work_group_size = max_work_group_size;
+ }
+ void set_max_sub_group_size(int max_sub_group_size)
+ {
+ _max_sub_group_size = max_sub_group_size;
+ }
+ void
+ set_max_work_items_per_compute_unit(int max_work_items_per_compute_unit)
+ {
+ _max_work_items_per_compute_unit = max_work_items_per_compute_unit;
+ }
+ void set_max_nd_range_size(int max_nd_range_size[])
+ {
+ for (int i = 0; i < 3; i++)
+ {
+ _max_nd_range_size[i] = max_nd_range_size[i];
+ _max_nd_range_size_i[i] = max_nd_range_size[i];
+ }
+ }
+ void set_memory_clock_rate(unsigned int memory_clock_rate)
+ {
+ _memory_clock_rate = memory_clock_rate;
+ }
+ void set_memory_bus_width(unsigned int memory_bus_width)
+ {
+ _memory_bus_width = memory_bus_width;
+ }
+ void
+ set_max_register_size_per_work_group(int max_register_size_per_work_group)
+ {
+ _max_register_size_per_work_group = max_register_size_per_work_group;
+ }
+ void set_device_id(uint32_t device_id)
+ {
+ _device_id = device_id;
+ }
+ void set_uuid(std::array<unsigned char, 16> uuid)
+ {
+ _uuid = std::move(uuid);
+ }
+ void set_global_mem_cache_size(unsigned int global_mem_cache_size)
+ {
+ _global_mem_cache_size = global_mem_cache_size;
+ }
+
+ private:
+ char _name[256];
+ int _max_work_item_sizes_i[3];
+ bool _host_unified_memory = false;
+ int _major;
+ int _minor;
+ int _integrated = 0;
+ int _frequency;
+ // Set estimated value 3200000 kHz as default value.
+ unsigned int _memory_clock_rate = 3200000;
+ // Set estimated value 64 bits as default value.
+ unsigned int _memory_bus_width = 64;
+ unsigned int _global_mem_cache_size;
+ int _max_compute_units;
+ int _max_work_group_size;
+ int _max_sub_group_size;
+ int _max_work_items_per_compute_unit;
+ int _max_register_size_per_work_group;
+ size_t _global_mem_size;
+ size_t _local_mem_size;
+ size_t _max_mem_alloc_size;
+ size_t _max_nd_range_size[3];
+ int _max_nd_range_size_i[3];
+ uint32_t _device_id;
+ std::array<unsigned char, 16> _uuid;
+ };
+
+ static int get_major_version(const sycl::device &dev)
+ {
+ int major, minor;
+ detail::get_version(dev, major, minor);
+ return major;
+ }
+
+ static int get_minor_version(const sycl::device &dev)
+ {
+ int major, minor;
+ detail::get_version(dev, major, minor);
+ return minor;
+ }
+
+ static void get_device_info(device_info &out, const sycl::device &dev)
+ {
+ device_info prop;
+ prop.set_name(dev.get_info<sycl::info::device::name>().c_str());
+
+ int major, minor;
+ detail::get_version(dev, major, minor);
+ prop.set_major_version(major);
+ prop.set_minor_version(minor);
+
+ prop.set_max_work_item_sizes(
+#if (__SYCL_COMPILER_VERSION && __SYCL_COMPILER_VERSION < 20220902)
+ // oneAPI DPC++ compiler older than 2022/09/02, where max_work_item_sizes
+ // is an enum class element
+ dev.get_info<sycl::info::device::max_work_item_sizes>());
+#else
+ // SYCL 2020-conformant code, max_work_item_sizes is a struct templated by
+ // an int
+ dev.get_info<sycl::info::device::max_work_item_sizes<3>>());
+#endif
+ prop.set_host_unified_memory(dev.has(sycl::aspect::usm_host_allocations));
+
+ prop.set_max_clock_frequency(
+ dev.get_info<sycl::info::device::max_clock_frequency>() * 1000);
+
+ prop.set_max_compute_units(
+ dev.get_info<sycl::info::device::max_compute_units>());
+ prop.set_max_work_group_size(
+ dev.get_info<sycl::info::device::max_work_group_size>());
+ prop.set_global_mem_size(dev.get_info<sycl::info::device::global_mem_size>());
+ prop.set_local_mem_size(dev.get_info<sycl::info::device::local_mem_size>());
+ prop.set_max_mem_alloc_size(dev.get_info<sycl::info::device::max_mem_alloc_size>());
+
+#if (defined(SYCL_EXT_INTEL_DEVICE_INFO) && SYCL_EXT_INTEL_DEVICE_INFO >= 6)
+ if (dev.has(sycl::aspect::ext_intel_memory_clock_rate))
+ {
+ unsigned int tmp =
+ dev.get_info<sycl::ext::intel::info::device::memory_clock_rate>();
+ if (tmp != 0)
+ prop.set_memory_clock_rate(1000 * tmp);
+ }
+ if (dev.has(sycl::aspect::ext_intel_memory_bus_width))
+ {
+ prop.set_memory_bus_width(
+ dev.get_info<sycl::ext::intel::info::device::memory_bus_width>());
+ }
+ if (dev.has(sycl::aspect::ext_intel_device_id))
+ {
+ prop.set_device_id(
+ dev.get_info<sycl::ext::intel::info::device::device_id>());
+ }
+ if (dev.has(sycl::aspect::ext_intel_device_info_uuid))
+ {
+ prop.set_uuid(dev.get_info<sycl::ext::intel::info::device::uuid>());
+ }
+#elif defined(_MSC_VER) && !defined(__clang__)
+#pragma message("get_device_info: querying memory_clock_rate and \
+ memory_bus_width are not supported by the compiler used. \
+ Use 3200000 kHz as memory_clock_rate default value. \
+ Use 64 bits as memory_bus_width default value.")
+#else
+#warning "get_device_info: querying memory_clock_rate and \
+ memory_bus_width are not supported by the compiler used. \
+ Use 3200000 kHz as memory_clock_rate default value. \
+ Use 64 bits as memory_bus_width default value."
+#endif
+
+ size_t max_sub_group_size = 1;
+ std::vector<size_t> sub_group_sizes =
+ dev.get_info<sycl::info::device::sub_group_sizes>();
+
+ for (const auto &sub_group_size : sub_group_sizes)
+ {
+ if (max_sub_group_size < sub_group_size)
+ max_sub_group_size = sub_group_size;
+ }
+
+ prop.set_max_sub_group_size(max_sub_group_size);
+
+ prop.set_max_work_items_per_compute_unit(
+ dev.get_info<sycl::info::device::max_work_group_size>());
+ int max_nd_range_size[] = {0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF};
+ prop.set_max_nd_range_size(max_nd_range_size);
+
+ // Estimates max register size per work group, feel free to update the value
+ // according to device properties.
+ prop.set_max_register_size_per_work_group(65536);
+
+ prop.set_global_mem_cache_size(
+ dev.get_info<sycl::info::device::global_mem_cache_size>());
+ out = prop;
+ }
+
+ /// dpct device extension
+ class device_ext : public sycl::device
+ {
+ typedef std::mutex mutex_type;
+
+ public:
+ device_ext() : sycl::device(), _ctx(*this) {}
+ ~device_ext()
+ {
+ std::lock_guard<mutex_type> lock(m_mutex);
+ clear_queues();
+ }
+ device_ext(const sycl::device &base) : sycl::device(base), _ctx(*this)
+ {
+ std::lock_guard<mutex_type> lock(m_mutex);
+ init_queues();
+ }
+
+ int is_native_atomic_supported() { return 0; }
+ int get_major_version() const
+ {
+ return dpct::get_major_version(*this);
+ }
+
+ int get_minor_version() const
+ {
+ return dpct::get_minor_version(*this);
+ }
+
+ int get_max_compute_units() const
+ {
+ return get_device_info().get_max_compute_units();
+ }
+
+ /// Return the maximum clock frequency of this device in KHz.
+ int get_max_clock_frequency() const
+ {
+ return get_device_info().get_max_clock_frequency();
+ }
+
+ int get_integrated() const { return get_device_info().get_integrated(); }
+
+ int get_max_sub_group_size() const
+ {
+ return get_device_info().get_max_sub_group_size();
+ }
+
+ int get_max_register_size_per_work_group() const
+ {
+ return get_device_info().get_max_register_size_per_work_group();
+ }
+
+ int get_max_work_group_size() const
+ {
+ return get_device_info().get_max_work_group_size();
+ }
+
+ int get_mem_base_addr_align() const
+ {
+ return get_info<sycl::info::device::mem_base_addr_align>();
+ }
+
+ size_t get_global_mem_size() const
+ {
+ return get_device_info().get_global_mem_size();
+ }
+
+ size_t get_max_mem_alloc_size() const
+ {
+ return get_device_info().get_max_mem_alloc_size();
+ }
+
+ /// Get the number of bytes of free and total memory on the SYCL device.
+ /// \param [out] free_memory The number of bytes of free memory on the SYCL device.
+ /// \param [out] total_memory The number of bytes of total memory on the SYCL device.
+ void get_memory_info(size_t &free_memory, size_t &total_memory)
+ {
+ total_memory = get_device_info().get_global_mem_size();
+ const char *warning_info = "get_memory_info: [warning] ext_intel_free_memory is not "
+ "supported (export/set ZES_ENABLE_SYSMAN=1 to support), "
+ "use total memory as free memory";
+#if (defined(__SYCL_COMPILER_VERSION) && __SYCL_COMPILER_VERSION >= 20221105)
+ if (!has(sycl::aspect::ext_intel_free_memory))
+ {
+ std::cerr << warning_info << std::endl;
+ free_memory = total_memory;
+ }
+ else
+ {
+ free_memory = get_info<sycl::ext::intel::info::device::free_memory>();
+ }
+#else
+ std::cerr << warning_info << std::endl;
+ free_memory = total_memory;
+#if defined(_MSC_VER) && !defined(__clang__)
+#pragma message("Querying the number of bytes of free memory is not supported")
+#else
+#warning "Querying the number of bytes of free memory is not supported"
+#endif
+#endif
+ }
+
+ void get_device_info(device_info &out) const
+ {
+ dpct::get_device_info(out, *this);
+ }
+
+ device_info get_device_info() const
+ {
+ device_info prop;
+ dpct::get_device_info(prop, *this);
+ return prop;
+ }
+
+ void reset()
+ {
+ std::lock_guard<mutex_type> lock(m_mutex);
+ clear_queues();
+ init_queues();
+ }
+
+ sycl::queue &in_order_queue() { return *_q_in_order; }
+
+ sycl::queue &out_of_order_queue() { return *_q_out_of_order; }
+
+ sycl::queue &default_queue()
+ {
+ return in_order_queue();
+ }
+
+ void queues_wait_and_throw()
+ {
+ std::unique_lock<mutex_type> lock(m_mutex);
+ std::vector<std::shared_ptr<sycl::queue>> current_queues(
+ _queues);
+ lock.unlock();
+ for (const auto &q : current_queues)
+ {
+ q->wait_and_throw();
+ }
+ // Guard the destruct of current_queues to make sure the ref count is safe.
+ lock.lock();
+ }
+
+ sycl::queue *create_queue(bool enable_exception_handler = false)
+ {
+ return create_in_order_queue(enable_exception_handler);
+ }
+
+ sycl::queue *create_queue(sycl::context context, sycl::device device,
+ bool enable_exception_handler = false) {
+ return create_in_order_queue(context, device, enable_exception_handler);
+ }
+
+ sycl::queue *create_in_order_queue(bool enable_exception_handler = false) {
+ std::lock_guard<mutex_type> lock(m_mutex);
+ return create_queue_impl(enable_exception_handler,
+ sycl::property::queue::in_order());
+ }
+
+ sycl::queue *create_in_order_queue(sycl::context context, sycl::device device,
+ bool enable_exception_handler = false) {
+ std::lock_guard<mutex_type> lock(m_mutex);
+ return create_queue_impl(context, device, enable_exception_handler,
+ sycl::property::queue::in_order());
+ }
+
+ sycl::queue *create_out_of_order_queue(bool enable_exception_handler = false) {
+ std::lock_guard<mutex_type> lock(m_mutex);
+ return create_queue_impl(enable_exception_handler);
+ }
+
+ void destroy_queue(sycl::queue *&queue)
+ {
+ std::lock_guard<mutex_type> lock(m_mutex);
+ _queues.erase(std::remove_if(_queues.begin(), _queues.end(),
+ [=](const std::shared_ptr<sycl::queue> &q) -> bool
+ {
+ return q.get() == queue;
+ }),
+ _queues.end());
+ queue = nullptr;
+ }
+ void set_saved_queue(sycl::queue *q)
+ {
+ std::lock_guard<mutex_type> lock(m_mutex);
+ _saved_queue = q;
+ }
+ sycl::queue *get_saved_queue() const
+ {
+ std::lock_guard<mutex_type> lock(m_mutex);
+ return _saved_queue;
+ }
+ sycl::context get_context() const { return _ctx; }
+
+ private:
+ void clear_queues()
+ {
+ _queues.clear();
+ _q_in_order = _q_out_of_order = _saved_queue = nullptr;
+ }
+
+ void init_queues()
+ {
+ _q_in_order = create_queue_impl(true, sycl::property::queue::in_order());
+ _q_out_of_order = create_queue_impl(true);
+ _saved_queue = &default_queue();
+ }
+
+ /// Caller should acquire resource \p m_mutex before calling this function.
+ template <class... Properties>
+ sycl::queue *create_queue_impl(bool enable_exception_handler,
+ Properties... properties)
+ {
+ sycl::async_handler eh = {};
+ if (enable_exception_handler)
+ {
+ eh = exception_handler;
+ }
+ _queues.push_back(std::make_shared<sycl::queue>(
+ _ctx, *this, eh,
+ sycl::property_list(
+#ifdef DPCT_PROFILING_ENABLED
+ sycl::property::queue::enable_profiling(),
+#endif
+ properties...)));
+
+ return _queues.back().get();
+ }
+
+ template <class... Properties>
+ sycl::queue *create_queue_impl(sycl::context context, sycl::device device,
+ bool enable_exception_handler,
+ Properties... properties) {
+ sycl::async_handler eh = {};
+ if (enable_exception_handler) {
+ eh = exception_handler;
+ }
+ _queues.push_back(std::make_shared<sycl::queue>(
+ context, device, eh,
+ sycl::property_list(
+ #ifdef DPCT_PROFILING_ENABLED
+ sycl::property::queue::enable_profiling(),
+ #endif
+ properties...)));
+
+ return _queues.back().get();
+ }
+
+ void get_version(int &major, int &minor) const
+ {
+ detail::get_version(*this, major, minor);
+ }
+ sycl::queue *_q_in_order, *_q_out_of_order;
+ sycl::queue *_saved_queue;
+ sycl::context _ctx;
+ std::vector<std::shared_ptr<sycl::queue>> _queues;
+ mutable mutex_type m_mutex;
+ };
+
+ /// device manager
+ class dev_mgr
+ {
+ public:
+ device_ext ¤t_device()
+ {
+ unsigned int dev_id = current_device_id();
+ check_id(dev_id);
+ return *_devs[dev_id];
+ }
+ device_ext &cpu_device() const
+ {
+ std::lock_guard<std::recursive_mutex> lock(m_mutex);
+ if (_cpu_device == -1)
+ {
+ throw std::runtime_error("no valid cpu device");
+ }
+ else
+ {
+ return *_devs[_cpu_device];
+ }
+ }
+ device_ext &get_device(unsigned int id) const
+ {
+ std::lock_guard<std::recursive_mutex> lock(m_mutex);
+ check_id(id);
+ return *_devs[id];
+ }
+ unsigned int current_device_id() const
+ {
+ std::lock_guard<std::recursive_mutex> lock(m_mutex);
+ auto it = _thread2dev_map.find(get_tid());
+ if (it != _thread2dev_map.end())
+ return it->second;
+ return DEFAULT_DEVICE_ID;
+ }
+
+ /// Select device with a device ID.
+ /// \param [in] id The id of the device which can
+ /// be obtained through get_device_id(const sycl::device).
+ void select_device(unsigned int id)
+ {
+ std::lock_guard<std::recursive_mutex> lock(m_mutex);
+ check_id(id);
+ _thread2dev_map[get_tid()] = id;
+ }
+ unsigned int device_count() { return _devs.size(); }
+
+ unsigned int get_device_id(const sycl::device &dev)
+ {
+ unsigned int id = 0;
+ for (auto dev_item : _devs)
+ {
+ if (*dev_item == dev)
+ {
+ break;
+ }
+ id++;
+ }
+ return id;
+ }
+
+ template <class DeviceSelector>
+ std::enable_if_t<
+ std::is_invocable_r_v<int, DeviceSelector, const sycl::device &>>
+ select_device(const DeviceSelector &selector = sycl::gpu_selector_v)
+ {
+ sycl::device selected_device = sycl::device(selector);
+ unsigned int selected_device_id = get_device_id(selected_device);
+ select_device(selected_device_id);
+ }
+
+ /// Returns the instance of device manager singleton.
+ static dev_mgr &instance()
+ {
+ static dev_mgr d_m;
+ return d_m;
+ }
+ dev_mgr(const dev_mgr &) = delete;
+ dev_mgr &operator=(const dev_mgr &) = delete;
+ dev_mgr(dev_mgr &&) = delete;
+ dev_mgr &operator=(dev_mgr &&) = delete;
+
+ private:
+ mutable std::recursive_mutex m_mutex;
+ static bool compare_dev(sycl::device &device1, sycl::device &device2)
+ {
+ sycl::backend backend1 = device1.get_backend();
+ sycl::backend backend2 = device2.get_backend();
+ // levelzero backends always come first
+ if(backend1 == sycl::backend::ext_oneapi_level_zero && backend2 != sycl::backend::ext_oneapi_level_zero) return true;
+ if(backend1 != sycl::backend::ext_oneapi_level_zero && backend2 == sycl::backend::ext_oneapi_level_zero) return false;
+ dpct::device_info prop1;
+ dpct::get_device_info(prop1, device1);
+ dpct::device_info prop2;
+ dpct::get_device_info(prop2, device2);
+ return prop1.get_max_compute_units() > prop2.get_max_compute_units();
+ }
+ static int convert_backend_index(std::string & backend) {
+ if (backend == "ext_oneapi_level_zero:gpu") return 0;
+ if (backend == "opencl:gpu") return 1;
+ if (backend == "ext_oneapi_cuda:gpu") return 2;
+ if (backend == "ext_oneapi_hip:gpu") return 3;
+ if (backend == "opencl:cpu") return 4;
+ if (backend == "opencl:acc") return 5;
+ printf("convert_backend_index: can't handle backend=%s\n", backend.c_str());
+ GGML_ASSERT(false);
+ }
+ static bool compare_backend(std::string &backend1, std::string &backend2) {
+ return convert_backend_index(backend1) < convert_backend_index(backend2);
+ }
+ dev_mgr()
+ {
+ sycl::device default_device =
+ sycl::device(sycl::default_selector_v);
+ _devs.push_back(std::make_shared<device_ext>(default_device));
+
+ std::vector<sycl::device> sycl_all_devs;
+ // Collect other devices except for the default device.
+ if (default_device.is_cpu())
+ _cpu_device = 0;
+
+ auto Platforms = sycl::platform::get_platforms();
+ // Keep track of the number of devices per backend
+ std::map<sycl::backend, size_t> DeviceNums;
+ std::map<std::string, std::vector<sycl::device>> backend_devices;
+
+ while (!Platforms.empty()) {
+ auto Platform = Platforms.back();
+ Platforms.pop_back();
+ auto devices = Platform.get_devices();
+ std::string backend_type = get_device_backend_and_type(devices[0]);
+ for (const auto &device : devices) {
+ backend_devices[backend_type].push_back(device);
+ }
+ }
+
+ std::vector<std::string> keys;
+ for(auto it = backend_devices.begin(); it != backend_devices.end(); ++it) {
+ keys.push_back(it->first);
+ }
+ std::sort(keys.begin(), keys.end(), compare_backend);
+
+ for (auto &key : keys) {
+ std::vector<sycl::device> devs = backend_devices[key];
+ std::sort(devs.begin(), devs.end(), compare_dev);
+ for (const auto &dev : devs) {
+ sycl_all_devs.push_back(dev);
+ }
+ }
+
+ for (auto &dev : sycl_all_devs)
+ {
+ if (dev == default_device)
+ {
+ continue;
+ }
+ _devs.push_back(std::make_shared<device_ext>(dev));
+ if (_cpu_device == -1 && dev.is_cpu())
+ {
+ _cpu_device = _devs.size() - 1;
+ }
+ }
+ }
+ void check_id(unsigned int id) const
+ {
+ if (id >= _devs.size())
+ {
+ throw std::runtime_error("invalid device id");
+ }
+ }
+ std::vector<std::shared_ptr<device_ext>> _devs;
+ /// DEFAULT_DEVICE_ID is used, if current_device_id() can not find current
+ /// thread id in _thread2dev_map, which means default device should be used
+ /// for the current thread.
+ const unsigned int DEFAULT_DEVICE_ID = 0;
+ /// thread-id to device-id map.
+ std::map<unsigned int, unsigned int> _thread2dev_map;
+ int _cpu_device = -1;
+ };
+
+ static inline sycl::queue &get_default_queue()
+ {
+ return dev_mgr::instance().current_device().default_queue();
+ }
+
+ namespace detail
+ {
+ enum class pointer_access_attribute
+ {
+ host_only = 0,
+ device_only,
+ host_device,
+ end
+ };
+
+ static pointer_access_attribute get_pointer_attribute(sycl::queue &q,
+ const void *ptr)
+ {
+ switch (sycl::get_pointer_type(ptr, q.get_context()))
+ {
+ case sycl::usm::alloc::unknown:
+ return pointer_access_attribute::host_only;
+ case sycl::usm::alloc::device:
+ return pointer_access_attribute::device_only;
+ case sycl::usm::alloc::shared:
+ case sycl::usm::alloc::host:
+ return pointer_access_attribute::host_device;
+ }
+ }
+
+ template <typename ArgT>
+ inline constexpr std::uint64_t get_type_combination_id(ArgT Val)
+ {
+ static_assert((unsigned char)library_data_t::library_data_t_size <=
+ std::numeric_limits<unsigned char>::max() &&
+ "library_data_t size exceeds limit.");
+ static_assert(std::is_same_v<ArgT, library_data_t>, "Unsupported ArgT");
+ return (std::uint64_t)Val;
+ }
+
+ template <typename FirstT, typename... RestT>
+ inline constexpr std::uint64_t get_type_combination_id(FirstT FirstVal,
+ RestT... RestVal)
+ {
+ static_assert((std::uint8_t)library_data_t::library_data_t_size <=
+ std::numeric_limits<unsigned char>::max() &&
+ "library_data_t size exceeds limit.");
+ static_assert(sizeof...(RestT) <= 8 && "Too many parameters");
+ static_assert(std::is_same_v<FirstT, library_data_t>, "Unsupported FirstT");
+ return get_type_combination_id(RestVal...) << 8 | ((std::uint64_t)FirstVal);
+ }
+
+ class mem_mgr
+ {
+ mem_mgr()
+ {
+ // Reserved address space, no real memory allocation happens here.
+#if defined(__linux__)
+ mapped_address_space =
+ (byte_t *)mmap(nullptr, mapped_region_size, PROT_NONE,
+ MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
+#elif defined(_WIN64)
+ mapped_address_space = (byte_t *)VirtualAlloc(
+ NULL, // NULL specified as the base address parameter
+ mapped_region_size, // Size of allocation
+ MEM_RESERVE, // Allocate reserved pages
+ PAGE_NOACCESS); // Protection = no access
+#else
+#error "Only support Windows and Linux."
+#endif
+ next_free = mapped_address_space;
+ };
+
+ public:
+ using buffer_id_t = int;
+
+ struct allocation
+ {
+ buffer_t buffer;
+ byte_t *alloc_ptr;
+ size_t size;
+ };
+
+ ~mem_mgr()
+ {
+#if defined(__linux__)
+ munmap(mapped_address_space, mapped_region_size);
+#elif defined(_WIN64)
+ VirtualFree(mapped_address_space, 0, MEM_RELEASE);
+#else
+#error "Only support Windows and Linux."
+#endif
+ };
+
+ mem_mgr(const mem_mgr &) = delete;
+ mem_mgr &operator=(const mem_mgr &) = delete;
+ mem_mgr(mem_mgr &&) = delete;
+ mem_mgr &operator=(mem_mgr &&) = delete;
+
+ /// Allocate
+ void *mem_alloc(size_t size)
+ {
+ if (!size)
+ return nullptr;
+ std::lock_guard<std::mutex> lock(m_mutex);
+ if (next_free + size > mapped_address_space + mapped_region_size)
+ {
+ throw std::runtime_error("dpct_malloc: out of memory for virtual memory pool");
+ }
+ // Allocation
+ sycl::range<1> r(size);
+ buffer_t buf(r);
+ allocation A{buf, next_free, size};
+ // Map allocation to device pointer
+ void *result = next_free;
+ m_map.emplace(next_free + size, A);
+ // Update pointer to the next free space.
+ next_free += (size + extra_padding + alignment - 1) & ~(alignment - 1);
+
+ return result;
+ }
+
+ /// Deallocate
+ void mem_free(const void *ptr)
+ {
+ if (!ptr)
+ return;
+ std::lock_guard<std::mutex> lock(m_mutex);
+ auto it = get_map_iterator(ptr);
+ m_map.erase(it);
+ }
+
+ /// map: device pointer -> allocation(buffer, alloc_ptr, size)
+ allocation translate_ptr(const void *ptr)
+ {
+ std::lock_guard<std::mutex> lock(m_mutex);
+ auto it = get_map_iterator(ptr);
+ return it->second;
+ }
+
+ /// Check if the pointer represents device pointer or not.
+ bool is_device_ptr(const void *ptr) const
+ {
+ std::lock_guard<std::mutex> lock(m_mutex);
+ return (mapped_address_space <= ptr) &&
+ (ptr < mapped_address_space + mapped_region_size);
+ }
+
+ /// Returns the instance of memory manager singleton.
+ static mem_mgr &instance()
+ {
+ static mem_mgr m;
+ return m;
+ }
+
+ private:
+ std::map<byte_t *, allocation> m_map;
+ mutable std::mutex m_mutex;
+ byte_t *mapped_address_space;
+ byte_t *next_free;
+ const size_t mapped_region_size = 128ull * 1024 * 1024 * 1024;
+ const size_t alignment = 256;
+ /// This padding may be defined to some positive value to debug
+ /// out of bound accesses.
+ const size_t extra_padding = 0;
+
+ std::map<byte_t *, allocation>::iterator get_map_iterator(const void *ptr)
+ {
+ auto it = m_map.upper_bound((byte_t *)ptr);
+ if (it == m_map.end())
+ {
+ // Not a virtual pointer.
+ throw std::runtime_error("can not get buffer from non-virtual pointer");
+ }
+ const allocation &alloc = it->second;
+ if (ptr < alloc.alloc_ptr)
+ {
+ // Out of bound.
+ // This may happen if there's a gap between allocations due to alignment
+ // or extra padding and pointer points to this gap.
+ throw std::runtime_error("invalid virtual pointer");
+ }
+ return it;
+ }
+ };
+
+ template <class T, memory_region Memory, size_t Dimension>
+ class accessor;
+ template <memory_region Memory, class T = byte_t>
+ class memory_traits
+ {
+ public:
+ static constexpr sycl::access::target target =
+ sycl::access::target::device;
+ static constexpr sycl::access_mode mode =
+ (Memory == constant) ? sycl::access_mode::read
+ : sycl::access_mode::read_write;
+ static constexpr size_t type_size = sizeof(T);
+ using element_t =
+ typename std::conditional<Memory == constant, const T, T>::type;
+ using value_t = typename std::remove_cv<T>::type;
+ template <size_t Dimension = 1>
+ using accessor_t = typename std::conditional<
+ Memory == local, sycl::local_accessor<value_t, Dimension>,
+ sycl::accessor<T, Dimension, mode, target>>::type;
+ using pointer_t = T *;
+ };
+
+ static inline void *dpct_malloc(size_t size, sycl::queue &q)
+ {
+ return sycl::malloc_device(size, q.get_device(), q.get_context());
+ }
+
+#define PITCH_DEFAULT_ALIGN(x) (((x) + 31) & ~(0x1F))
+ static inline void *dpct_malloc(size_t &pitch, size_t x, size_t y, size_t z,
+ sycl::queue &q)
+ {
+ pitch = PITCH_DEFAULT_ALIGN(x);
+ return dpct_malloc(pitch * y * z, q);
+ }
+
+ /**
+ * @brief Sets \p value to the first \p size elements starting from \p dev_ptr in \p q.
+ * @tparam valueT The type of the element to be set.
+ * @param [in] q The queue in which the operation is done.
+ * @param [in] dev_ptr Pointer to the virtual device memory address.
+ * @param [in] value The value to be set.
+ * @param [in] size Number of elements to be set to the value.
+ * @return An event representing the memset operation.
+ */
+ template <typename valueT>
+ static inline sycl::event dpct_memset(sycl::queue &q, void *dev_ptr,
+ valueT value, size_t size)
+ {
+ return q.fill(dev_ptr, value, size);
+ }
+
+ /**
+ * @brief Sets \p value to the 3D memory region pointed by \p data in \p q.
+ * @tparam valueT The type of the element to be set.
+ * @param [in] q The queue in which the operation is done.
+ * @param [in] data Pointer to the pitched device memory region.
+ * @param [in] value The value to be set.
+ * @param [in] size 3D memory region by number of elements.
+ * @return An event list representing the memset operations.
+ */
+ template <typename valueT>
+ static inline std::vector<sycl::event>
+ dpct_memset(sycl::queue &q, pitched_data data, valueT value,
+ sycl::range<3> size)
+ {
+ std::vector<sycl::event> event_list;
+ size_t slice = data.get_pitch() * data.get_y();
+ unsigned char *data_surface = (unsigned char *)data.get_data_ptr();
+ for (size_t z = 0; z < size.get(2); ++z)
+ {
+ unsigned char *data_ptr = data_surface;
+ for (size_t y = 0; y < size.get(1); ++y)
+ {
+ event_list.push_back(dpct_memset(q, data_ptr, value, size.get(0)));
+ data_ptr += data.get_pitch();
+ }
+ data_surface += slice;
+ }
+ return event_list;
+ }
+
+ /**
+ * @brief Sets \p val to the pitched 2D memory region pointed by \p ptr in \p q.
+ * @tparam valueT The type of the element to be set.
+ * @param [in] q The queue in which the operation is done.
+ * @param [in] ptr Pointer to the virtual device memory.
+ * @param [in] pitch The pitch size by number of elements, including padding.
+ * @param [in] val The value to be set.
+ * @param [in] x The width of memory region by number of elements.
+ * @param [in] y The height of memory region by number of elements.
+ * @return An event list representing the memset operations.
+ */
+ template <typename valueT>
+ static inline std::vector<sycl::event>
+ dpct_memset(sycl::queue &q, void *ptr, size_t pitch, valueT val, size_t x,
+ size_t y)
+ {
+ return dpct_memset(q, pitched_data(ptr, pitch, x, 1), val,
+ sycl::range<3>(x, y, 1));
+ }
+
+ static memcpy_direction deduce_memcpy_direction(sycl::queue &q, void *to_ptr,
+ const void *from_ptr,
+ memcpy_direction dir)
+ {
+ switch (dir)
+ {
+ case memcpy_direction::host_to_host:
+ case memcpy_direction::host_to_device:
+ case memcpy_direction::device_to_host:
+ case memcpy_direction::device_to_device:
+ return dir;
+ case memcpy_direction::automatic:
+ {
+ // table[to_attribute][from_attribute]
+ static const memcpy_direction
+ direction_table[static_cast<unsigned>(pointer_access_attribute::end)]
+ [static_cast<unsigned>(pointer_access_attribute::end)] =
+ {{memcpy_direction::host_to_host,
+ memcpy_direction::device_to_host,
+ memcpy_direction::host_to_host},
+ {memcpy_direction::host_to_device,
+ memcpy_direction::device_to_device,
+ memcpy_direction::device_to_device},
+ {memcpy_direction::host_to_host,
+ memcpy_direction::device_to_device,
+ memcpy_direction::device_to_device}};
+ return direction_table[static_cast<unsigned>(get_pointer_attribute(
+ q, to_ptr))][static_cast<unsigned>(get_pointer_attribute(q, from_ptr))];
+ }
+ default:
+ throw std::runtime_error("dpct_memcpy: invalid direction value");
+ }
+ }
+
+ static sycl::event
+ dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr, size_t size,
+ memcpy_direction direction,
+ const std::vector<sycl::event> &dep_events = {})
+ {
+ if (!size)
+ return sycl::event{};
+ return q.memcpy(to_ptr, from_ptr, size, dep_events);
+ GGML_UNUSED(direction);
+ }
+
+ // Get actual copy range and make sure it will not exceed range.
+ static inline size_t get_copy_range(sycl::range<3> size, size_t slice,
+ size_t pitch)
+ {
+ return slice * (size.get(2) - 1) + pitch * (size.get(1) - 1) + size.get(0);
+ }
+
+ static inline size_t get_offset(sycl::id<3> id, size_t slice,
+ size_t pitch)
+ {
+ return slice * id.get(2) + pitch * id.get(1) + id.get(0);
+ }
+
+ /// copy 3D matrix specified by \p size from 3D matrix specified by \p from_ptr
+ /// and \p from_range to another specified by \p to_ptr and \p to_range.
+ static inline std::vector<sycl::event>
+ dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr,
+ sycl::range<3> to_range, sycl::range<3> from_range,
+ sycl::id<3> to_id, sycl::id<3> from_id,
+ sycl::range<3> size, memcpy_direction direction,
+ const std::vector<sycl::event> &dep_events = {})
+ {
+ // RAII for host pointer
+ class host_buffer
+ {
+ void *_buf;
+ size_t _size;
+ sycl::queue &_q;
+ const std::vector<sycl::event> &_deps; // free operation depends
+
+ public:
+ host_buffer(size_t size, sycl::queue &q,
+ const std::vector<sycl::event> &deps)
+ : _buf(std::malloc(size)), _size(size), _q(q), _deps(deps) {}
+ void *get_ptr() const { return _buf; }
+ size_t get_size() const { return _size; }
+ ~host_buffer()
+ {
+ if (_buf)
+ {
+ _q.submit([&](sycl::handler &cgh)
+ {
+ cgh.depends_on(_deps);
+ cgh.host_task([buf = _buf] { std::free(buf); }); });
+ }
+ }
+ };
+ std::vector<sycl::event> event_list;
+
+ size_t to_slice = to_range.get(1) * to_range.get(0),
+ from_slice = from_range.get(1) * from_range.get(0);
+ unsigned char *to_surface =
+ (unsigned char *)to_ptr + get_offset(to_id, to_slice, to_range.get(0));
+ const unsigned char *from_surface =
+ (const unsigned char *)from_ptr +
+ get_offset(from_id, from_slice, from_range.get(0));
+
+ if (to_slice == from_slice && to_slice == size.get(1) * size.get(0))
+ {
+ return {dpct_memcpy(q, to_surface, from_surface, to_slice * size.get(2),
+ direction, dep_events)};
+ }
+ direction = deduce_memcpy_direction(q, to_ptr, from_ptr, direction);
+ size_t size_slice = size.get(1) * size.get(0);
+ switch (direction)
+ {
+ case host_to_host:
+ for (size_t z = 0; z < size.get(2); ++z)
+ {
+ unsigned char *to_ptr = to_surface;
+ const unsigned char *from_ptr = from_surface;
+ if (to_range.get(0) == from_range.get(0) &&
+ to_range.get(0) == size.get(0))
+ {
+ event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size_slice,
+ direction, dep_events));
+ }
+ else
+ {
+ for (size_t y = 0; y < size.get(1); ++y)
+ {
+ event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size.get(0),
+ direction, dep_events));
+ to_ptr += to_range.get(0);
+ from_ptr += from_range.get(0);
+ }
+ }
+ to_surface += to_slice;
+ from_surface += from_slice;
+ }
+ break;
+ case host_to_device:
+ {
+ host_buffer buf(get_copy_range(size, to_slice, to_range.get(0)), q,
+ event_list);
+ std::vector<sycl::event> host_events;
+ if (to_slice == size_slice)
+ {
+ // Copy host data to a temp host buffer with the shape of target.
+ host_events =
+ dpct_memcpy(q, buf.get_ptr(), from_surface, to_range, from_range,
+ sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size,
+ host_to_host, dep_events);
+ }
+ else
+ {
+ // Copy host data to a temp host buffer with the shape of target.
+ host_events = dpct_memcpy(
+ q, buf.get_ptr(), from_surface, to_range, from_range,
+ sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size, host_to_host,
+ // If has padding data, not sure whether it is useless. So fill temp
+ // buffer with it.
+ std::vector<sycl::event>{
+ dpct_memcpy(q, buf.get_ptr(), to_surface, buf.get_size(),
+ device_to_host, dep_events)});
+ }
+ // Copy from temp host buffer to device with only one submit.
+ event_list.push_back(dpct_memcpy(q, to_surface, buf.get_ptr(),
+ buf.get_size(), host_to_device,
+ host_events));
+ break;
+ }
+ case device_to_host:
+ {
+ host_buffer buf(get_copy_range(size, from_slice, from_range.get(0)), q,
+ event_list);
+ // Copy from host temp buffer to host target with reshaping.
+ event_list = dpct_memcpy(
+ q, to_surface, buf.get_ptr(), to_range, from_range, sycl::id<3>(0, 0, 0),
+ sycl::id<3>(0, 0, 0), size, host_to_host,
+ // Copy from device to temp host buffer with only one submit.
+ std::vector<sycl::event>{dpct_memcpy(q, buf.get_ptr(), from_surface,
+ buf.get_size(),
+ device_to_host, dep_events)});
+ break;
+ }
+ case device_to_device:
+ event_list.push_back(q.submit([&](sycl::handler &cgh){
+ cgh.depends_on(dep_events);
+ cgh.parallel_for<class dpct_memcpy_3d_detail>(
+ size,
+ [=](sycl::id<3> id) {
+ to_surface[get_offset(id, to_slice, to_range.get(0))] =
+ from_surface[get_offset(id, from_slice, from_range.get(0))];
+ }); }));
+ break;
+ default:
+ throw std::runtime_error("dpct_memcpy: invalid direction value");
+ }
+ return event_list;
+ }
+
+ /// memcpy 2D/3D matrix specified by pitched_data.
+ static inline std::vector<sycl::event>
+ dpct_memcpy(sycl::queue &q, pitched_data to, sycl::id<3> to_id,
+ pitched_data from, sycl::id<3> from_id, sycl::range<3> size,
+ memcpy_direction direction = automatic)
+ {
+ return dpct_memcpy(q, to.get_data_ptr(), from.get_data_ptr(),
+ sycl::range<3>(to.get_pitch(), to.get_y(), 1),
+ sycl::range<3>(from.get_pitch(), from.get_y(), 1), to_id, from_id,
+ size, direction);
+ }
+
+ /// memcpy 2D matrix with pitch.
+ static inline std::vector<sycl::event>
+ dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr,
+ size_t to_pitch, size_t from_pitch, size_t x, size_t y,
+ memcpy_direction direction = automatic)
+ {
+ return dpct_memcpy(q, to_ptr, from_ptr, sycl::range<3>(to_pitch, y, 1),
+ sycl::range<3>(from_pitch, y, 1),
+ sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0),
+ sycl::range<3>(x, y, 1), direction);
+ }
+
+ namespace deprecated
+ {
+
+ template <typename T, sycl::usm::alloc AllocKind>
+ class usm_allocator
+ {
+ private:
+ using Alloc = sycl::usm_allocator<T, AllocKind>;
+ Alloc _impl;
+
+ public:
+ using value_type = typename std::allocator_traits<Alloc>::value_type;
+ using pointer = typename std::allocator_traits<Alloc>::pointer;
+ using const_pointer = typename std::allocator_traits<Alloc>::const_pointer;
+ using void_pointer = typename std::allocator_traits<Alloc>::void_pointer;
+ using const_void_pointer =
+ typename std::allocator_traits<Alloc>::const_void_pointer;
+ using reference = typename std::allocator_traits<Alloc>::value_type &;
+ using const_reference =
+ const typename std::allocator_traits<Alloc>::value_type &;
+ using difference_type =
+ typename std::allocator_traits<Alloc>::difference_type;
+ using size_type = typename std::allocator_traits<Alloc>::size_type;
+ using propagate_on_container_copy_assignment = typename std::allocator_traits<
+ Alloc>::propagate_on_container_copy_assignment;
+ using propagate_on_container_move_assignment = typename std::allocator_traits<
+ Alloc>::propagate_on_container_move_assignment;
+ using propagate_on_container_swap =
+ typename std::allocator_traits<Alloc>::propagate_on_container_swap;
+ using is_always_equal =
+ typename std::allocator_traits<Alloc>::is_always_equal;
+
+ template <typename U>
+ struct rebind
+ {
+ typedef usm_allocator<U, AllocKind> other;
+ };
+
+ usm_allocator() : _impl(dpct::get_default_queue()) {}
+ ~usm_allocator() {}
+ usm_allocator(const usm_allocator &other) : _impl(other._impl) {}
+ usm_allocator(usm_allocator &&other) : _impl(std::move(other._impl)) {}
+ pointer address(reference r) { return &r; }
+ const_pointer address(const_reference r) { return &r; }
+ pointer allocate(size_type cnt, const_void_pointer hint = nullptr)
+ {
+ return std::allocator_traits<Alloc>::allocate(_impl, cnt, hint);
+ }
+ void deallocate(pointer p, size_type cnt)
+ {
+ std::allocator_traits<Alloc>::deallocate(_impl, p, cnt);
+ }
+ size_type max_size() const
+ {
+ return std::allocator_traits<Alloc>::max_size(_impl);
+ }
+ bool operator==(const usm_allocator &other) const { return _impl == other._impl; }
+ bool operator!=(const usm_allocator &other) const { return _impl != other._impl; }
+ };
+
+ } // namespace deprecated
+
+ inline void dpct_free(void *ptr,
+ const sycl::queue &q)
+ {
+ if (ptr)
+ {
+ sycl::free(ptr, q.get_context());
+ }
+ }
+
+ template <typename T>
+ inline auto get_memory(const void *x)
+ {
+ T *new_x = reinterpret_cast<T *>(const_cast<void *>(x));
+ return new_x;
+ }
+
+ template <typename T>
+ inline typename DataType<T>::T2 get_value(const T *s, sycl::queue &q)
+ {
+ using Ty = typename DataType<T>::T2;
+ Ty s_h;
+ if (get_pointer_attribute(q, s) == pointer_access_attribute::device_only)
+ detail::dpct_memcpy(q, (void *)&s_h, (const void *)s, sizeof(T), device_to_host)
+ .wait();
+ else
+ s_h = *reinterpret_cast<const Ty *>(s);
+ return s_h;
+ }
+
+ } // namespace detail
+
+ template <typename T>
+ inline auto get_value(const T *s, sycl::queue &q)
+ {
+ return detail::get_value(s, q);
+ }
+
+ namespace detail
+ {
+ template <class Ta, class Tb, class Tc, class Ts>
+ inline void gemm_impl(sycl::queue &q, oneapi::mkl::transpose a_trans,
+ oneapi::mkl::transpose b_trans, int m, int n, int k,
+ const void *alpha, const void *a, int lda, const void *b,
+ int ldb, const void *beta, void *c, int ldc)
+ {
+ Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q);
+ Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q);
+ auto data_a = get_memory<const Ta>(a);
+ auto data_b = get_memory<const Tb>(b);
+ auto data_c = get_memory<Tc>(c);
+ oneapi::mkl::blas::column_major::gemm(
+ q, a_trans, b_trans, m, n, k, alpha_value, data_a, lda,
+ data_b, ldb, beta_value, data_c, ldc);
+ }
+
+ template <typename VecT, class BinaryOperation, class = void>
+ class vectorized_binary
+ {
+ public:
+ inline VecT operator()(VecT a, VecT b, const BinaryOperation binary_op)
+ {
+ VecT v4;
+ for (size_t i = 0; i < v4.size(); ++i)
+ {
+ v4[i] = binary_op(a[i], b[i]);
+ }
+ return v4;
+ }
+ };
+
+ template <typename VecT, class BinaryOperation>
+ class vectorized_binary<
+ VecT, BinaryOperation,
+ std::void_t<std::invoke_result_t<BinaryOperation, VecT, VecT>>>
+ {
+ public:
+ inline VecT operator()(VecT a, VecT b, const BinaryOperation binary_op)
+ {
+ return binary_op(a, b).template as<VecT>();
+ }
+ };
+
+ template <class Ta, class Tb, class Tc, class Ts>
+ inline void gemm_batch_impl(sycl::queue &q, oneapi::mkl::transpose a_trans,
+ oneapi::mkl::transpose b_trans, int m, int n, int k,
+ const void *alpha, const void **a, int lda,
+ const void **b, int ldb, const void *beta, void **c,
+ int ldc, int batch_size)
+ {
+ struct matrix_info_t
+ {
+ oneapi::mkl::transpose transpose_info[2];
+ Ts value_info[2];
+ std::int64_t size_info[3];
+ std::int64_t ld_info[3];
+ std::int64_t groupsize_info;
+ };
+
+ Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q);
+ Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q);
+
+ matrix_info_t *matrix_info =
+ (matrix_info_t *)std::malloc(sizeof(matrix_info_t));
+ matrix_info->transpose_info[0] = a_trans;
+ matrix_info->transpose_info[1] = b_trans;
+ matrix_info->value_info[0] = alpha_value;
+ matrix_info->value_info[1] = beta_value;
+ matrix_info->size_info[0] = m;
+ matrix_info->size_info[1] = n;
+ matrix_info->size_info[2] = k;
+ matrix_info->ld_info[0] = lda;
+ matrix_info->ld_info[1] = ldb;
+ matrix_info->ld_info[2] = ldc;
+ matrix_info->groupsize_info = batch_size;
+
+ sycl::event e = oneapi::mkl::blas::column_major::gemm_batch(
+ q, matrix_info->transpose_info, matrix_info->transpose_info + 1,
+ matrix_info->size_info, matrix_info->size_info + 1,
+ matrix_info->size_info + 2, matrix_info->value_info,
+ reinterpret_cast<const Ta **>(a), matrix_info->ld_info,
+ reinterpret_cast<const Tb **>(b), matrix_info->ld_info + 1,
+ matrix_info->value_info + 1, reinterpret_cast<Tc **>(c),
+ matrix_info->ld_info + 2, 1, &(matrix_info->groupsize_info));
+
+ q.submit([&](sycl::handler &cgh)
+ {
+ cgh.depends_on(e);
+ cgh.host_task([=] { std::free(matrix_info); }); });
+ }
+
+ template <class Ta, class Tb, class Tc, class Ts>
+ inline void
+ gemm_batch_impl(sycl::queue &q, oneapi::mkl::transpose a_trans,
+ oneapi::mkl::transpose b_trans, int m, int n,
+ int k, const void *alpha, const void *a, int lda,
+ long long int stride_a, const void *b, int ldb,
+ long long int stride_b, const void *beta, void *c,
+ int ldc, long long int stride_c, int batch_size)
+ {
+ Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q);
+ Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q);
+ auto data_a = get_memory<const Ta>(a);
+ auto data_b = get_memory<const Tb>(b);
+ auto data_c = get_memory<Tc>(c);
+ oneapi::mkl::blas::column_major::gemm_batch(
+ q, a_trans, b_trans, m, n, k, alpha_value, data_a, lda,
+ stride_a, data_b, ldb, stride_b, beta_value,
+ data_c, ldc, stride_c, batch_size);
+ }
+
+ } // namespace detail
+
+ template <typename VecT, class BinaryOperation>
+ inline unsigned vectorized_binary(unsigned a, unsigned b,
+ const BinaryOperation binary_op)
+ {
+ sycl::vec<unsigned, 1> v0{a}, v1{b};
+ auto v2 = v0.as<VecT>();
+ auto v3 = v1.as<VecT>();
+ auto v4 =
+ detail::vectorized_binary<VecT, BinaryOperation>()(v2, v3, binary_op);
+ v0 = v4.template as<sycl::vec<unsigned, 1>>();
+ return v0;
+ }
+
+ static void async_dpct_memcpy(void *to_ptr, const void *from_ptr, size_t size,
+ memcpy_direction direction = automatic,
+ sycl::queue &q = dpct::get_default_queue())
+ {
+ detail::dpct_memcpy(q, to_ptr, from_ptr, size, direction);
+ }
+
+ static inline unsigned int select_device(unsigned int id)
+ {
+ dev_mgr::instance().select_device(id);
+ return id;
+ }
+
+ template <typename T>
+ T permute_sub_group_by_xor(sycl::sub_group g, T x, unsigned int mask,
+ unsigned int logical_sub_group_size = 32)
+ {
+ unsigned int id = g.get_local_linear_id();
+ unsigned int start_index =
+ id / logical_sub_group_size * logical_sub_group_size;
+ unsigned int target_offset = (id % logical_sub_group_size) ^ mask;
+ return sycl::select_from_group(g, x,
+ target_offset < logical_sub_group_size
+ ? start_index + target_offset
+ : id);
+ }
+
+ template <typename T>
+ sycl::vec<T, 4> extract_and_sign_or_zero_extend4(T val)
+ {
+ return sycl::vec<T, 1>(val)
+ .template as<sycl::vec<
+ std::conditional_t<std::is_signed_v<T>, int8_t, uint8_t>, 4>>()
+ .template convert<T>();
+ }
+
+ template <typename T1, typename T2>
+ using dot_product_acc_t =
+ std::conditional_t<std::is_unsigned_v<T1> && std::is_unsigned_v<T2>,
+ uint32_t, int32_t>;
+
+ template <typename T1, typename T2, typename T3>
+ inline auto dp4a(T1 a, T2 b, T3 c)
+ {
+ dot_product_acc_t<T1, T2> res = c;
+ auto va = extract_and_sign_or_zero_extend4(a);
+ auto vb = extract_and_sign_or_zero_extend4(b);
+ res += va[0] * vb[0];
+ res += va[1] * vb[1];
+ res += va[2] * vb[2];
+ res += va[3] * vb[3];
+ return res;
+ }
+
+ struct sub_sat
+ {
+ template <typename T>
+ auto operator()(const T x, const T y) const
+ {
+ return sycl::sub_sat(x, y);
+ }
+ };
+
+ template <typename S, typename T>
+ inline T vectorized_min(T a, T b)
+ {
+ sycl::vec<T, 1> v0{a}, v1{b};
+ auto v2 = v0.template as<S>();
+ auto v3 = v1.template as<S>();
+ auto v4 = sycl::min(v2, v3);
+ v0 = v4.template as<sycl::vec<T, 1>>();
+ return v0;
+ }
+
+ inline float pow(const float a, const int b) { return sycl::pown(a, b); }
+ inline double pow(const double a, const int b) { return sycl::pown(a, b); }
+ inline float pow(const float a, const float b) { return sycl::pow(a, b); }
+ inline double pow(const double a, const double b) { return sycl::pow(a, b); }
+ template <typename T, typename U>
+ inline typename std::enable_if_t<std::is_floating_point_v<T>, T>
+ pow(const T a, const U b)
+ {
+ return sycl::pow(a, static_cast<T>(b));
+ }
+ template <typename T, typename U>
+ inline typename std::enable_if_t<!std::is_floating_point_v<T>, double>
+ pow(const T a, const U b)
+ {
+ return sycl::pow(static_cast<double>(a), static_cast<double>(b));
+ }
+
+ inline double min(const double a, const float b)
+ {
+ return sycl::fmin(a, static_cast<double>(b));
+ }
+ inline double min(const float a, const double b)
+ {
+ return sycl::fmin(static_cast<double>(a), b);
+ }
+ inline float min(const float a, const float b) { return sycl::fmin(a, b); }
+ inline double min(const double a, const double b) { return sycl::fmin(a, b); }
+ inline std::uint32_t min(const std::uint32_t a, const std::int32_t b)
+ {
+ return sycl::min(a, static_cast<std::uint32_t>(b));
+ }
+ inline std::uint32_t min(const std::int32_t a, const std::uint32_t b)
+ {
+ return sycl::min(static_cast<std::uint32_t>(a), b);
+ }
+ inline std::int32_t min(const std::int32_t a, const std::int32_t b)
+ {
+ return sycl::min(a, b);
+ }
+ inline std::uint32_t min(const std::uint32_t a, const std::uint32_t b)
+ {
+ return sycl::min(a, b);
+ }
+ inline std::uint64_t min(const std::uint64_t a, const std::int64_t b)
+ {
+ return sycl::min(a, static_cast<std::uint64_t>(b));
+ }
+ inline std::uint64_t min(const std::int64_t a, const std::uint64_t b)
+ {
+ return sycl::min(static_cast<std::uint64_t>(a), b);
+ }
+ inline std::int64_t min(const std::int64_t a, const std::int64_t b)
+ {
+ return sycl::min(a, b);
+ }
+ inline std::uint64_t min(const std::uint64_t a, const std::uint64_t b)
+ {
+ return sycl::min(a, b);
+ }
+ inline std::uint64_t min(const std::uint64_t a, const std::int32_t b)
+ {
+ return sycl::min(a, static_cast<std::uint64_t>(b));
+ }
+ inline std::uint64_t min(const std::int32_t a, const std::uint64_t b)
+ {
+ return sycl::min(static_cast<std::uint64_t>(a), b);
+ }
+ inline std::uint64_t min(const std::uint64_t a, const std::uint32_t b)
+ {
+ return sycl::min(a, static_cast<std::uint64_t>(b));
+ }
+ inline std::uint64_t min(const std::uint32_t a, const std::uint64_t b)
+ {
+ return sycl::min(static_cast<std::uint64_t>(a), b);
+ }
+ // max function overloads.
+ // For floating-point types, `float` or `double` arguments are acceptable.
+ // For integer types, `std::uint32_t`, `std::int32_t`, `std::uint64_t` or
+ // `std::int64_t` type arguments are acceptable.
+ inline double max(const double a, const float b)
+ {
+ return sycl::fmax(a, static_cast<double>(b));
+ }
+ inline double max(const float a, const double b)
+ {
+ return sycl::fmax(static_cast<double>(a), b);
+ }
+ inline float max(const float a, const float b) { return sycl::fmax(a, b); }
+ inline double max(const double a, const double b) { return sycl::fmax(a, b); }
+ inline std::uint32_t max(const std::uint32_t a, const std::int32_t b)
+ {
+ return sycl::max(a, static_cast<std::uint32_t>(b));
+ }
+ inline std::uint32_t max(const std::int32_t a, const std::uint32_t b)
+ {
+ return sycl::max(static_cast<std::uint32_t>(a), b);
+ }
+ inline std::int32_t max(const std::int32_t a, const std::int32_t b)
+ {
+ return sycl::max(a, b);
+ }
+ inline std::uint32_t max(const std::uint32_t a, const std::uint32_t b)
+ {
+ return sycl::max(a, b);
+ }
+ inline std::uint64_t max(const std::uint64_t a, const std::int64_t b)
+ {
+ return sycl::max(a, static_cast<std::uint64_t>(b));
+ }
+ inline std::uint64_t max(const std::int64_t a, const std::uint64_t b)
+ {
+ return sycl::max(static_cast<std::uint64_t>(a), b);
+ }
+ inline std::int64_t max(const std::int64_t a, const std::int64_t b)
+ {
+ return sycl::max(a, b);
+ }
+ inline std::uint64_t max(const std::uint64_t a, const std::uint64_t b)
+ {
+ return sycl::max(a, b);
+ }
+ inline std::uint64_t max(const std::uint64_t a, const std::int32_t b)
+ {
+ return sycl::max(a, static_cast<std::uint64_t>(b));
+ }
+ inline std::uint64_t max(const std::int32_t a, const std::uint64_t b)
+ {
+ return sycl::max(static_cast<std::uint64_t>(a), b);
+ }
+ inline std::uint64_t max(const std::uint64_t a, const std::uint32_t b)
+ {
+ return sycl::max(a, static_cast<std::uint64_t>(b));
+ }
+ inline std::uint64_t max(const std::uint32_t a, const std::uint64_t b)
+ {
+ return sycl::max(static_cast<std::uint64_t>(a), b);
+ }
+
+ inline void
+ has_capability_or_fail(const sycl::device &dev,
+ const std::initializer_list<sycl::aspect> &props)
+ {
+ for (const auto &it : props)
+ {
+ if (dev.has(it))
+ continue;
+ switch (it)
+ {
+ case sycl::aspect::fp64:
+ throw std::runtime_error("'double' is not supported in '" +
+ dev.get_info<sycl::info::device::name>() +
+ "' device");
+ break;
+ case sycl::aspect::fp16:
+ throw std::runtime_error("'half' is not supported in '" +
+ dev.get_info<sycl::info::device::name>() +
+ "' device");
+ break;
+ default:
+#define __SYCL_ASPECT(ASPECT, ID) \
+ case sycl::aspect::ASPECT: \
+ return #ASPECT;
+#define __SYCL_ASPECT_DEPRECATED(ASPECT, ID, MESSAGE) __SYCL_ASPECT(ASPECT, ID)
+#define __SYCL_ASPECT_DEPRECATED_ALIAS(ASPECT, ID, MESSAGE)
+ auto getAspectNameStr = [](sycl::aspect AspectNum) -> std::string
+ {
+ switch (AspectNum)
+ {
+#include <sycl/info/aspects.def>
+#include <sycl/info/aspects_deprecated.def>
+ default:
+ return "unknown aspect";
+ }
+ };
+#undef __SYCL_ASPECT_DEPRECATED_ALIAS
+#undef __SYCL_ASPECT_DEPRECATED
+#undef __SYCL_ASPECT
+ throw std::runtime_error(
+ "'" + getAspectNameStr(it) + "' is not supported in '" +
+ dev.get_info<sycl::info::device::name>() + "' device");
+ }
+ break;
+ }
+ }
+
+ static inline unsigned int get_current_device_id()
+ {
+ return dev_mgr::instance().current_device_id();
+ }
+
+ static inline device_ext &get_current_device()
+ {
+ return dev_mgr::instance().current_device();
+ }
+
+ static inline sycl::queue &get_in_order_queue()
+ {
+ return dev_mgr::instance().current_device().in_order_queue();
+ }
+
+ static sycl::event
+ dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr, size_t size,
+ memcpy_direction direction,
+ const std::vector<sycl::event> &dep_events = {})
+ {
+ if (!size)
+ return sycl::event{};
+ return q.memcpy(to_ptr, from_ptr, size, dep_events);
+ GGML_UNUSED(direction);
+ }
+
+ // Get actual copy range and make sure it will not exceed range.
+ static inline size_t get_copy_range(sycl::range<3> size, size_t slice,
+ size_t pitch)
+ {
+ return slice * (size.get(2) - 1) + pitch * (size.get(1) - 1) + size.get(0);
+ }
+
+ static inline size_t get_offset(sycl::id<3> id, size_t slice,
+ size_t pitch)
+ {
+ return slice * id.get(2) + pitch * id.get(1) + id.get(0);
+ }
+
+ /// copy 3D matrix specified by \p size from 3D matrix specified by \p from_ptr
+ /// and \p from_range to another specified by \p to_ptr and \p to_range.
+ static inline std::vector<sycl::event>
+ dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr,
+ sycl::range<3> to_range, sycl::range<3> from_range,
+ sycl::id<3> to_id, sycl::id<3> from_id,
+ sycl::range<3> size, memcpy_direction direction,
+ const std::vector<sycl::event> &dep_events = {})
+ {
+ // RAII for host pointer
+ class host_buffer
+ {
+ void *_buf;
+ size_t _size;
+ sycl::queue &_q;
+ const std::vector<sycl::event> &_deps; // free operation depends
+
+ public:
+ host_buffer(size_t size, sycl::queue &q,
+ const std::vector<sycl::event> &deps)
+ : _buf(std::malloc(size)), _size(size), _q(q), _deps(deps) {}
+ void *get_ptr() const { return _buf; }
+ size_t get_size() const { return _size; }
+ ~host_buffer()
+ {
+ if (_buf)
+ {
+ _q.submit([&](sycl::handler &cgh)
+ {
+ cgh.depends_on(_deps);
+ cgh.host_task([buf = _buf] { std::free(buf); }); });
+ }
+ }
+ };
+ std::vector<sycl::event> event_list;
+
+ size_t to_slice = to_range.get(1) * to_range.get(0),
+ from_slice = from_range.get(1) * from_range.get(0);
+ unsigned char *to_surface =
+ (unsigned char *)to_ptr + get_offset(to_id, to_slice, to_range.get(0));
+ const unsigned char *from_surface =
+ (const unsigned char *)from_ptr +
+ get_offset(from_id, from_slice, from_range.get(0));
+
+ if (to_slice == from_slice && to_slice == size.get(1) * size.get(0))
+ {
+ return {dpct_memcpy(q, to_surface, from_surface, to_slice * size.get(2),
+ direction, dep_events)};
+ }
+ direction = detail::deduce_memcpy_direction(q, to_ptr, from_ptr, direction);
+ size_t size_slice = size.get(1) * size.get(0);
+ switch (direction)
+ {
+ case host_to_host:
+ for (size_t z = 0; z < size.get(2); ++z)
+ {
+ unsigned char *to_ptr = to_surface;
+ const unsigned char *from_ptr = from_surface;
+ if (to_range.get(0) == from_range.get(0) &&
+ to_range.get(0) == size.get(0))
+ {
+ event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size_slice,
+ direction, dep_events));
+ }
+ else
+ {
+ for (size_t y = 0; y < size.get(1); ++y)
+ {
+ event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size.get(0),
+ direction, dep_events));
+ to_ptr += to_range.get(0);
+ from_ptr += from_range.get(0);
+ }
+ }
+ to_surface += to_slice;
+ from_surface += from_slice;
+ }
+ break;
+ case host_to_device:
+ {
+ host_buffer buf(get_copy_range(size, to_slice, to_range.get(0)), q,
+ event_list);
+ std::vector<sycl::event> host_events;
+ if (to_slice == size_slice)
+ {
+ // Copy host data to a temp host buffer with the shape of target.
+ host_events =
+ dpct_memcpy(q, buf.get_ptr(), from_surface, to_range, from_range,
+ sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size,
+ host_to_host, dep_events);
+ }
+ else
+ {
+ // Copy host data to a temp host buffer with the shape of target.
+ host_events = dpct_memcpy(
+ q, buf.get_ptr(), from_surface, to_range, from_range,
+ sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size, host_to_host,
+ // If has padding data, not sure whether it is useless. So fill temp
+ // buffer with it.
+ std::vector<sycl::event>{
+ dpct_memcpy(q, buf.get_ptr(), to_surface, buf.get_size(),
+ device_to_host, dep_events)});
+ }
+ // Copy from temp host buffer to device with only one submit.
+ event_list.push_back(dpct_memcpy(q, to_surface, buf.get_ptr(),
+ buf.get_size(), host_to_device,
+ host_events));
+ break;
+ }
+ case device_to_host:
+ {
+ host_buffer buf(get_copy_range(size, from_slice, from_range.get(0)), q,
+ event_list);
+ // Copy from host temp buffer to host target with reshaping.
+ event_list = dpct_memcpy(
+ q, to_surface, buf.get_ptr(), to_range, from_range, sycl::id<3>(0, 0, 0),
+ sycl::id<3>(0, 0, 0), size, host_to_host,
+ // Copy from device to temp host buffer with only one submit.
+ std::vector<sycl::event>{dpct_memcpy(q, buf.get_ptr(), from_surface,
+ buf.get_size(),
+ device_to_host, dep_events)});
+ break;
+ }
+ case device_to_device:
+ event_list.push_back(q.submit([&](sycl::handler &cgh)
+ {
+ cgh.depends_on(dep_events);
+ cgh.parallel_for<class dpct_memcpy_3d_detail>(
+ size,
+ [=](sycl::id<3> id) {
+ to_surface[get_offset(id, to_slice, to_range.get(0))] =
+ from_surface[get_offset(id, from_slice, from_range.get(0))];
+ }); }));
+ break;
+ default:
+ throw std::runtime_error("dpct_memcpy: invalid direction value");
+ }
+ return event_list;
+ }
+
+ /// memcpy 2D/3D matrix specified by pitched_data.
+ static inline std::vector<sycl::event>
+ dpct_memcpy(sycl::queue &q, pitched_data to, sycl::id<3> to_id,
+ pitched_data from, sycl::id<3> from_id, sycl::range<3> size,
+ memcpy_direction direction = automatic)
+ {
+ return dpct_memcpy(q, to.get_data_ptr(), from.get_data_ptr(),
+ sycl::range<3>(to.get_pitch(), to.get_y(), 1),
+ sycl::range<3>(from.get_pitch(), from.get_y(), 1), to_id, from_id,
+ size, direction);
+ }
+
+ /// memcpy 2D matrix with pitch.
+ static inline std::vector<sycl::event>
+ dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr,
+ size_t to_pitch, size_t from_pitch, size_t x, size_t y,
+ memcpy_direction direction = automatic)
+ {
+ return dpct_memcpy(q, to_ptr, from_ptr, sycl::range<3>(to_pitch, y, 1),
+ sycl::range<3>(from_pitch, y, 1),
+ sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0),
+ sycl::range<3>(x, y, 1), direction);
+ }
+
+ inline void gemm(sycl::queue &q, oneapi::mkl::transpose a_trans,
+ oneapi::mkl::transpose b_trans, int m, int n, int k,
+ const void *alpha, const void *a, library_data_t a_type,
+ int lda, const void *b, library_data_t b_type, int ldb,
+ const void *beta, void *c, library_data_t c_type, int ldc,
+ library_data_t scaling_type)
+ {
+ if (scaling_type == library_data_t::real_float &&
+ c_type == library_data_t::complex_float)
+ {
+ scaling_type = library_data_t::complex_float;
+ }
+ else if (scaling_type == library_data_t::real_double &&
+ c_type == library_data_t::complex_double)
+ {
+ scaling_type = library_data_t::complex_double;
+ }
+
+ std::uint64_t key =
+ detail::get_type_combination_id(a_type, b_type, c_type, scaling_type);
+ switch (key)
+ {
+ case detail::get_type_combination_id(
+ library_data_t::real_float, library_data_t::real_float,
+ library_data_t::real_float, library_data_t::real_float):
+ {
+ detail::gemm_impl<float, float, float, float>(
+ q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
+ break;
+ }
+ case detail::get_type_combination_id(
+ library_data_t::real_double, library_data_t::real_double,
+ library_data_t::real_double, library_data_t::real_double):
+ {
+ detail::gemm_impl<double, double, double, double>(
+ q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
+ break;
+ }
+ case detail::get_type_combination_id(
+ library_data_t::complex_float, library_data_t::complex_float,
+ library_data_t::complex_float, library_data_t::complex_float):
+ {
+ detail::gemm_impl<std::complex<float>, std::complex<float>,
+ std::complex<float>, std::complex<float>>(
+ q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
+ break;
+ }
+ case detail::get_type_combination_id(
+ library_data_t::complex_double, library_data_t::complex_double,
+ library_data_t::complex_double, library_data_t::complex_double):
+ {
+ detail::gemm_impl<std::complex<double>, std::complex<double>,
+ std::complex<double>, std::complex<double>>(
+ q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
+ break;
+ }
+ case detail::get_type_combination_id(
+ library_data_t::real_half, library_data_t::real_half,
+ library_data_t::real_half, library_data_t::real_half):
+ {
+ detail::gemm_impl<sycl::half, sycl::half, sycl::half,
+ sycl::half>(q, a_trans, b_trans, m, n, k, alpha, a,
+ lda, b, ldb, beta, c, ldc);
+ break;
+ }
+#ifdef __INTEL_MKL__
+ case detail::get_type_combination_id(
+ library_data_t::real_bfloat16, library_data_t::real_bfloat16,
+ library_data_t::real_float, library_data_t::real_float):
+ {
+ detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float,
+ float>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b,
+ ldb, beta, c, ldc);
+ break;
+ }
+ case detail::get_type_combination_id(
+ library_data_t::real_half, library_data_t::real_half,
+ library_data_t::real_float, library_data_t::real_float):
+ {
+ detail::gemm_impl<sycl::half, sycl::half, float, float>(
+ q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
+ break;
+ }
+ case detail::get_type_combination_id(
+ library_data_t::real_half, library_data_t::real_half,
+ library_data_t::real_half, library_data_t::real_float):
+ {
+ float alpha_value =
+ dpct::get_value(reinterpret_cast<const float *>(alpha), q);
+ float beta_value =
+ dpct::get_value(reinterpret_cast<const float *>(beta), q);
+ sycl::half alpha_half(alpha_value);
+ sycl::half beta_half(beta_value);
+ detail::gemm_impl<sycl::half, sycl::half, sycl::half,
+ sycl::half>(q, a_trans, b_trans, m, n, k, &alpha_half,
+ a, lda, b, ldb, &beta_half, c, ldc);
+ break;
+ }
+ case detail::get_type_combination_id(
+ library_data_t::real_int8, library_data_t::real_int8,
+ library_data_t::real_float, library_data_t::real_float):
+ {
+ detail::gemm_impl<std::int8_t, std::int8_t, float, float>(
+ q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
+ break;
+ }
+ case detail::get_type_combination_id(
+ library_data_t::real_bfloat16, library_data_t::real_bfloat16,
+ library_data_t::real_bfloat16, library_data_t::real_float):
+ {
+ detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16,
+ oneapi::mkl::bfloat16, float>(
+ q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
+ break;
+ }
+ case detail::get_type_combination_id(
+ library_data_t::real_int8, library_data_t::real_int8,
+ library_data_t::real_int32, library_data_t::real_int32):
+ {
+ float alpha_float =
+ dpct::get_value(reinterpret_cast<const std::int32_t *>(alpha), q);
+ float beta_float =
+ dpct::get_value(reinterpret_cast<const std::int32_t *>(beta), q);
+ detail::gemm_impl<std::int8_t, std::int8_t, std::int32_t, float>(
+ q, a_trans, b_trans, m, n, k, &alpha_float, a, lda, b, ldb, &beta_float, c, ldc);
+ break;
+ }
+#endif // __INTEL_MKL__
+ default:
+ throw std::runtime_error("the combination of data type is unsupported");
+ }
+ } // gemm()
+
+ /// Computes a batch of matrix-matrix product with general matrices.
+ /// \param [in] q The queue where the routine should be executed.
+ /// \param [in] a_trans Specifies the operation applied to A.
+ /// \param [in] b_trans Specifies the operation applied to B.
+ /// \param [in] m Specifies the number of rows of the matrix op(A) and of the matrix C.
+ /// \param [in] n Specifies the number of columns of the matrix op(B) and of the matrix C.
+ /// \param [in] k Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B).
+ /// \param [in] alpha Scaling factor for the matrix-matrix product.
+ /// \param [in] a Input matrix A.
+ /// \param [in] a_type Data type of the matrix A.
+ /// \param [in] lda Leading dimension of A.
+ /// \param [in] b Input matrix B.
+ /// \param [in] b_type Data type of the matrix B.
+ /// \param [in] ldb Leading dimension of B.
+ /// \param [in] beta Scaling factor for matrix C.
+ /// \param [in, out] c Input/Output matrix C.
+ /// \param [in] c_type Data type of the matrix C.
+ /// \param [in] ldc Leading dimension of C.
+ /// \param [in] batch_size Specifies the number of matrix multiply operations to perform.
+ /// \param [in] scaling_type Data type of the scaling factors.
+ inline void gemm_batch(sycl::queue &q, oneapi::mkl::transpose a_trans,
+ oneapi::mkl::transpose b_trans, int m, int n, int k,
+ const void *alpha, const void *a[],
+ library_data_t a_type, int lda, const void *b[],
+ library_data_t b_type, int ldb, const void *beta,
+ void *c[], library_data_t c_type, int ldc,
+ int batch_size, library_data_t scaling_type)
+ {
+ if (scaling_type == library_data_t::real_float &&
+ c_type == library_data_t::complex_float)
+ {
+ scaling_type = library_data_t::complex_float;
+ }
+ else if (scaling_type == library_data_t::real_double &&
+ c_type == library_data_t::complex_double)
+ {
+ scaling_type = library_data_t::complex_double;
+ }
+
+ std::uint64_t key =
+ detail::get_type_combination_id(a_type, b_type, c_type, scaling_type);
+ switch (key)
+ {
+ case detail::get_type_combination_id(
+ library_data_t::real_float, library_data_t::real_float,
+ library_data_t::real_float, library_data_t::real_float):
+ {
+ detail::gemm_batch_impl<float, float, float, float>(
+ q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
+ batch_size);
+ break;
+ }
+ case detail::get_type_combination_id(
+ library_data_t::real_double, library_data_t::real_double,
+ library_data_t::real_double, library_data_t::real_double):
+ {
+ detail::gemm_batch_impl<double, double, double, double>(
+ q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
+ batch_size);
+ break;
+ }
+ case detail::get_type_combination_id(
+ library_data_t::complex_float, library_data_t::complex_float,
+ library_data_t::complex_float, library_data_t::complex_float):
+ {
+ detail::gemm_batch_impl<std::complex<float>, std::complex<float>,
+ std::complex<float>, std::complex<float>>(
+ q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
+ batch_size);
+ break;
+ }
+ case detail::get_type_combination_id(
+ library_data_t::complex_double, library_data_t::complex_double,
+ library_data_t::complex_double, library_data_t::complex_double):
+ {
+ detail::gemm_batch_impl<std::complex<double>, std::complex<double>,
+ std::complex<double>, std::complex<double>>(
+ q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
+ batch_size);
+ break;
+ }
+ case detail::get_type_combination_id(
+ library_data_t::real_half, library_data_t::real_half,
+ library_data_t::real_half, library_data_t::real_half):
+ {
+ detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half,
+ sycl::half>(q, a_trans, b_trans, m, n, k, alpha,
+ a, lda, b, ldb, beta, c, ldc,
+ batch_size);
+ break;
+ }
+#ifdef __INTEL_MKL__
+ case detail::get_type_combination_id(
+ library_data_t::real_bfloat16, library_data_t::real_bfloat16,
+ library_data_t::real_bfloat16, library_data_t::real_float):
+ {
+ detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16,
+ oneapi::mkl::bfloat16, float>(
+ q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
+ batch_size);
+ break;
+ }
+ case detail::get_type_combination_id(
+ library_data_t::real_bfloat16, library_data_t::real_bfloat16,
+ library_data_t::real_float, library_data_t::real_float):
+ {
+ detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float,
+ float>(q, a_trans, b_trans, m, n, k, alpha, a, lda,
+ b, ldb, beta, c, ldc, batch_size);
+ break;
+ }
+ case detail::get_type_combination_id(
+ library_data_t::real_int8, library_data_t::real_int8,
+ library_data_t::real_int32, library_data_t::real_int32):
+ {
+ float alpha_float =
+ dpct::get_value(reinterpret_cast<const std::int32_t *>(alpha), q);
+ float beta_float =
+ dpct::get_value(reinterpret_cast<const std::int32_t *>(beta), q);
+ detail::gemm_batch_impl<std::int8_t, std::int8_t, std::int32_t,
+ float>(q, a_trans, b_trans, m, n, k, &alpha_float,
+ a, lda, b, ldb, &beta_float, c, ldc,
+ batch_size);
+ break;
+ }
+ case detail::get_type_combination_id(
+ library_data_t::real_int8, library_data_t::real_int8,
+ library_data_t::real_float, library_data_t::real_float):
+ {
+ detail::gemm_batch_impl<std::int8_t, std::int8_t, float, float>(
+ q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
+ batch_size);
+ break;
+ }
+ case detail::get_type_combination_id(
+ library_data_t::real_half, library_data_t::real_half,
+ library_data_t::real_float, library_data_t::real_float):
+ {
+ detail::gemm_batch_impl<sycl::half, sycl::half, float, float>(
+ q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
+ batch_size);
+ break;
+ }
+#endif
+ case detail::get_type_combination_id(
+ library_data_t::real_half, library_data_t::real_half,
+ library_data_t::real_half, library_data_t::real_float):
+ {
+ float alpha_value =
+ dpct::get_value(reinterpret_cast<const float *>(alpha), q);
+ float beta_value =
+ dpct::get_value(reinterpret_cast<const float *>(beta), q);
+ sycl::half alpha_half(alpha_value);
+ sycl::half beta_half(beta_value);
+ detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(
+ q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, b, ldb, &beta_half, c, ldc,
+ batch_size);
+ break;
+ }
+ default:
+ throw std::runtime_error("the combination of data type is unsupported");
+ }
+ }
+
+ /// Computes a batch of matrix-matrix product with general matrices.
+ /// \param [in] q The queue where the routine should be executed.
+ /// \param [in] a_trans Specifies the operation applied to A.
+ /// \param [in] b_trans Specifies the operation applied to B.
+ /// \param [in] m Specifies the number of rows of the matrix op(A) and of the matrix C.
+ /// \param [in] n Specifies the number of columns of the matrix op(B) and of the matrix C.
+ /// \param [in] k Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B).
+ /// \param [in] alpha Scaling factor for the matrix-matrix product.
+ /// \param [in] a Input matrix A.
+ /// \param [in] a_type Data type of the matrix A.
+ /// \param [in] lda Leading dimension of A.
+ /// \param [in] stride_a Stride between the different A matrices.
+ /// \param [in] b Input matrix B.
+ /// \param [in] b_type Data type of the matrix B.
+ /// \param [in] ldb Leading dimension of B.
+ /// \param [in] stride_b Stride between the different B matrices.
+ /// \param [in] beta Scaling factor for matrix C.
+ /// \param [in, out] c Input/Output matrix C.
+ /// \param [in] c_type Data type of the matrix C.
+ /// \param [in] ldc Leading dimension of C.
+ /// \param [in] stride_c Stride between the different C matrices.
+ /// \param [in] batch_size Specifies the number of matrix multiply operations to perform.
+ /// \param [in] scaling_type Data type of the scaling factors.
+ inline void gemm_batch(sycl::queue &q, oneapi::mkl::transpose a_trans,
+ oneapi::mkl::transpose b_trans, int m, int n, int k,
+ const void *alpha, const void *a, library_data_t a_type,
+ int lda, long long int stride_a, const void *b,
+ library_data_t b_type, int ldb, long long int stride_b,
+ const void *beta, void *c, library_data_t c_type,
+ int ldc, long long int stride_c, int batch_size,
+ library_data_t scaling_type)
+ {
+ if (scaling_type == library_data_t::real_float &&
+ c_type == library_data_t::complex_float)
+ {
+ scaling_type = library_data_t::complex_float;
+ }
+ else if (scaling_type == library_data_t::real_double &&
+ c_type == library_data_t::complex_double)
+ {
+ scaling_type = library_data_t::complex_double;
+ }
+
+ std::uint64_t key =
+ detail::get_type_combination_id(a_type, b_type, c_type, scaling_type);
+ switch (key)
+ {
+ case detail::get_type_combination_id(
+ library_data_t::real_float, library_data_t::real_float,
+ library_data_t::real_float, library_data_t::real_float):
+ {
+ detail::gemm_batch_impl<float, float, float, float>(
+ q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
+ beta, c, ldc, stride_c, batch_size);
+ break;
+ }
+ case detail::get_type_combination_id(
+ library_data_t::real_double, library_data_t::real_double,
+ library_data_t::real_double, library_data_t::real_double):
+ {
+ detail::gemm_batch_impl<double, double, double, double>(
+ q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
+ beta, c, ldc, stride_c, batch_size);
+ break;
+ }
+ case detail::get_type_combination_id(
+ library_data_t::complex_float, library_data_t::complex_float,
+ library_data_t::complex_float, library_data_t::complex_float):
+ {
+ detail::gemm_batch_impl<std::complex<float>, std::complex<float>,
+ std::complex<float>, std::complex<float>>(
+ q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
+ beta, c, ldc, stride_c, batch_size);
+ break;
+ }
+ case detail::get_type_combination_id(
+ library_data_t::complex_double, library_data_t::complex_double,
+ library_data_t::complex_double, library_data_t::complex_double):
+ {
+ detail::gemm_batch_impl<std::complex<double>, std::complex<double>,
+ std::complex<double>, std::complex<double>>(
+ q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
+ beta, c, ldc, stride_c, batch_size);
+ break;
+ }
+ case detail::get_type_combination_id(
+ library_data_t::real_half, library_data_t::real_half,
+ library_data_t::real_half, library_data_t::real_half):
+ {
+ detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half,
+ sycl::half>(q, a_trans, b_trans, m, n, k, alpha,
+ a, lda, stride_a, b, ldb, stride_b,
+ beta, c, ldc, stride_c, batch_size);
+ break;
+ }
+#ifdef __INTEL_MKL__
+ case detail::get_type_combination_id(
+ library_data_t::real_bfloat16, library_data_t::real_bfloat16,
+ library_data_t::real_bfloat16, library_data_t::real_float):
+ {
+ detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16,
+ oneapi::mkl::bfloat16, float>(
+ q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
+ beta, c, ldc, stride_c, batch_size);
+ break;
+ }
+ case detail::get_type_combination_id(
+ library_data_t::real_bfloat16, library_data_t::real_bfloat16,
+ library_data_t::real_float, library_data_t::real_float):
+ {
+ detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float,
+ float>(q, a_trans, b_trans, m, n, k, alpha, a, lda,
+ stride_a, b, ldb, stride_b, beta, c, ldc,
+ stride_c, batch_size);
+ break;
+ }
+ case detail::get_type_combination_id(
+ library_data_t::real_int8, library_data_t::real_int8,
+ library_data_t::real_int32, library_data_t::real_int32):
+ {
+ detail::gemm_batch_impl<std::int8_t, std::int8_t, std::int32_t,
+ std::int32_t>(q, a_trans, b_trans, m, n, k, alpha,
+ a, lda, stride_a, b, ldb, stride_b,
+ beta, c, ldc, stride_c, batch_size);
+ break;
+ }
+ case detail::get_type_combination_id(
+ library_data_t::real_int8, library_data_t::real_int8,
+ library_data_t::real_float, library_data_t::real_float):
+ {
+ detail::gemm_batch_impl<std::int8_t, std::int8_t, float, float>(
+ q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
+ beta, c, ldc, stride_c, batch_size);
+ break;
+ }
+ case detail::get_type_combination_id(
+ library_data_t::real_half, library_data_t::real_half,
+ library_data_t::real_float, library_data_t::real_float):
+ {
+ detail::gemm_batch_impl<sycl::half, sycl::half, float, float>(
+ q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
+ beta, c, ldc, stride_c, batch_size);
+ break;
+ }
+#endif
+ case detail::get_type_combination_id(
+ library_data_t::real_half, library_data_t::real_half,
+ library_data_t::real_half, library_data_t::real_float):
+ {
+ float alpha_value =
+ dpct::get_value(reinterpret_cast<const float *>(alpha), q);
+ float beta_value =
+ dpct::get_value(reinterpret_cast<const float *>(beta), q);
+ sycl::half alpha_half(alpha_value);
+ sycl::half beta_half(beta_value);
+ detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(
+ q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, stride_a, b, ldb, stride_b,
+ &beta_half, c, ldc, stride_c, batch_size);
+ break;
+ }
+ default:
+ throw std::runtime_error("the combination of data type is unsupported");
+ }
+ }
+
+ static inline void
+ async_dpct_memcpy(void *to_ptr, size_t to_pitch, const void *from_ptr,
+ size_t from_pitch, size_t x, size_t y,
+ memcpy_direction direction = automatic,
+ sycl::queue &q = get_default_queue())
+ {
+ detail::dpct_memcpy(q, to_ptr, from_ptr, to_pitch, from_pitch, x, y,
+ direction);
+ }
+
+ using err0 = detail::generic_error_type<struct err0_tag, int>;
+ using err1 = detail::generic_error_type<struct err1_tag, int>;
+
+ static inline void dpct_free(void *ptr, sycl::queue &q = get_default_queue()) {
+ detail::dpct_free(ptr, q);
+ }
+
+ /// dpct accessor used as device function parameter.
+ template <class T, memory_region Memory, size_t Dimension> class accessor;
+ template <class T, memory_region Memory> class accessor<T, Memory, 3> {
+ public:
+ using memory_t = detail::memory_traits<Memory, T>;
+ using element_t = typename memory_t::element_t;
+ using pointer_t = typename memory_t::pointer_t;
+ using accessor_t = typename memory_t::template accessor_t<3>;
+ accessor(pointer_t data, const sycl::range<3> &in_range)
+ : _data(data), _range(in_range) {}
+ template <memory_region M = Memory>
+ accessor(typename std::enable_if<M != local, const accessor_t>::type &acc)
+ : accessor(acc, acc.get_range()) {}
+ accessor(const accessor_t &acc, const sycl::range<3> &in_range)
+ : accessor(acc.get_pointer(), in_range) {}
+ accessor<T, Memory, 2> operator[](size_t index) const {
+ sycl::range<2> sub(_range.get(1), _range.get(2));
+ return accessor<T, Memory, 2>(_data + index * sub.size(), sub);
+ }
+
+ pointer_t get_ptr() const { return _data; }
+
+ private:
+ pointer_t _data;
+ sycl::range<3> _range;
+ };
+ template <class T, memory_region Memory> class accessor<T, Memory, 2> {
+ public:
+ using memory_t = detail::memory_traits<Memory, T>;
+ using element_t = typename memory_t::element_t;
+ using pointer_t = typename memory_t::pointer_t;
+ using accessor_t = typename memory_t::template accessor_t<2>;
+ accessor(pointer_t data, const sycl::range<2> &in_range)
+ : _data(data), _range(in_range) {}
+ template <memory_region M = Memory>
+ accessor(typename std::enable_if<M != local, const accessor_t>::type &acc)
+ : accessor(acc, acc.get_range()) {}
+ accessor(const accessor_t &acc, const sycl::range<2> &in_range)
+ : accessor(acc.get_pointer(), in_range) {}
+
+ pointer_t operator[](size_t index) const {
+ return _data + _range.get(1) * index;
+ }
+
+ pointer_t get_ptr() const { return _data; }
+
+ private:
+ pointer_t _data;
+ sycl::range<2> _range;
+ };
+
+ namespace detail {
+ /// Device variable with address space of shared, global or constant.
+ template <class T, memory_region Memory, size_t Dimension> class device_memory {
+ public:
+ using accessor_t =
+ typename detail::memory_traits<Memory,
+ T>::template accessor_t<Dimension>;
+ using value_t = typename detail::memory_traits<Memory, T>::value_t;
+ using dpct_accessor_t = dpct::accessor<T, Memory, Dimension>;
+
+ device_memory() : device_memory(sycl::range<Dimension>(1)) {}
+
+ /// Constructor of 1-D array with initializer list
+ device_memory(const sycl::range<Dimension> &in_range,
+ std::initializer_list<value_t> &&init_list)
+ : device_memory(in_range) {
+ assert(init_list.size() <= in_range.size());
+ _host_ptr = (value_t *)std::malloc(_size);
+ std::memset(_host_ptr, 0, _size);
+ std::memcpy(_host_ptr, init_list.begin(), init_list.size() * sizeof(T));
+ }
+
+ /// Constructor of 2-D array with initializer list
+ template <size_t D = Dimension>
+ device_memory(
+ const typename std::enable_if<D == 2, sycl::range<2>>::type &in_range,
+ std::initializer_list<std::initializer_list<value_t>> &&init_list)
+ : device_memory(in_range) {
+ assert(init_list.size() <= in_range[0]);
+ _host_ptr = (value_t *)std::malloc(_size);
+ std::memset(_host_ptr, 0, _size);
+ auto tmp_data = _host_ptr;
+ for (auto sub_list : init_list) {
+ assert(sub_list.size() <= in_range[1]);
+ std::memcpy(tmp_data, sub_list.begin(),
+ sub_list.size() * sizeof(T));
+ tmp_data += in_range[1];
+ }
+ }
+
+ /// Constructor with range
+ device_memory(const sycl::range<Dimension> &range_in)
+ : _size(range_in.size() * sizeof(T)), _range(range_in),
+ _reference(false), _host_ptr(nullptr), _device_ptr(nullptr) {
+ static_assert(
+ (Memory == global) || (Memory == constant) || (Memory == shared),
+ "device memory region should be global, constant or shared");
+ // Make sure that singleton class mem_mgr and dev_mgr will destruct
+ // later than this.
+ detail::mem_mgr::instance();
+ dev_mgr::instance();
+ }
+
+ /// Constructor with range
+ template <class... Args>
+ device_memory(Args... Arguments)
+ : device_memory(sycl::range<Dimension>(Arguments...)) {}
+
+ ~device_memory() {
+ if (_device_ptr && !_reference)
+ dpct::dpct_free(_device_ptr);
+ if (_host_ptr)
+ std::free(_host_ptr);
+ }
+
+ /// Allocate memory with default queue, and init memory if has initial
+ /// value.
+ void init() { init(dpct::get_default_queue()); }
+ /// Allocate memory with specified queue, and init memory if has initial
+ /// value.
+ void init(sycl::queue &q) {
+ if (_device_ptr)
+ return;
+ if (!_size)
+ return;
+ allocate_device(q);
+ if (_host_ptr)
+ detail::dpct_memcpy(q, _device_ptr, _host_ptr, _size,
+ host_to_device);
+ }
+
+ /// The variable is assigned to a device pointer.
+ void assign(value_t *src, size_t size) {
+ this->~device_memory();
+ new (this) device_memory(src, size);
+ }
+
+ /// Get memory pointer of the memory object, which is virtual pointer when
+ /// usm is not used, and device pointer when usm is used.
+ value_t *get_ptr() { return get_ptr(get_default_queue()); }
+ /// Get memory pointer of the memory object, which is virtual pointer when
+ /// usm is not used, and device pointer when usm is used.
+ value_t *get_ptr(sycl::queue &q) {
+ init(q);
+ return _device_ptr;
+ }
+
+ /// Get the device memory object size in bytes.
+ size_t get_size() { return _size; }
+
+ template <size_t D = Dimension>
+ typename std::enable_if<D == 1, T>::type &operator[](size_t index) {
+ init();
+ return _device_ptr[index];
+ }
+
+ /// Get dpct::accessor with dimension info for the device memory object
+ /// when usm is used and dimension is greater than 1.
+ template <size_t D = Dimension>
+ typename std::enable_if<D != 1, dpct_accessor_t>::type
+ get_access([[maybe_unused]] sycl::handler &cgh) {
+ return dpct_accessor_t((T *)_device_ptr, _range);
+ }
+
+ private:
+ device_memory(value_t *memory_ptr, size_t size)
+ : _size(size), _range(size / sizeof(T)), _reference(true),
+ _device_ptr(memory_ptr) {}
+
+ void allocate_device(sycl::queue &q) {
+ #ifndef DPCT_USM_LEVEL_NONE
+ if (Memory == shared) {
+ _device_ptr = (value_t *)sycl::malloc_shared(_size, q.get_device(),
+ q.get_context());
+ return;
+ }
+ #ifdef SYCL_EXT_ONEAPI_USM_DEVICE_READ_ONLY
+ if (Memory == constant) {
+ _device_ptr = (value_t *)sycl::malloc_device(
+ _size, q.get_device(), q.get_context(),
+ sycl::ext::oneapi::property::usm::device_read_only());
+ return;
+ }
+ #endif
+ #endif
+ _device_ptr = (value_t *)detail::dpct_malloc(_size, q);
+ }
+
+ size_t _size;
+ sycl::range<Dimension> _range;
+ bool _reference;
+ value_t *_host_ptr;
+ value_t *_device_ptr;
+ };
+ template <class T, memory_region Memory>
+ class device_memory<T, Memory, 0> : public device_memory<T, Memory, 1> {
+ public:
+ using base = device_memory<T, Memory, 1>;
+ using value_t = typename base::value_t;
+ using accessor_t =
+ typename detail::memory_traits<Memory, T>::template accessor_t<0>;
+
+ /// Constructor with initial value.
+ device_memory(const value_t &val) : base(sycl::range<1>(1), {val}) {}
+
+ /// Default constructor
+ device_memory() : base(1) {}
+ };
+ } // namespace detail
+
+ template <class T, size_t Dimension>
+ using global_memory = detail::device_memory<T, global, Dimension>;
+ template <class T, size_t Dimension>
+ using constant_memory = detail::device_memory<T, constant, Dimension>;
+ template <class T, size_t Dimension>
+ using shared_memory = detail::device_memory<T, shared, Dimension>;
+
+
+ template <typename T,
+ sycl::access::address_space addressSpace =
+ sycl::access::address_space::global_space,
+ sycl::memory_order memoryOrder = sycl::memory_order::relaxed,
+ sycl::memory_scope memoryScope = sycl::memory_scope::device>
+ inline T atomic_fetch_add(T *addr, T operand) {
+ auto atm =
+ sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]);
+ return atm.fetch_add(operand);
+ }
+
+ template <sycl::access::address_space addressSpace =
+ sycl::access::address_space::global_space,
+ sycl::memory_order memoryOrder = sycl::memory_order::relaxed,
+ sycl::memory_scope memoryScope = sycl::memory_scope::device,
+ typename T1, typename T2>
+ inline T1 atomic_fetch_add(T1 *addr, T2 operand) {
+ auto atm =
+ sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]);
+ return atm.fetch_add(operand);
+ }
+
+ template <typename T, sycl::access::address_space addressSpace =
+ sycl::access::address_space::global_space>
+ inline T atomic_fetch_add(T *addr, T operand,
+ sycl::memory_order memoryOrder) {
+ switch (memoryOrder) {
+ case sycl::memory_order::relaxed:
+ return atomic_fetch_add<T, addressSpace, sycl::memory_order::relaxed,
+ sycl::memory_scope::device>(addr, operand);
+ case sycl::memory_order::acq_rel:
+ return atomic_fetch_add<T, addressSpace, sycl::memory_order::acq_rel,
+ sycl::memory_scope::device>(addr, operand);
+ case sycl::memory_order::seq_cst:
+ return atomic_fetch_add<T, addressSpace, sycl::memory_order::seq_cst,
+ sycl::memory_scope::device>(addr, operand);
+ default:
+ assert(false && "Invalid memory_order for atomics. Valid memory_order for "
+ "atomics are: sycl::memory_order::relaxed, "
+ "sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!");
+ }
+ }
+
+ template <sycl::access::address_space addressSpace =
+ sycl::access::address_space::global_space,
+ typename T1, typename T2>
+ inline T1 atomic_fetch_add(T1 *addr, T2 operand,
+ sycl::memory_order memoryOrder) {
+ atomic_fetch_add<T1, addressSpace>(addr, operand, memoryOrder);
+ }
+
+} // COPY from DPCT head files
+
+#endif // GGML_SYCL_DPCT_HELPER_HPP