logger = logging.getLogger("gguf-convert-endian")
+def byteswap_q4_0(tensor, block_offs):
+ # Each block_q4_0 consists of an f16 delta (scaling factor) followed by 16 int8 quantizations.
+
+ # Byte-Swap f16 sized delta field
+ delta = tensor.data[block_offs:block_offs + 2].view(dtype=np.uint16)
+ delta.byteswap(inplace=True)
+
+
+def byteswap_q8_0(tensor, block_offs):
+ # Each block_q8_0 consists of an f16 delta (scaling factor) followed by 32 int8 quantizations.
+
+ # Byte-Swap f16 sized delta field
+ delta = tensor.data[block_offs:block_offs + 2].view(dtype=np.uint16)
+ delta.byteswap(inplace=True)
+
+
+def byteswap_q4_k(tensor, block_offs):
+ # Each block_q4_k consists of 2 f16 values followed by 140 int8 values.
+
+ # Byte-Swap f16 sized fields
+ delta = tensor.data[block_offs:block_offs + 2].view(dtype=np.uint16)
+ delta.byteswap(inplace=True)
+
+ delta = tensor.data[block_offs + 2:block_offs + 4].view(dtype=np.uint16)
+ delta.byteswap(inplace=True)
+
+
+def byteswap_q6_k(tensor, block_offs):
+ # Each block_q6_k consists of 208 int8 values followed by 1 f16 value.
+
+ # Byte-Swap f16 sized field
+ delta = tensor.data[block_offs + 208:block_offs + 210].view(dtype=np.uint16)
+ delta.byteswap(inplace=True)
+
+
+byteswap_tensors = {
+ gguf.GGMLQuantizationType.Q4_0: {
+ "block_size": 18, # 18 bytes = <f16 delta scaling factor> + 16 * <int8 quant>
+ "byteswap_func": byteswap_q4_0,
+ },
+ gguf.GGMLQuantizationType.Q8_0: {
+ "block_size": 34, # 34 bytes = <f16 delta scaling factor> + 32 * <int8 quant>
+ "byteswap_func": byteswap_q8_0,
+ },
+ gguf.GGMLQuantizationType.Q4_K: {
+ "block_size": 144, # 144 bytes = 2 * <f16 delta scaling factor> + 140 * <int8 quant>
+ "byteswap_func": byteswap_q4_k,
+ },
+ gguf.GGMLQuantizationType.Q6_K: {
+ "block_size": 210, # 210 bytes = <f16 delta scaling factor> + 208 * <int8 quant>
+ "byteswap_func": byteswap_q6_k,
+ },
+}
+
+
def convert_byteorder(reader: gguf.GGUFReader, args: argparse.Namespace) -> None:
file_endian = reader.endianess.name
if reader.byte_order == 'S':
sys.exit(0)
logger.info("* Checking tensors for conversion compatibility")
for tensor in reader.tensors:
- if tensor.tensor_type not in (
- gguf.GGMLQuantizationType.F32,
- gguf.GGMLQuantizationType.F16,
- gguf.GGMLQuantizationType.Q8_0,
- gguf.GGMLQuantizationType.Q4_K,
- gguf.GGMLQuantizationType.Q6_K,
- ):
+ if tensor.tensor_type not in byteswap_tensors and \
+ tensor.tensor_type not in (
+ gguf.GGMLQuantizationType.F32,
+ gguf.GGMLQuantizationType.F16,
+ ):
raise ValueError(f"Cannot handle type {tensor.tensor_type.name} for tensor {repr(tensor.name)}")
logger.info(f"* Preparing to convert from {file_endian} to {order}")
if args.dry_run:
part.byteswap(inplace=True)
# Byte-swap tensor data if necessary
- if tensor.tensor_type == gguf.GGMLQuantizationType.Q8_0:
- # Handle Q8_0 tensor blocks (block_q8_0)
- # Specific handling of block_q8_0 is required.
- # Each block_q8_0 consists of an f16 delta (scaling factor) followed by 32 int8 quantizations.
-
- block_size = 34 # 34 bytes = <f16 delta scaling factor> + 32 * <int8 quant>
-
- n_blocks = len(tensor.data) // block_size
- for block_num in (inner_pbar := tqdm(range(n_blocks), desc="Byte-swapping Blocks", leave=False)):
- block_offs = block_num * block_size
-
- # Byte-Swap f16 sized delta field
- delta = tensor.data[block_offs:block_offs + 2].view(dtype=np.uint16)
- delta.byteswap(inplace=True)
-
- # Byte-Swap Q8 weights
- if block_num % 100000 == 0:
- inner_pbar.set_description(f"Byte-swapping Blocks [{(n_blocks - block_num) // n_blocks}]")
-
- elif tensor.tensor_type == gguf.GGMLQuantizationType.Q4_K:
- # Handle Q4_K tensor blocks (block_q4_k)
- # Specific handling of block_q4_k is required.
- # Each block_q4_k consists of 2 f16 values followed by 140 int8 values.
-
+ if tensor.tensor_type in byteswap_tensors:
# first flatten structure
+ oldshape = tensor.data.shape
newshape = 1
for i in tensor.data.shape:
newshape *= i
tensor.data.resize(newshape)
- block_size = 144
- n_blocks = len(tensor.data) // block_size
- for block_num in (inner_pbar := tqdm(range(n_blocks), desc="Byte-swapping Blocks", leave=False)):
- block_offs = block_num * block_size
-
- # Byte-Swap f16 sized fields
- delta = tensor.data[block_offs:block_offs + 2].view(dtype=np.uint16)
- delta.byteswap(inplace=True)
-
- delta = tensor.data[block_offs + 2:block_offs + 4].view(dtype=np.uint16)
- delta.byteswap(inplace=True)
-
- # Byte-Swap
- if block_num % 100000 == 0:
- inner_pbar.set_description(f"Byte-swapping Blocks [{(n_blocks - block_num) // n_blocks}]")
-
- elif tensor.tensor_type == gguf.GGMLQuantizationType.Q6_K:
- # Handle Q6_K tensor blocks (block_q6_k)
- # Specific handling of block_q6_k is required.
- # Each block_q6_k consists of 208 int8 values followed by 1 f16 value.
-
- # first flatten structure
- newshape = 1
- for i in tensor.data.shape:
- newshape *= i
-
- tensor.data.resize(newshape)
+ block_size = byteswap_tensors[tensor.tensor_type]["block_size"]
+ byteswap_func = byteswap_tensors[tensor.tensor_type]["byteswap_func"]
- block_size = 210
n_blocks = len(tensor.data) // block_size
for block_num in (inner_pbar := tqdm(range(n_blocks), desc="Byte-swapping Blocks", leave=False)):
block_offs = block_num * block_size
- # Byte-Swap f16 sized field
- delta = tensor.data[block_offs + 208:block_offs + 210].view(dtype=np.uint16)
- delta.byteswap(inplace=True)
+ byteswap_func(tensor, block_offs)
- # Byte-Swap
if block_num % 100000 == 0:
inner_pbar.set_description(f"Byte-swapping Blocks [{(n_blocks - block_num) // n_blocks}]")
+ # restore old shape in case it's ever used
+ tensor.data.resize(oldshape)
else:
# Handle other tensor types
tensor.data.byteswap(inplace=True)