llama_mlocks mlock_bufs;
llama_mlocks mlock_mmaps;
- // contexts where the model tensors metadata is stored
- std::vector<ggml_context_ptr> ctxs;
-
- // the model memory buffers for the tensor data
- std::vector<ggml_backend_buffer_ptr> bufs;
+ // contexts where the model tensors metadata is stored as well ass the corresponding buffers:
+ std::vector<std::pair<ggml_context_ptr, ggml_backend_buffer_ptr>> ctxs_bufs;
buft_list_t cpu_buft_list;
std::map<ggml_backend_dev_t, buft_list_t> gpu_buft_list;
max_n_tensors += n_layer*2; // duplicated rope freq tensors
const size_t ctx_size = ggml_tensor_overhead()*max_n_tensors;
- std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
+ // define a comparator for the buft -> ctx map to ensure that the order is well-defined:
+ struct ggml_backend_buft_comparator {
+ bool operator()(const ggml_backend_buffer_type_t & lhs, const ggml_backend_buffer_type_t & rhs) const {
+ return ggml_backend_buft_name(lhs) < ggml_backend_buft_name(rhs);
+ }
+ };
+ std::map<ggml_backend_buffer_type_t, ggml_context_ptr, ggml_backend_buft_comparator> ctx_map;
+
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
auto it = ctx_map.find(buft);
if (it == ctx_map.end()) {
throw std::runtime_error(format("failed to create ggml context"));
}
- ctx_map[buft] = ctx;
- pimpl->ctxs.emplace_back(ctx);
+ ctx_map.emplace(buft, ctx);
return ctx;
}
- return it->second;
+ return it->second.get();
};
const auto TENSOR_DUPLICATED = llama_model_loader::TENSOR_DUPLICATED;
pimpl->mappings.reserve(ml.mappings.size());
// create the backend buffers
- std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
- ctx_bufs.reserve(ctx_map.size());
+ std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_buf_maps;
+ ctx_buf_maps.reserve(ctx_map.size());
// Ensure we have enough capacity for the maximum backend buffer we will potentially create
const size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
- pimpl->bufs.reserve(n_max_backend_buffer);
+ pimpl->ctxs_bufs.reserve(n_max_backend_buffer);
- for (auto & it : ctx_map) {
- ggml_backend_buffer_type_t buft = it.first;
- ggml_context * ctx = it.second;
+ for (auto & [buft, ctx_ptr] : ctx_map) {
+ ggml_context * ctx = ctx_ptr.get();
// skip contexts without tensors
if (ggml_get_first_tensor(ctx) == nullptr) {
bool buffer_from_host_ptr_supported = props.caps.buffer_from_host_ptr;
bool is_default_buft = buft == ggml_backend_dev_buffer_type(dev);
+ ggml_backend_buffer_t buf = nullptr;
if (ml.use_mmap && use_mmap_buffer && buffer_from_host_ptr_supported && is_default_buft) {
for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
// only the mmap region containing the tensors in the model is mapped to the backend buffer
continue;
}
const size_t max_size = ggml_get_max_tensor_size(ctx);
- ggml_backend_buffer_t buf = ggml_backend_dev_buffer_from_host_ptr(dev, (char *) addr + first, last - first, max_size);
+ buf = ggml_backend_dev_buffer_from_host_ptr(dev, (char *) addr + first, last - first, max_size);
if (buf == nullptr) {
throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
}
- pimpl->bufs.emplace_back(buf);
buf_map.emplace(idx, buf);
}
}
else {
- ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
+ buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
if (buf == nullptr) {
throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
}
- pimpl->bufs.emplace_back(buf);
if (use_mlock && ggml_backend_buffer_is_host(buf)) {
pimpl->mlock_bufs.emplace_back(new llama_mlock);
auto & mlock_buf = pimpl->mlock_bufs.back();
buf_map.emplace(idx, buf);
}
}
-
- if (pimpl->bufs.empty()) {
- throw std::runtime_error("failed to allocate buffer");
- }
+ pimpl->ctxs_bufs.emplace_back(std::move(ctx_ptr), buf);
for (auto & buf : buf_map) {
// indicate that this buffer contains weights
ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
}
- ctx_bufs.emplace_back(ctx, buf_map);
+ ctx_buf_maps.emplace_back(ctx, buf_map);
}
if (llama_supports_gpu_offload()) {
}
// print memory requirements per buffer type
- for (auto & buf : pimpl->bufs) {
+ for (auto & [_, buf] : pimpl->ctxs_bufs) {
LLAMA_LOG_INFO("%s: %12s model buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get()) / 1024.0 / 1024.0);
}
// populate tensors_by_name
- for (auto & ctx : pimpl->ctxs) {
+ for (auto & [ctx, _] : pimpl->ctxs_bufs) {
for (auto * cur = ggml_get_first_tensor(ctx.get()); cur != NULL; cur = ggml_get_next_tensor(ctx.get(), cur)) {
tensors_by_name.emplace_back(ggml_get_name(cur), cur);
}
}
// load tensor data
- for (auto & it : ctx_bufs) {
- ggml_context * ctx = it.first;
- auto & bufs = it.second;
- if (!ml.load_all_data(ctx, bufs, use_mlock ? &pimpl->mlock_mmaps : NULL, params.progress_callback, params.progress_callback_user_data)) {
+ for (auto & [ctx, buf_map] : ctx_buf_maps) {
+ if (!ml.load_all_data(ctx, buf_map, use_mlock ? &pimpl->mlock_mmaps : NULL, params.progress_callback, params.progress_callback_user_data)) {
return false;
}
}
std::map<ggml_backend_buffer_type_t, size_t> llama_model::memory_breakdown() const {
std::map<ggml_backend_buffer_type_t, size_t> ret;
- for (const ggml_backend_buffer_ptr & buf_ptr : pimpl->bufs) {
- ret[ggml_backend_buffer_get_type(buf_ptr.get())] += ggml_backend_buffer_get_size(buf_ptr.get());
+ for (const auto & [_, buf] : pimpl->ctxs_bufs) {
+ ret[ggml_backend_buffer_get_type(buf.get())] += ggml_backend_buffer_get_size(buf.get());
}
return ret;
}