--- /dev/null
+#include "common.h"
+#include "llama.h"
+
+#include <algorithm>
+#include <fstream>
+
+struct retrieval_params {
+ std::vector<std::string> context_files; // context files to embed
+ int32_t chunk_size = 64; // chunk size for context embedding
+ std::string chunk_separator = "\n"; // chunk separator for context embedding
+};
+
+static void retrieval_params_print_usage(int argc, char ** argv, gpt_params & gpt_params, retrieval_params & params) {
+ gpt_print_usage(argc, argv, gpt_params);
+ printf("retrieval options:\n");
+ printf(" --context-file FNAME file containing context to embed.\n");
+ printf(" specify multiple files by providing --context-file option multiple times.\n");
+ printf(" --chunk-size N minimum length of embedded text chunk (default:%d)\n", params.chunk_size);
+ printf(" --chunk-separator STRING\n");
+ printf(" string to separate chunks (default: \"\\n\")\n");
+ printf("\n");
+}
+
+static void retrieval_params_parse(int argc, char ** argv, gpt_params & gpt_params, retrieval_params & retrieval_params) {
+ int i = 1;
+ std::string arg;
+ while (i < argc) {
+ arg = argv[i];
+ bool invalid_gpt_param = false;
+ if(gpt_params_find_arg(argc, argv, argv[i], gpt_params, i, invalid_gpt_param)) {
+ if (invalid_gpt_param) {
+ fprintf(stderr, "error: invalid argument: %s\n", arg.c_str());
+ retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
+ exit(1);
+ }
+ // option was parsed by gpt_params_find_arg
+ } else if (arg == "--context-file") {
+ if (++i >= argc) {
+ fprintf(stderr, "error: missing argument for --context-file\n");
+ retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
+ exit(1);
+ }
+ std::ifstream file(argv[i]);
+ if (!file) {
+ fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
+ retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
+ exit(1);
+ }
+ // store the external file name in params
+ retrieval_params.context_files.push_back(argv[i]);
+ } else if (arg == "--chunk-size") {
+ if (++i >= argc) {
+ fprintf(stderr, "error: missing argument for --chunk-size\n");
+ retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
+ exit(1);
+ }
+ retrieval_params.chunk_size = std::stoi(argv[i]);
+ } else if (arg == "--chunk-separator") {
+ if (++i >= argc) {
+ fprintf(stderr, "error: missing argument for --chunk-separator\n");
+ retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
+ exit(1);
+ }
+ retrieval_params.chunk_separator = argv[i];
+ } else {
+ // unknown argument
+ fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
+ retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
+ exit(1);
+ }
+ i++;
+ }
+}
+
+struct chunk {
+ // filename
+ std::string filename;
+ // original file position
+ size_t filepos;
+ // original text data
+ std::string textdata = "";
+ // tokenized text data
+ std::vector<llama_token> tokens;
+ // embedding
+ std::vector<float> embedding;
+};
+
+// chunk file data to chunks of size >= chunk_size
+// chunk_separator is the separator between chunks
+static std::vector<chunk> chunk_file(const std::string & filename, int chunk_size, const std::string & chunk_separator) {
+ std::vector<chunk> chunks;
+ std::ifstream f(filename.c_str());
+
+ if (!f.is_open()) {
+ fprintf(stderr, "Error: could not open file %s\n", filename.c_str());
+ return chunks;
+ }
+
+ chunk current_chunk;
+ char buffer[1024];
+ int64_t filepos = 0;
+ std::string current = "";
+ while (f.read(buffer, 1024)) {
+ current += std::string(buffer, f.gcount());
+ size_t pos;
+ while ((pos = current.find(chunk_separator)) != std::string::npos) {
+ current_chunk.textdata += current.substr(0, pos + chunk_separator.size());
+ if ((int) current_chunk.textdata.size() > chunk_size) {
+ // save chunk
+ current_chunk.filepos = filepos;
+ current_chunk.filename = filename;
+ chunks.push_back(current_chunk);
+ // update filepos
+ filepos += (int) current_chunk.textdata.size();
+ // reset current_chunk
+ current_chunk = chunk();
+ }
+ current = current.substr(pos + chunk_separator.size());
+ }
+
+ }
+ // add leftover data to last chunk
+ if (current_chunk.textdata.size() > 0) {
+ if (chunks.empty()) {
+ current_chunk.filepos = filepos;
+ current_chunk.filename = filename;
+ chunks.push_back(current_chunk);
+ } else {
+ chunks.back().textdata += current_chunk.textdata;
+ }
+ }
+ f.close();
+ return chunks;
+}
+
+static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, int seq_id) {
+ for (size_t i = 0; i < tokens.size(); i++) {
+ llama_batch_add(batch, tokens[i], i, { seq_id }, i == tokens.size() - 1);
+ }
+}
+
+static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
+ // clear previous kv_cache values (irrelevant for embeddings)
+ llama_kv_cache_clear(ctx);
+
+ // run model
+ fprintf(stderr, "%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
+ if (llama_decode(ctx, batch) < 0) {
+ fprintf(stderr, "%s : failed to decode\n", __func__);
+ }
+
+ for (int i = 0; i < batch.n_tokens; i++) {
+ if (!batch.logits[i]) {
+ continue;
+ }
+
+ // try to get sequence embeddings - supported only when pooling_type is not NONE
+ const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
+ if (embd == NULL) {
+ embd = llama_get_embeddings_ith(ctx, i);
+ if (embd == NULL) {
+ fprintf(stderr, "%s: failed to get embeddings for token %d\n", __func__, i);
+ continue;
+ }
+ }
+
+ float * out = output + batch.seq_id[i][0] * n_embd;
+ llama_embd_normalize(embd, out, n_embd);
+ }
+}
+
+int main(int argc, char ** argv) {
+ gpt_params params;
+ retrieval_params retrieval_params;
+
+ retrieval_params_parse(argc, argv, params, retrieval_params);
+
+ // For BERT models, batch size must be equal to ubatch size
+ params.n_ubatch = params.n_batch;
+
+ if (retrieval_params.chunk_size <= 0) {
+ fprintf(stderr, "chunk_size must be positive\n");
+ return 1;
+ }
+ if (retrieval_params.context_files.empty()) {
+ fprintf(stderr, "context_files must be specified\n");
+ return 1;
+ }
+ params.embedding = true;
+
+ print_build_info();
+
+ printf("processing files:\n");
+ for (auto & context_file : retrieval_params.context_files) {
+ printf("%s\n", context_file.c_str());
+ }
+
+ std::vector<chunk> chunks;
+ for (auto & context_file : retrieval_params.context_files) {
+ std::vector<chunk> file_chunk = chunk_file(context_file, retrieval_params.chunk_size, retrieval_params.chunk_separator);
+ chunks.insert(chunks.end(), file_chunk.begin(), file_chunk.end());
+ }
+ printf("Number of chunks: %ld\n", chunks.size());
+
+ llama_backend_init();
+ llama_numa_init(params.numa);
+
+ llama_model * model;
+ llama_context * ctx;
+
+ // load the model
+ std::tie(model, ctx) = llama_init_from_gpt_params(params);
+ if (model == NULL) {
+ fprintf(stderr, "%s: error: unable to load model\n", __func__);
+ return 1;
+ }
+
+ const int n_ctx_train = llama_n_ctx_train(model);
+ const int n_ctx = llama_n_ctx(ctx);
+
+ if (n_ctx > n_ctx_train) {
+ fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
+ __func__, n_ctx_train, n_ctx);
+ }
+
+ // print system information
+ {
+ fprintf(stderr, "\n");
+ fprintf(stderr, "%s\n", get_system_info(params).c_str());
+ }
+
+ // max batch size
+ const uint64_t n_batch = params.n_batch;
+ GGML_ASSERT(params.n_batch >= params.n_ctx);
+
+ // tokenize the prompts and trim
+ for (auto & chunk : chunks) {
+ auto inp = ::llama_tokenize(ctx, chunk.textdata, true, false);
+ if (inp.size() > n_batch) {
+ fprintf(stderr, "%s: error: chunk size (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
+ __func__, (long long int) inp.size(), (long long int) n_batch);
+ return 1;
+ }
+ // add eos if not present
+ if (inp.empty() || inp.back() != llama_token_eos(model)) {
+ inp.push_back(llama_token_eos(model));
+ }
+ chunk.tokens = inp;
+ }
+
+ // tokenization stats
+ if (params.verbose_prompt) {
+ for (int i = 0; i < (int) chunks.size(); i++) {
+ fprintf(stderr, "%s: prompt %d: '%s'\n", __func__, i, chunks[i].textdata.c_str());
+ fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, chunks[i].tokens.size());
+ for (int j = 0; j < (int) chunks[i].tokens.size(); j++) {
+ fprintf(stderr, "%6d -> '%s'\n", chunks[i].tokens[j], llama_token_to_piece(ctx, chunks[i].tokens[j]).c_str());
+ }
+ fprintf(stderr, "\n\n");
+ }
+ }
+
+ // initialize batch
+ const int n_chunks = chunks.size();
+ struct llama_batch batch = llama_batch_init(n_batch, 0, 1);
+
+ // allocate output
+ const int n_embd = llama_n_embd(model);
+ std::vector<float> embeddings(n_chunks * n_embd, 0);
+ float * emb = embeddings.data();
+
+ // break into batches
+ int p = 0; // number of prompts processed already
+ int s = 0; // number of prompts in current batch
+ for (int k = 0; k < n_chunks; k++) {
+ // clamp to n_batch tokens
+ auto & inp = chunks[k].tokens;
+
+ const uint64_t n_toks = inp.size();
+
+ // encode if at capacity
+ if (batch.n_tokens + n_toks > n_batch) {
+ float * out = emb + p * n_embd;
+ batch_decode(ctx, batch, out, s, n_embd);
+ llama_batch_clear(batch);
+ p += s;
+ s = 0;
+ }
+
+ // add to batch
+ batch_add_seq(batch, inp, s);
+ s += 1;
+ }
+
+ // final batch
+ float * out = emb + p * n_embd;
+ batch_decode(ctx, batch, out, s, n_embd);
+
+ // save embeddings to chunks
+ for (int i = 0; i < n_chunks; i++) {
+ chunks[i].embedding = std::vector<float>(emb + i * n_embd, emb + (i + 1) * n_embd);
+ // clear tokens as they are no longer needed
+ chunks[i].tokens.clear();
+ }
+
+ // start loop, receive query and return top k similar chunks based on cosine similarity
+ std::string query;
+ while (true) {
+ printf("Enter query: ");
+ std::getline(std::cin, query);
+ std::vector<int32_t> query_tokens = llama_tokenize(ctx, query, true);
+
+ struct llama_batch query_batch = llama_batch_init(n_batch, 0, 1);
+ batch_add_seq(query_batch, query_tokens, 0);
+
+ std::vector<float> query_emb(n_embd, 0);
+ batch_decode(ctx, query_batch, query_emb.data(), 1, n_embd);
+
+ llama_batch_clear(query_batch);
+
+ // compute cosine similarities
+ {
+ std::vector<std::pair<int, float>> similarities;
+ for (int i = 0; i < n_chunks; i++) {
+ float sim = llama_embd_similarity_cos(chunks[i].embedding.data(), query_emb.data(), n_embd);
+ similarities.push_back(std::make_pair(i, sim));
+ }
+
+ // sort similarities
+ std::sort(similarities.begin(), similarities.end(), [](const std::pair<int, float> & a, const std::pair<int, float> & b) {
+ return a.second > b.second;
+ });
+
+ printf("Top %d similar chunks:\n", params.sparams.top_k);
+ for (int i = 0; i < std::min(params.sparams.top_k, (int) chunks.size()); i++) {
+ printf("filename: %s\n", chunks[similarities[i].first].filename.c_str());
+ printf("filepos: %lld\n", (long long int) chunks[similarities[i].first].filepos);
+ printf("similarity: %f\n", similarities[i].second);
+ printf("textdata:\n%s\n", chunks[similarities[i].first].textdata.c_str());
+ printf("--------------------\n");
+ }
+ }
+ }
+
+ // clean up
+ llama_print_timings(ctx);
+ llama_free(ctx);
+ llama_free_model(model);
+ llama_backend_free();
+}