#include "ggml-sycl/backend.hpp"
-/*
-Following definition copied from DPCT head files, which are used by ggml-sycl.cpp
-*/
-// COPY from DPCT head files
-#include <sycl/sycl.hpp>
-#include <oneapi/mkl.hpp>
-#include <map>
-
-#if defined(__linux__)
-#include <sys/mman.h>
-#elif defined(_WIN64)
-#ifndef NOMINMAX
-#define NOMINMAX
-#endif
-#include <windows.h>
-#else
-#error "Only support Windows and Linux."
-#endif
-
-#if defined(__linux__)
-#include <unistd.h>
-#include <sys/syscall.h>
-#endif
-#if defined(_WIN64)
-#ifndef NOMINMAX
-#define NOMINMAX
-#endif
-#include <windows.h>
-#endif
-
-#define DPCT_COMPATIBILITY_TEMP (900)
-
-#if defined(_MSC_VER)
-#define __dpct_align__(n) __declspec(align(n))
-#define __dpct_inline__ __forceinline
-#else
-#define __dpct_align__(n) __attribute__((aligned(n)))
-#define __dpct_inline__ __inline__ __attribute__((always_inline))
-#endif
-
-#if defined(_MSC_VER)
-#define __dpct_noinline__ __declspec(noinline)
-#else
-#define __dpct_noinline__ __attribute__((noinline))
-#endif
-
bool ggml_sycl_loaded(void);
void ggml_sycl_free_data(struct ggml_tensor * tensor);
-void ggml_sycl_assign_buffers(struct ggml_tensor * tensor);
-void ggml_sycl_assign_buffers_no_scratch(struct ggml_tensor * tensor);
-void ggml_sycl_assign_buffers_force_inplace(struct ggml_tensor * tensor);
-void ggml_sycl_assign_buffers_no_alloc(struct ggml_tensor * tensor);
void ggml_sycl_copy_to_device(struct ggml_tensor * tensor);
void ggml_sycl_set_main_device(int main_device);
void ggml_sycl_set_mul_mat_q(bool mul_mat_q);
-void ggml_sycl_set_scratch_size(size_t scratch_size);
-void ggml_sycl_free_scratch(void);
void ggml_sycl_get_device_description(int device, char * description, size_t description_size);
bool ggml_backend_is_sycl(ggml_backend_t backend);
int ggml_backend_sycl_get_device(ggml_backend_t backend);
static bool ggml_backend_buffer_is_sycl_split(ggml_backend_buffer_t buffer);
+static inline int get_sycl_env(const char *env_name, int default_val);
+static inline int get_work_group_size(const sycl::device& device);
void dev2dev_memcpy(sycl::queue &q_dst, sycl::queue &q_src, void *ptr_dst,
const void *ptr_src, size_t size) {
free(host_buf);
}
-static __dpct_inline__ int get_int_from_int8(const int8_t *x8, const int &i32) {
- const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
-
- int x32 = 0;
- x32 |= x16[0] << 0;
- x32 |= x16[1] << 16;
-
- return x32;
-}
-
-static __dpct_inline__ int get_int_from_uint8(const uint8_t *x8,
- const int &i32) {
- const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
-
- int x32 = 0;
- x32 |= x16[0] << 0;
- x32 |= x16[1] << 16;
-
- return x32;
-}
-
-static __dpct_inline__ int get_int_from_int8_aligned(const int8_t *x8,
- const int &i32) {
- return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
-}
-
-static __dpct_inline__ int get_int_from_uint8_aligned(const uint8_t *x8,
- const int &i32) {
- return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
-}
-
-template <typename T>
-using to_t_sycl_t = void (*)(const void *__restrict__ x, T *__restrict__ y,
- int k, queue_ptr stream);
-typedef to_t_sycl_t<float> to_fp32_sycl_t;
-typedef to_t_sycl_t<sycl::half> to_fp16_sycl_t;
-
-typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
-typedef void (*dot_kernel_k_t)(const void * __restrict__ vx, const int ib, const int iqs, const float * __restrict__ y, float & v);
typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
typedef void (*ggml_sycl_func_t)(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
typedef void (*ggml_sycl_op_mul_mat_t)(
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream);
-typedef float (*vec_dot_q_sycl_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs);
-typedef void (*allocate_tiles_sycl_t)(int **x_ql, sycl::half2 **x_dm,
- int **x_qh, int **x_sc);
-typedef void (*load_tiles_sycl_t)(const void *__restrict__ vx,
- int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm,
- int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset,
- const int &i_max, const int &k,
- const int &blocks_per_row);
-typedef float (*vec_dot_q_mul_mat_sycl_t)(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ms,
- const int &i, const int &j, const int &k);
-
static __dpct_inline__ float warp_reduce_sum(float x,
const sycl::nd_item<3> &item_ct1) {
#pragma unroll
}
}
-static __dpct_inline__ void dequantize_q4_0(const void *vx, const int ib,
- const int iqs, dfloat2 &v) {
- const block_q4_0 * x = (const block_q4_0 *) vx;
+static void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded,
+ const sycl::nd_item<3> &item_ct1) {
+ const int ix = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2);
- const dfloat d = x[ib].d;
+ if (ix >= kx_padded) {
+ return;
+ }
- const int vui = x[ib].qs[iqs];
+ const int iy = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+ item_ct1.get_local_id(1);
- v.x() = vui & 0xF;
- v.y() = vui >> 4;
+ const int i_padded = iy*kx_padded + ix;
-#ifdef GGML_SYCL_F16
- // v = v - {8.0f, 8.0f};
- // v = v * {d, d};
- v.s0() = (v.s0() - 8.0f) * d;
- v.s1() = (v.s1() - 8.0f) * d;
+ block_q8_1 * y = (block_q8_1 *) vy;
-#else
- v.x() = (v.x() - 8.0f) * d;
- v.y() = (v.y() - 8.0f) * d;
-#endif // GGML_SYCL_F16
-}
+ const int ib = i_padded / QK8_1; // block index
+ const int iqs = i_padded % QK8_1; // quant index
-static __dpct_inline__ void dequantize_q4_1(const void *vx, const int ib,
- const int iqs, dfloat2 &v) {
- const block_q4_1 * x = (const block_q4_1 *) vx;
+ const float xi = ix < kx ? x[iy*kx + ix] : 0.0f;
+ float amax = sycl::fabs((float)xi);
+ float sum = xi;
- const dfloat d = x[ib].dm[0];
- const dfloat m = x[ib].dm[1];
+#pragma unroll
+ for (int mask = 16; mask > 0; mask >>= 1) {
+ amax = sycl::fmax(amax, dpct::permute_sub_group_by_xor(
+ item_ct1.get_sub_group(), amax, mask));
+ sum +=
+ dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), sum, mask);
+ }
- const int vui = x[ib].qs[iqs];
+ const float d = amax / 127;
+ const int8_t q = amax == 0.0f ? 0 : sycl::round(xi / d);
- v.x() = vui & 0xF;
- v.y() = vui >> 4;
+ y[ib].qs[iqs] = q;
-#ifdef GGML_SYCL_F16
- // v = v * {d, d};
- // v = v + {m, m};
- v.s0() = (v.s0() * d) + m;
- v.s1() = (v.s1() * d) + m;
+ if (iqs > 0) {
+ return;
+ }
-#else
- v.x() = (v.x() * d) + m;
- v.y() = (v.y() * d) + m;
-#endif // GGML_SYCL_F16
+ reinterpret_cast<sycl::half &>(y[ib].ds.x()) = d;
+ reinterpret_cast<sycl::half &>(y[ib].ds.y()) = sum;
}
-static __dpct_inline__ void dequantize_q5_0(const void *vx, const int ib,
- const int iqs, dfloat2 &v) {
- const block_q5_0 * x = (const block_q5_0 *) vx;
+template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
+static void k_get_rows(
+ const void * src0, const int32_t * src1, dst_t * dst,
+ int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
+ /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
+ /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
+ /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
+ size_t s10, size_t s11, size_t s12,
+ const sycl::nd_item<3> &item_ct1/*, size_t s13*/) {
- const dfloat d = x[ib].d;
+ const int i00 = (item_ct1.get_group(2) * item_ct1.get_local_range(2) +
+ item_ct1.get_local_id(2)) *
+ 2;
+ const int i10 = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+ item_ct1.get_local_id(1);
+ const int i11 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
+ item_ct1.get_local_id(0)) /
+ ne12;
+ const int i12 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
+ item_ct1.get_local_id(0)) %
+ ne12;
- uint32_t qh;
- memcpy(&qh, x[ib].qh, sizeof(qh));
+ if (i00 >= ne00) {
+ return;
+ }
- const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
- const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
+ const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
- v.x() = ((x[ib].qs[iqs] & 0xf) | xh_0);
- v.y() = ((x[ib].qs[iqs] >> 4) | xh_1);
+ dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
+ const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
-#ifdef GGML_SYCL_F16
- // v = v - {16.0f, 16.0f};
- // v = v * {d, d};
- v.s0() = (v.s0() - 16.0f) * d;
- v.s1() = (v.s1() - 16.0f) * d;
+ const int ib = i00/qk; // block index
+ const int iqs = (i00%qk)/qr; // quant index
+ const int iybs = i00 - i00%qk; // dst block start index
+ const int y_offset = qr == 1 ? 1 : qk/2;
-#else
- v.x() = (v.x() - 16.0f) * d;
- v.y() = (v.y() - 16.0f) * d;
-#endif // GGML_SYCL_F16
+ // dequantize
+ dfloat2 v;
+ dequantize_kernel(src0_row, ib, iqs, v);
+
+ dst_row[iybs + iqs + 0] = v.x();
+ dst_row[iybs + iqs + y_offset] = v.y();
}
-static __dpct_inline__ void dequantize_q5_1(const void *vx, const int ib,
- const int iqs, dfloat2 &v) {
- const block_q5_1 * x = (const block_q5_1 *) vx;
+template<typename src0_t, typename dst_t>
+static void k_get_rows_float(
+ const src0_t * src0, const int32_t * src1, dst_t * dst,
+ int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
+ /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
+ /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
+ /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
+ size_t s10, size_t s11, size_t s12,
+ const sycl::nd_item<3> &item_ct1/*, size_t s13*/) {
- const dfloat d = x[ib].dm[0];
- const dfloat m = x[ib].dm[1];
+ const int i00 = item_ct1.get_group(2) * item_ct1.get_local_range(2) +
+ item_ct1.get_local_id(2);
+ const int i10 = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+ item_ct1.get_local_id(1);
+ const int i11 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
+ item_ct1.get_local_id(0)) /
+ ne12;
+ const int i12 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
+ item_ct1.get_local_id(0)) %
+ ne12;
- uint32_t qh;
- memcpy(&qh, x[ib].qh, sizeof(qh));
+ if (i00 >= ne00) {
+ return;
+ }
- const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
- const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
+ const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
- v.x() = ((x[ib].qs[iqs] & 0xf) | xh_0);
- v.y() = ((x[ib].qs[iqs] >> 4) | xh_1);
+ dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
+ const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
-#ifdef GGML_SYCL_F16
- // v = v * {d, d};
- // v = v + {m, m};
- v.s0() = (v.s0() * d) + m;
- v.s1() = (v.s1() * d) + m;
-#else
- v.x() = (v.x() * d) + m;
- v.y() = (v.y() * d) + m;
-#endif // GGML_SYCL_F16
+ dst_row[i00] = src0_row[i00];
}
-static __dpct_inline__ void dequantize_q8_0(const void *vx, const int ib,
- const int iqs, dfloat2 &v) {
- const block_q8_0 * x = (const block_q8_0 *) vx;
-
- const dfloat d = x[ib].d;
-
- v.x() = x[ib].qs[iqs + 0];
- v.y() = x[ib].qs[iqs + 1];
+static void mul_mat_p021_f16_f32(
+ const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y,
+ const sycl::nd_item<3> &item_ct1) {
-#ifdef GGML_SYCL_F16
- // v = v * {d, d};
- v.s0() *= d;
- v.s1() *= d;
-#else
- v.x() *= d;
- v.y() *= d;
-#endif // GGML_SYCL_F16
-}
+ const sycl::half *x = (const sycl::half *)vx;
-template<typename dst_t>
-static void dequantize_block_q4_0(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32,
- const sycl::nd_item<3> &item_ct1) {
+ const int row_x = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+ item_ct1.get_local_id(1);
+ const int channel = item_ct1.get_local_range(0) * item_ct1.get_group(0) +
+ item_ct1.get_local_id(0);
+ const int channel_x = channel / (nchannels_y / nchannels_x);
- const int i = item_ct1.get_group(2);
+ const int nrows_y = ncols_x;
+ const int nrows_dst = nrows_x;
+ const int row_dst = row_x;
- // assume 32 threads
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/8;
- const int ir = tid%8;
- const int ib = 8*i + ir;
- if (ib >= nb32) {
- return;
- }
+ float tmp = 0.0f;
- dst_t * y = yy + 256*i + 32*ir + 4*il;
+ for (int col_x0 = 0; col_x0 < ncols_x;
+ col_x0 += item_ct1.get_local_range(2)) {
+ const int col_x = col_x0 + item_ct1.get_local_id(2);
- const block_q4_0 * x = (const block_q4_0 *)vx + ib;
- const float d = sycl::vec<sycl::half, 1>(x->d)
- .convert<float, sycl::rounding_mode::automatic>()[0];
- const float dm = -8*d;
+ if (col_x >= ncols_x) {
+ break;
+ }
- const uint8_t * q = x->qs + 4*il;
+ // x is transposed and permuted
+ const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
+ const float xi =
+ sycl::vec<sycl::half, 1>(x[ix])
+ .convert<float, sycl::rounding_mode::automatic>()[0];
- for (int l = 0; l < 4; ++l) {
- y[l+ 0] = d * (q[l] & 0xF) + dm;
- y[l+16] = d * (q[l] >> 4) + dm;
- }
-}
+ const int row_y = col_x;
-template<typename dst_t>
-static void dequantize_block_q4_1(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_group(2);
+ // y is not transposed but permuted
+ const int iy = channel*nrows_y + row_y;
- // assume 32 threads
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/8;
- const int ir = tid%8;
- const int ib = 8*i + ir;
- if (ib >= nb32) {
- return;
+ tmp += xi * y[iy];
}
- dst_t * y = yy + 256*i + 32*ir + 4*il;
-
- const block_q4_1 * x = (const block_q4_1 *)vx + ib;
- const sycl::float2 d =
- x->dm.convert<float, sycl::rounding_mode::automatic>();
+ // dst is not transposed and not permuted
+ const int idst = channel*nrows_dst + row_dst;
- const uint8_t * q = x->qs + 4*il;
+ // sum up partial sums and write back result
+#pragma unroll
+ for (int mask = 16; mask > 0; mask >>= 1) {
+ tmp +=
+ dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
+ }
- for (int l = 0; l < 4; ++l) {
- y[l + 0] = d.x() * (q[l] & 0xF) + d.y();
- y[l + 16] = d.x() * (q[l] >> 4) + d.y();
+ if (item_ct1.get_local_id(2) == 0) {
+ dst[idst] = tmp;
}
}
+static void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
+ const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
+ const int row_stride_x, const int channel_stride_x, const int channel_x_divisor,
+ const sycl::nd_item<3> &item_ct1) {
-//================================== k-quants
-
-template<typename dst_t>
-static void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
- const sycl::nd_item<3> &item_ct1) {
+ const sycl::half *x = (const sycl::half *)vx;
- const int i = item_ct1.get_group(2);
- const block_q2_K * x = (const block_q2_K *) vx;
+ const int row_x = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+ item_ct1.get_local_id(1);
+ const int channel = item_ct1.get_local_range(0) * item_ct1.get_group(0) +
+ item_ct1.get_local_id(0);
+ const int channel_x = channel / channel_x_divisor;
- const int tid = item_ct1.get_local_id(2);
- const int n = tid/32;
- const int l = tid - 32*n;
- const int is = 8*n + l/16;
+ const int nrows_y = ncols_x;
+ const int nrows_dst = nrows_x;
+ const int row_dst = row_x;
- const uint8_t q = x[i].qs[32*n + l];
- dst_t * y = yy + i*QK_K + 128*n;
+ const int idst = channel*nrows_dst + row_dst;
- float dall = x[i].dm[0];
- float dmin = x[i].dm[1];
- y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
- y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
- y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
- y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
-}
+ float tmp = 0.0f;
-template<typename dst_t>
-static void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
- const sycl::nd_item<3> &item_ct1) {
+ for (int col_x0 = 0; col_x0 < ncols_x;
+ col_x0 += item_ct1.get_local_range(2)) {
+ const int col_x = col_x0 + item_ct1.get_local_id(2);
- const int i = item_ct1.get_group(2);
- const block_q3_K * x = (const block_q3_K *) vx;
+ if (col_x >= ncols_x) {
+ break;
+ }
- const int r = item_ct1.get_local_id(2) / 4;
- const int tid = r/2;
- const int is0 = r%2;
- const int l0 = 16 * is0 + 4 * (item_ct1.get_local_id(2) % 4);
- const int n = tid / 4;
- const int j = tid - 4*n;
+ const int row_y = col_x;
- uint8_t m = 1 << (4*n + j);
- int is = 8*n + 2*j + is0;
- int shift = 2*j;
+ const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
+ const int iy = channel*nrows_y + row_y;
- int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
- is < 8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
- is < 12 ? (x[i].scales[is-8] >> 4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
- (x[i].scales[is-8] >> 4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
- float d_all = x[i].d;
- float dl = d_all * (us - 32);
+ const float xi =
+ sycl::vec<sycl::half, 1>(x[ix])
+ .convert<float, sycl::rounding_mode::automatic>()[0];
- dst_t * y = yy + i*QK_K + 128*n + 32*j;
- const uint8_t * q = x[i].qs + 32*n;
- const uint8_t * hm = x[i].hmask;
+ tmp += xi * y[iy];
+ }
- for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
-}
+ // sum up partial sums and write back result
+#pragma unroll
+ for (int mask = 16; mask > 0; mask >>= 1) {
+ tmp +=
+ dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
+ }
-static inline void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
- if (j < 4) {
- d = q[j] & 63; m = q[j + 4] & 63;
- } else {
- d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
- m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
+ if (item_ct1.get_local_id(2) == 0) {
+ dst[idst] = tmp;
}
}
-template<typename dst_t>
-static void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
- const sycl::nd_item<3> &item_ct1) {
- const block_q4_K * x = (const block_q4_K *) vx;
-
- const int i = item_ct1.get_group(2);
+static void cpy_1_f32_f32(const char * cxi, char * cdsti) {
+ const float * xi = (const float *) cxi;
+ float * dsti = (float *) cdsti;
- // assume 32 threads
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/8;
- const int ir = tid%8;
- const int is = 2*il;
- const int n = 4;
+ *dsti = *xi;
+}
- dst_t * y = yy + i*QK_K + 64*il + n*ir;
+static void cpy_1_f32_f16(const char * cxi, char * cdsti) {
+ const float * xi = (const float *) cxi;
+ sycl::half *dsti = (sycl::half *)cdsti;
- const float dall = x[i].dm[0];
- const float dmin = x[i].dm[1];
+ *dsti = sycl::vec<float, 1>(*xi)
+ .convert<sycl::half, sycl::rounding_mode::automatic>()[0];
+}
- const uint8_t * q = x[i].qs + 32*il + n*ir;
+static void cpy_1_f16_f16(const char * cxi, char * cdsti) {
+ const sycl::half *xi = (const sycl::half *)cxi;
+ sycl::half *dsti = (sycl::half *)cdsti;
- uint8_t sc, m;
- get_scale_min_k4(is + 0, x[i].scales, sc, m);
- const float d1 = dall * sc; const float m1 = dmin * m;
- get_scale_min_k4(is + 1, x[i].scales, sc, m);
- const float d2 = dall * sc; const float m2 = dmin * m;
- for (int l = 0; l < n; ++l) {
- y[l + 0] = d1 * (q[l] & 0xF) - m1;
- y[l +32] = d2 * (q[l] >> 4) - m2;
- }
+ *dsti = *xi;
}
-template<typename dst_t>
-static void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
- const sycl::nd_item<3> &item_ct1) {
- const block_q5_K * x = (const block_q5_K *) vx;
+static void cpy_1_f16_f32(const char * cxi, char * cdsti) {
+ const sycl::half *xi = (const sycl::half *)cxi;
+ float * dsti = (float *) cdsti;
- const int i = item_ct1.get_group(2);
+ *dsti = *xi;
+}
- // assume 64 threads - this is very slightly better than the one below
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/16; // il is in 0...3
- const int ir = tid%16; // ir is in 0...15
- const int is = 2*il; // is is in 0...6
+static void cpy_1_i16_i16(const char * cxi, char * cdsti) {
+ const int16_t *xi = (const int16_t *)cxi;
+ int16_t *dsti = (int16_t *)cdsti;
- dst_t * y = yy + i*QK_K + 64*il + 2*ir;
-
- const float dall = x[i].dm[0];
- const float dmin = x[i].dm[1];
-
- const uint8_t * ql = x[i].qs + 32*il + 2*ir;
- const uint8_t * qh = x[i].qh + 2*ir;
-
- uint8_t sc, m;
- get_scale_min_k4(is + 0, x[i].scales, sc, m);
- const float d1 = dall * sc; const float m1 = dmin * m;
- get_scale_min_k4(is + 1, x[i].scales, sc, m);
- const float d2 = dall * sc; const float m2 = dmin * m;
-
- uint8_t hm = 1 << (2*il);
- y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
- y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
- hm <<= 1;
- y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
- y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
+ *dsti = *xi;
}
-template<typename dst_t>
-static void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
- const sycl::nd_item<3> &item_ct1) {
- const block_q6_K * x = (const block_q6_K *) vx;
+static void cpy_1_i32_i32(const char * cxi, char * cdsti) {
+ const int32_t *xi = (const int32_t *)cxi;
+ int32_t *dsti = (int32_t *)cdsti;
- const int i = item_ct1.get_group(2);
+ *dsti = *xi;
+}
- // assume 64 threads - this is very slightly better than the one below
- const int tid = item_ct1.get_local_id(2);
- const int ip = tid/32; // ip is 0 or 1
- const int il = tid - 32*ip; // 0...32
- const int is = 8*ip + il/16;
+template <cpy_kernel_t cpy_1>
+static void cpy_f32_f16(const char * cx, char * cdst, const int ne,
+ const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
+ const int nb12, const int nb13, const sycl::nd_item<3> &item_ct1) {
+ const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2);
- dst_t * y = yy + i*QK_K + 128*ip + il;
+ if (i >= ne) {
+ return;
+ }
- const float d = x[i].d;
+ // determine indices i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
+ // then combine those indices with the corresponding byte offsets to get the total offsets
+ const int i03 = i/(ne00 * ne01 * ne02);
+ const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
+ const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
+ const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
+ const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
- const uint8_t * ql = x[i].ql + 64*ip + il;
- const uint8_t qh = x[i].qh[32*ip + il];
- const int8_t * sc = x[i].scales + is;
+ const int i13 = i/(ne10 * ne11 * ne12);
+ const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
+ const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
+ const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
+ const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
- y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
- y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
- y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
- y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
+ cpy_1(cx + x_offset, cdst + dst_offset);
}
-template<typename dst_t>
-static void dequantize_block_iq2_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy,
- const sycl::nd_item<3> &item_ct1,
- const uint64_t *iq2xxs_grid_ptr,
- const uint8_t *ksigns_iq2xs_ptr,
- const uint8_t *kmask_iq2xs_ptr) {
+static void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
+ const float * xi = (const float *) cxi;
+ block_q8_0 * dsti = (block_q8_0 *) cdsti;
- const int i = item_ct1.get_group(2);
- const block_iq2_xxs * x = (const block_iq2_xxs *) vx;
+ float amax = 0.0f; // absolute max
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const uint16_t * q2 = x[i].qs + 4*ib;
- const uint8_t * aux8 = (const uint8_t *)q2;
- const uint8_t * grid = (const uint8_t *)(iq2xxs_grid_ptr + aux8[il]);
- const uint32_t aux32 = q2[2] | (q2[3] << 16);
- const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.25f;
- const uint8_t signs = ksigns_iq2xs_ptr[(aux32 >> 7*il) & 127];
- for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs_ptr[j] ? -1.f : 1.f);
-}
-
-template<typename dst_t>
-static void dequantize_block_iq2_xs(const void * __restrict__ vx, dst_t * __restrict__ yy,
- const sycl::nd_item<3> &item_ct1,
- const uint64_t *iq2xs_grid,
- const uint8_t *ksigns_iq2xs,
- const uint8_t *kmask_iq2xs) {
-
- const int i = item_ct1.get_group(2);
- const block_iq2_xs * x = (const block_iq2_xs *) vx;
+ for (int j = 0; j < QK8_0; j++) {
+ const float v = xi[j];
+ amax = sycl::fmax(amax, sycl::fabs((float)v));
+ }
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const uint16_t * q2 = x[i].qs + 4*ib;
- const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[il] & 511));
- const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
- const uint8_t signs = ksigns_iq2xs[q2[il] >> 9];
- for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
-}
+ const float d = amax / ((1 << 7) - 1);
+ const float id = d ? 1.0f/d : 0.0f;
-template <typename dst_t>
-__dpct_inline__ static void
-dequantize_block_iq2_s(const void *__restrict__ vx, dst_t *__restrict__ yy,
- const sycl::nd_item<3> &item_ct1) {
+ dsti->d = d;
- const int i = item_ct1.get_group(2);
- const block_iq2_s * x = (const block_iq2_s *) vx;
+ for (int j = 0; j < QK8_0; ++j) {
+ const float x0 = xi[j]*id;
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const uint8_t * grid = (const uint8_t *)(iq2s_grid + (x[i].qs[4*ib+il] | ((x[i].qh[ib] << (8-2*il)) & 0x300)));
- const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
- const uint8_t signs = x[i].qs[QK_K/8+4*ib+il];
-#pragma unroll
- for (int j = 0; j < 8; ++j) {
- y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
+ dsti->qs[j] = sycl::round((float)x0);
}
}
-template<typename dst_t>
-static void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy,
- const sycl::nd_item<3> &item_ct1,
- const uint32_t *iq3xxs_grid,
- const uint8_t *ksigns_iq2xs,
- const uint8_t *kmask_iq2xs) {
-
- const int i = item_ct1.get_group(2);
- const block_iq3_xxs * x = (const block_iq3_xxs *) vx;
-
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const uint8_t * q3 = x[i].qs + 8*ib;
- const uint16_t * gas = (const uint16_t *)(x[i].qs + QK_K/4) + 2*ib;
- const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*il+0]);
- const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*il+1]);
- const uint32_t aux32 = gas[0] | (gas[1] << 16);
- const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.5f;
- const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
- for (int j = 0; j < 4; ++j) {
- y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
- y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
- }
-}
-
-template <typename dst_t>
-__dpct_inline__ static void
-dequantize_block_iq3_s(const void *__restrict__ vx, dst_t *__restrict__ yy,
- const sycl::nd_item<3> &item_ct1,
- const uint8_t *kmask_iq2xs, const uint32_t *iq3s_grid) {
+static void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
+ const float * xi = (const float *) cxi;
+ block_q4_0 * dsti = (block_q4_0 *) cdsti;
- const int i = item_ct1.get_group(2);
- const block_iq3_s * x = (const block_iq3_s *) vx;
+ float amax = 0.0f;
+ float vmax = 0.0f;
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const uint8_t * qs = x[i].qs + 8*ib;
- const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*il+0] | ((x[i].qh[ib] << (8-2*il)) & 256)));
- const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*il+1] | ((x[i].qh[ib] << (7-2*il)) & 256)));
- const float d = (float)x[i].d * (1 + 2*((x[i].scales[ib/2] >> 4*(ib%2)) & 0xf));
- const uint8_t signs = x[i].signs[4*ib + il];
-#pragma unroll
- for (int j = 0; j < 4; ++j) {
- y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
- y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
+ for (int j = 0; j < QK4_0; ++j) {
+ const float v = xi[j];
+ if (amax < sycl::fabs((float)v)) {
+ amax = sycl::fabs((float)v);
+ vmax = v;
+ }
}
-}
-
-template <typename dst_t>
-__dpct_inline__ static void
-dequantize_block_iq1_s(const void *__restrict__ vx, dst_t *__restrict__ yy,
- const sycl::nd_item<3> &item_ct1,
- const uint32_t *iq1s_grid_gpu) {
- const int i = item_ct1.get_group(2);
- const block_iq1_s * x = (const block_iq1_s *) vx;
+ const float d = vmax / -8;
+ const float id = d ? 1.0f/d : 0.0f;
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const float delta = x[i].qh[ib] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA;
- const float d = (float)x[i].d * (2*((x[i].qh[ib] >> 12) & 7) + 1);
- uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32;
- grid32[0] = iq1s_grid_gpu[x[i].qs[4*ib+il] | (((x[i].qh[ib] >> 3*il) & 7) << 8)];
- grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
- grid32[0] &= 0x0f0f0f0f;
-#pragma unroll
- for (int j = 0; j < 8; ++j) {
- y[j] = d * (q[j] + delta);
- }
-}
+ dsti->d = d;
-template <typename dst_t>
-__dpct_inline__ static void
-dequantize_block_iq1_m(const void *__restrict__ vx, dst_t *__restrict__ yy,
- const sycl::nd_item<3> &item_ct1,
- const uint32_t *iq1s_grid_gpu) {
+ for (int j = 0; j < QK4_0/2; ++j) {
+ const float x0 = xi[0 + j]*id;
+ const float x1 = xi[QK4_0/2 + j]*id;
- const int i = item_ct1.get_group(2);
- const block_iq1_m * x = (const block_iq1_m *) vx;
+ const uint8_t xi0 = dpct::min(15, (int8_t)(x0 + 8.5f));
+ const uint8_t xi1 = dpct::min(15, (int8_t)(x1 + 8.5f));
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const uint16_t * sc = (const uint16_t *)x[i].scales;
- iq1m_scale_t scale;
- scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
- const int ib16 = 2*ib + il/2; // sc[ib16/4] >> 3*(ib16%4) -> sc[ib/2] >> 3*((2*ib+il/2)%4);
- const float d = (float)scale.f16 * (2*((sc[ib16/4] >> 3*(ib16%4)) & 0x7) + 1);
- const float delta = x[i].qh[2*ib+il/2] & (0x08 << 4*(il%2)) ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA;
- uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32;
- grid32[0] = iq1s_grid_gpu[x[i].qs[4*ib+il] | (((x[i].qh[2*ib+il/2] >> 4*(il%2)) & 7) << 8)];
- grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
- grid32[0] &= 0x0f0f0f0f;
-#pragma unroll
- for (int j = 0; j < 8; ++j) {
- y[j] = d * (q[j] + delta);
+ dsti->qs[j] = xi0;
+ dsti->qs[j] |= xi1 << 4;
}
}
-template <typename dst_t>
-__dpct_inline__ static void
-dequantize_block_iq4_nl(const void *__restrict__ vx, dst_t *__restrict__ yy,
- const sycl::nd_item<3> &item_ct1) {
+static void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
+ const float * xi = (const float *) cxi;
+ block_q4_1 * dsti = (block_q4_1 *) cdsti;
- const int i = item_ct1.get_group(2);
- const block_iq4_nl * x = (const block_iq4_nl *) vx + i*(QK_K/QK4_NL);
+ float vmin = FLT_MAX;
+ float vmax = -FLT_MAX;
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 4*il;
- const uint8_t * q4 = x[ib].qs + 4*il;
- const float d = (float)x[ib].d;
-#pragma unroll
- for (int j = 0; j < 4; ++j) {
- y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
- y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
+ for (int j = 0; j < QK4_1; ++j) {
+ const float v = xi[j];
+
+ if (v < vmin) vmin = v;
+ if (v > vmax) vmax = v;
}
-}
+ const float d = (vmax - vmin) / ((1 << 4) - 1);
+ const float id = d ? 1.0f/d : 0.0f;
+ dsti->dm.x() = d;
+ dsti->dm.y() = vmin;
-template <typename dst_t>
-__dpct_inline__ static void
-dequantize_block_iq4_xs(const void *__restrict__ vx, dst_t *__restrict__ yy,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_group(2);
- const block_iq4_xs * x = (const block_iq4_xs *)vx;
+ for (int j = 0; j < QK4_1/2; ++j) {
+ const float x0 = (xi[0 + j] - vmin)*id;
+ const float x1 = (xi[QK4_1/2 + j] - vmin)*id;
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 4*il;
- const uint8_t * q4 = x[i].qs + 16*ib + 4*il;
- const float d = (float)x[i].d * ((((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4)) - 32);
-#pragma unroll
- for (int j = 0; j < 4; ++j) {
- y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
- y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
+ const uint8_t xi0 = dpct::min(15, (int8_t)(x0 + 0.5f));
+ const uint8_t xi1 = dpct::min(15, (int8_t)(x1 + 0.5f));
+
+ dsti->qs[j] = xi0;
+ dsti->qs[j] |= xi1 << 4;
}
}
+template <cpy_kernel_t cpy_blck, int qk>
+static void cpy_f32_q(const char * cx, char * cdst, const int ne,
+ const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
+ const int nb12, const int nb13, const sycl::nd_item<3> &item_ct1) {
+ const int i = (item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2)) *
+ qk;
+ if (i >= ne) {
+ return;
+ }
-/*
-DPCT1110:4: The total declared local variable size in device function
-dequantize_mul_mat_vec_q2_k exceeds 128 bytes and may cause high register
-pressure. Consult with your hardware vendor to find the total register size
-available and adjust the code, or use smaller sub-group size to avoid high
-register pressure.
-*/
-static void dequantize_mul_mat_vec_q2_k(const void *__restrict__ vx,
- const float *__restrict__ yy,
- float *__restrict__ dst,
- const int ncols, int nrows,
- const sycl::nd_item<3> &item_ct1) {
-
- static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
-
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row > nrows) return;
+ const int i03 = i/(ne00 * ne01 * ne02);
+ const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
+ const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
+ const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
+ const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
+ const int i13 = i/(ne10 * ne11 * ne12);
+ const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
+ const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
+ const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
+ const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
- const block_q2_K * x = (const block_q2_K *)vx + ib0;
+ cpy_blck(cx + x_offset, cdst + dst_offset);
+}
- float tmp = 0; // partial sum for thread in warp
+static float rope_yarn_ramp(const float low, const float high, const int i0) {
+ const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low);
+ return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y));
+}
- const int tid =
- item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...15
- const int ix =
- item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0,1
+struct rope_corr_dims {
+ float v[4];
+};
- const int step = 16/K_QUANTS_PER_ITERATION;
+// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
+// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
+static void rope_yarn(
+ float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
+ float * cos_theta, float * sin_theta
+) {
+ // Get n-d rotational scaling corrected for extrapolation
+ float theta_interp = freq_scale * theta_extrap;
+ float theta = theta_interp;
+ if (ext_factor != 0.0f) {
+ float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
+ theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
- const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
- const int in = tid - step*im; // 0...15 or 0...7
+ // Get n-d magnitude scaling corrected for interpolation
+ mscale *= 1.0f + 0.1f * sycl::log(1.0f / freq_scale);
+ }
+ *cos_theta = sycl::cos(theta) * mscale;
+ *sin_theta = sycl::sin(theta) * mscale;
+}
- const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2
- const int q_offset = 32*im + l0;
- const int s_offset = 8*im;
- const int y_offset = 128*im + l0;
+// rope == RoPE == rotary positional embedding
+template<typename T, bool has_pos>
+static void rope(
+ const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
+ float ext_factor, float attn_factor, rope_corr_dims corr_dims
+,
+ const sycl::nd_item<3> &item_ct1) {
+ const int col = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+ item_ct1.get_local_id(1));
- uint32_t aux[4];
- const uint8_t * d = (const uint8_t *)aux;
- const uint8_t * m = (const uint8_t *)(aux + 2);
+ if (col >= ncols) {
+ return;
+ }
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
+ const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2);
+ const int i = row*ncols + col;
+ const int i2 = row/p_delta_rows;
- const float * y = yy + i * QK_K + y_offset;
- const uint8_t * q = x[i].qs + q_offset;
+ const int p = has_pos ? pos[i2] : 0;
+ const float theta_base = p * dpct::pow(freq_base, -float(col) / ncols);
- const float dall = x[i].dm[0];
- const float dmin = x[i].dm[1];
+ float cos_theta, sin_theta;
+ rope_yarn(theta_base, freq_scale, corr_dims, col, ext_factor, attn_factor, &cos_theta, &sin_theta);
- const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
- aux[0] = a[0] & 0x0f0f0f0f;
- aux[1] = a[1] & 0x0f0f0f0f;
- aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
- aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
+ const float x0 = x[i + 0];
+ const float x1 = x[i + 1];
- float sum1 = 0, sum2 = 0;
- for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
- sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
- + y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
- + y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
- + y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
- + y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
- + y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
- + y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
- +y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
- sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
- + y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
+ dst[i + 0] = x0*cos_theta - x1*sin_theta;
+ dst[i + 1] = x0*sin_theta + x1*cos_theta;
+}
- }
- tmp += dall * sum1 - dmin * sum2;
+template<typename T, bool has_pos, bool has_freq_facs>
+static void rope_neox(
+ const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
+ float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims,
+ const float * freq_factors, const sycl::nd_item<3> &item_ct1) {
+ const int col = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+ item_ct1.get_local_id(1));
+ if (col >= ncols) {
+ return;
}
- // sum up partial sums and write back result
-#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
+ const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2);
+ const int ib = col / n_dims;
+ const int ic = col % n_dims;
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
-}
+ if (ib > 0) {
+ const int i = row*ncols + ib*n_dims + ic;
-/*
-DPCT1110:5: The total declared local variable size in device function
-dequantize_mul_mat_vec_q3_k exceeds 128 bytes and may cause high register
-pressure. Consult with your hardware vendor to find the total register size
-available and adjust the code, or use smaller sub-group size to avoid high
-register pressure.
-*/
-static void dequantize_mul_mat_vec_q3_k(const void *__restrict__ vx,
- const float *__restrict__ yy,
- float *__restrict__ dst,
- const int ncols, int nrows,
- const sycl::nd_item<3> &item_ct1) {
+ dst[i + 0] = x[i + 0];
+ dst[i + 1] = x[i + 1];
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row > nrows) return;
+ return;
+ }
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
+ const int i = row*ncols + ib*n_dims + ic/2;
+ const int i2 = row/p_delta_rows;
- const block_q3_K * x = (const block_q3_K *)vx + ib0;
+ float cur_rot = inv_ndims * ic - ib;
- float tmp = 0; // partial sum for thread in warp
+ const int p = has_pos ? pos[i2] : 0;
+ const float freq_factor = has_freq_facs ? freq_factors[ic/2] : 1.0f;
- const uint16_t kmask1 = 0x0303;
- const uint16_t kmask2 = 0x0f0f;
+ const float theta_base =
+ p * freq_scale * dpct::pow(theta_scale, col / 2.0f)/freq_factor;
- const int tid =
- item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...16
- const int ix =
- item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0,1
+ float cos_theta, sin_theta;
+ rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
- const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop
- const int step = 16/K_QUANTS_PER_ITERATION;
- const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
- const int in = tid - step*im; // 0....15 or 0...7
+ const float x0 = x[i + 0];
+ const float x1 = x[i + n_dims/2];
- const uint8_t m = 1 << (4*im);
+ dst[i + 0] = x0*cos_theta - x1*sin_theta;
+ dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
+}
- const int l0 = n*in; // 0...15 or 0...14 in steps of 2
- const int q_offset = 32*im + l0;
- const int y_offset = 128*im + l0;
+static void k_sum_rows_f32(const float * x, float * dst, const int ncols,
+ const sycl::nd_item<3> &item_ct1) {
+ const int row = item_ct1.get_group(1);
+ const int col = item_ct1.get_local_id(2);
- uint16_t utmp[4];
- const int8_t * s = (const int8_t *)utmp;
+ float sum = 0.0f;
+ for (int i = col; i < ncols; i += item_ct1.get_local_range(2)) {
+ sum += x[row * ncols + i];
+ }
- const uint16_t s_shift = 4*im;
+ sum = warp_reduce_sum(sum, item_ct1);
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
-
- const float * y = yy + i * QK_K + y_offset;
- const uint8_t * q = x[i].qs + q_offset;
- const uint8_t * h = x[i].hmask + l0;
+ if (col == 0) {
+ dst[row] = sum;
+ }
+}
- const uint16_t * a = (const uint16_t *)x[i].scales;
- utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
- utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
- utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
- utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
- const float d = x[i].d;
+template<typename T>
+static inline void ggml_sycl_swap(T & a, T & b) {
+ T tmp = a;
+ a = b;
+ b = tmp;
+}
- float sum = 0;
- for (int l = 0; l < n; ++l) {
- sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
- + y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
- + y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
- + y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
- sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
- + y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
- + y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
- + y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
- }
- tmp += d * sum;
+template <ggml_sort_order order>
+__dpct_inline__ static void
+k_argsort_f32_i32(const float *x, int *dst, const int ncols, int ncols_pad,
+ const sycl::nd_item<3> &item_ct1, uint8_t *dpct_local) {
+ // bitonic sort
+ int col = item_ct1.get_local_id(2);
+ int row = item_ct1.get_group(1);
+ if (col >= ncols_pad) {
+ return;
}
- // sum up partial sums and write back result
-#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
+ const float * x_row = x + row * ncols;
+ auto dst_row = (int *)dpct_local;
+
+ // initialize indices
+ dst_row[col] = col;
+
+ item_ct1.barrier(sycl::access::fence_space::local_space);
+
+ for (int k = 2; k <= ncols_pad; k *= 2) {
+ for (int j = k / 2; j > 0; j /= 2) {
+ int ixj = col ^ j;
+ if (ixj > col) {
+ if ((col & k) == 0) {
+ if (dst_row[col] >= ncols ||
+ (dst_row[ixj] < ncols && (order == GGML_SORT_ORDER_ASC ?
+ x_row[dst_row[col]] > x_row[dst_row[ixj]] :
+ x_row[dst_row[col]] < x_row[dst_row[ixj]]))
+ ) {
+ ggml_sycl_swap(dst_row[col], dst_row[ixj]);
+ }
+ } else {
+ if (dst_row[ixj] >= ncols ||
+ (dst_row[col] < ncols && (order == GGML_SORT_ORDER_ASC ?
+ x_row[dst_row[col]] < x_row[dst_row[ixj]] :
+ x_row[dst_row[col]] > x_row[dst_row[ixj]]))
+ ) {
+ ggml_sycl_swap(dst_row[col], dst_row[ixj]);
+ }
+ }
+ }
+ /*
+ DPCT1118:1: SYCL group functions and algorithms must be encountered
+ in converged control flow. You may need to adjust the code.
+ */
+ item_ct1.barrier(sycl::access::fence_space::local_space);
+ }
}
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
+ // copy the result to dst without the padding
+ if (col < ncols) {
+ dst[row * ncols + col] = dst_row[col];
}
}
-/*
-DPCT1110:6: The total declared local variable size in device function
-dequantize_mul_mat_vec_q4_k exceeds 128 bytes and may cause high register
-pressure. Consult with your hardware vendor to find the total register size
-available and adjust the code, or use smaller sub-group size to avoid high
-register pressure.
-*/
-static void dequantize_mul_mat_vec_q4_k(const void *__restrict__ vx,
- const float *__restrict__ yy,
- float *__restrict__ dst,
- const int ncols, int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
+static void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past,
+ const sycl::nd_item<3> &item_ct1) {
+ const int col = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
item_ct1.get_local_id(1);
- if (row > nrows) return;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
-
- const block_q4_K * x = (const block_q4_K *)vx + ib0;
-
- const uint16_t kmask1 = 0x3f3f;
- const uint16_t kmask2 = 0x0f0f;
- const uint16_t kmask3 = 0xc0c0;
-
- const int tid =
- item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...16
- const int ix =
- item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0,1
+ const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2);
- const int step = 8/K_QUANTS_PER_ITERATION; // 8 or 4
+ if (col >= ncols) {
+ return;
+ }
- const int il = tid/step; // 0...3
- const int ir = tid - step*il; // 0...7 or 0...3
- const int n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4
+ const int i = row*ncols + col;
+ //dst[i] = col > (n_past + row % rows_per_channel) ? -INFINITY : x[i];
+ //dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
+ dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
+}
- const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
- const int in = il%2;
- const int l0 = n*(2*ir + in);
- const int q_offset = 32*im + l0;
- const int y_offset = 64*im + l0;
+template <bool vals_smem, int ncols_template, int block_size_template>
+static void soft_max_f32(const float * x, const float * mask, float * dst, const int ncols_par,
+ const int nrows_y, const float scale, const float max_bias, const float m0,
+ const float m1, uint32_t n_head_log2, const sycl::nd_item<3> &item_ct1, float *buf) {
+ const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
- uint16_t aux[4];
- const uint8_t * sc = (const uint8_t *)aux;
+ const int tid = item_ct1.get_local_id(2);
+ const int rowx = item_ct1.get_group(2);
+ const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension
-#if K_QUANTS_PER_ITERATION == 2
- uint32_t q32[4];
- const uint8_t * q4 = (const uint8_t *)q32;
-#else
- uint16_t q16[4];
- const uint8_t * q4 = (const uint8_t *)q16;
-#endif
+ const int block_size = block_size_template == 0 ? item_ct1.get_local_range(2) : block_size_template;
- float tmp = 0; // partial sum for thread in warp
+ const int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
+ const int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
+ float slope = 1.0f;
- const float * y1 = yy + i*QK_K + y_offset;
- const float * y2 = y1 + 128;
+ // ALiBi
+ if (max_bias > 0.0f) {
+ const uint32_t h = rowx/nrows_y; // head index
- const float dall = x[i].dm[0];
- const float dmin = x[i].dm[1];
+ const float base = h < n_head_log2 ? m0 : m1;
+ const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
- const uint16_t * a = (const uint16_t *)x[i].scales;
- aux[0] = a[im+0] & kmask1;
- aux[1] = a[im+2] & kmask1;
- aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
- aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
+ slope = sycl::pow(base, float(exp));
+ }
-#if K_QUANTS_PER_ITERATION == 2
- const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
- const uint32_t * q2 = q1 + 16;
+ float * vals = vals_smem ? buf + WARP_SIZE : dst + rowx*ncols;
+ float max_val = -INFINITY;
- q32[0] = q1[0] & 0x0f0f0f0f;
- q32[1] = q1[0] & 0xf0f0f0f0;
- q32[2] = q2[0] & 0x0f0f0f0f;
- q32[3] = q2[0] & 0xf0f0f0f0;
+ for (int col0 = 0; col0 < ncols; col0 += block_size) {
+ const int col = col0 + tid;
- sycl::float4 s = {0.f, 0.f, 0.f, 0.f};
- float smin = 0;
- for (int l = 0; l < 4; ++l) {
- s.x() += y1[l] * q4[l + 0]; s.y() += y1[l + 32] * q4[l + 4];
- s.z() += y2[l] * q4[l + 8]; s.w() += y2[l + 32] * q4[l + 12];
- smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
- }
- tmp += dall * (s.x() * sc[0] + s.y() * sc[1] * 1.f / 16.f +
- s.z() * sc[4] + s.w() * sc[5] * 1.f / 16.f) -
- dmin * smin;
-#else
- const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
- const uint16_t * q2 = q1 + 32;
-
- q16[0] = q1[0] & 0x0f0f;
- q16[1] = q1[0] & 0xf0f0;
- q16[2] = q2[0] & 0x0f0f;
- q16[3] = q2[0] & 0xf0f0;
-
- float4 s = {0.f, 0.f, 0.f, 0.f};
- float smin = 0;
- for (int l = 0; l < 2; ++l) {
- s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
- s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
- smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
+ if (ncols_template == 0 && col >= ncols) {
+ break;
}
- tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
-#endif
- }
+ const int ix = rowx*ncols + col;
+ const int iy = rowy*ncols + col;
- // sum up partial sums and write back result
-#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
+ const float val = x[ix]*scale + (mask ? slope*mask[iy] : 0.0f);
- if (tid == 0) {
- dst[row] = tmp;
+ vals[col] = val;
+ max_val = sycl::max(max_val, val);
}
-}
-/*
-DPCT1110:7: The total declared local variable size in device function
-dequantize_mul_mat_vec_q5_k exceeds 128 bytes and may cause high register
-pressure. Consult with your hardware vendor to find the total register size
-available and adjust the code, or use smaller sub-group size to avoid high
-register pressure.
-*/
-static void dequantize_mul_mat_vec_q5_k(const void *__restrict__ vx,
- const float *__restrict__ yy,
- float *__restrict__ dst,
- const int ncols,
- const sycl::nd_item<3> &item_ct1) {
-
- const int row = item_ct1.get_group(2);
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
-
- const block_q5_K * x = (const block_q5_K *)vx + ib0;
-
- float tmp = 0; // partial sum for thread in warp
-
- const uint16_t kmask1 = 0x3f3f;
- const uint16_t kmask2 = 0x0f0f;
- const uint16_t kmask3 = 0xc0c0;
-
- const int tid = item_ct1.get_local_id(2) / 2; // 0...15
- const int ix = item_ct1.get_local_id(2) % 2;
-
- const int il = tid/4; // 0...3
- const int ir = tid - 4*il;// 0...3
- const int n = 2;
-
- const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
- const int in = il%2;
-
- const int l0 = n*(2*ir + in);
- const int q_offset = 32*im + l0;
- const int y_offset = 64*im + l0;
-
- const uint8_t hm1 = 1 << (2*im);
- const uint8_t hm2 = hm1 << 4;
-
- uint16_t aux[4];
- const uint8_t * sc = (const uint8_t *)aux;
-
- uint16_t q16[8];
- const uint8_t * q4 = (const uint8_t *)q16;
-
- for (int i = ix; i < num_blocks_per_row; i += 2) {
-
- const uint8_t * ql1 = x[i].qs + q_offset;
- const uint8_t * qh = x[i].qh + l0;
- const float * y1 = yy + i*QK_K + y_offset;
- const float * y2 = y1 + 128;
-
- const float dall = x[i].dm[0];
- const float dmin = x[i].dm[1];
-
- const uint16_t * a = (const uint16_t *)x[i].scales;
- aux[0] = a[im+0] & kmask1;
- aux[1] = a[im+2] & kmask1;
- aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
- aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
-
- sycl::float4 sum = {0.f, 0.f, 0.f, 0.f};
- float smin = 0;
- const uint16_t * q1 = (const uint16_t *)ql1;
- const uint16_t * q2 = q1 + 32;
- q16[0] = q1[0] & 0x0f0f;
- q16[1] = q1[8] & 0x0f0f;
- q16[2] = (q1[0] >> 4) & 0x0f0f;
- q16[3] = (q1[8] >> 4) & 0x0f0f;
- q16[4] = q2[0] & 0x0f0f;
- q16[5] = q2[8] & 0x0f0f;
- q16[6] = (q2[0] >> 4) & 0x0f0f;
- q16[7] = (q2[8] >> 4) & 0x0f0f;
- for (int l = 0; l < n; ++l) {
- sum.x() +=
- y1[l + 0] * (q4[l + 0] + (qh[l + 0] & (hm1 << 0) ? 16 : 0)) +
- y1[l + 16] * (q4[l + 2] + (qh[l + 16] & (hm1 << 0) ? 16 : 0));
- sum.y() +=
- y1[l + 32] * (q4[l + 4] + (qh[l + 0] & (hm1 << 1) ? 16 : 0)) +
- y1[l + 48] * (q4[l + 6] + (qh[l + 16] & (hm1 << 1) ? 16 : 0));
- sum.z() +=
- y2[l + 0] * (q4[l + 8] + (qh[l + 0] & (hm2 << 0) ? 16 : 0)) +
- y2[l + 16] * (q4[l + 10] + (qh[l + 16] & (hm2 << 0) ? 16 : 0));
- sum.w() +=
- y2[l + 32] * (q4[l + 12] + (qh[l + 0] & (hm2 << 1) ? 16 : 0)) +
- y2[l + 48] * (q4[l + 14] + (qh[l + 16] & (hm2 << 1) ? 16 : 0));
- smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
- + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
+ // find the max value in the block
+ max_val = warp_reduce_max(max_val, item_ct1);
+ if (block_size > WARP_SIZE) {
+ if (warp_id == 0) {
+ buf[lane_id] = -INFINITY;
}
- tmp += dall * (sum.x() * sc[0] + sum.y() * sc[1] + sum.z() * sc[4] +
- sum.w() * sc[5]) -
- dmin * smin;
- }
+ item_ct1.barrier(sycl::access::fence_space::local_space);
- // sum up partial sums and write back result
-#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
+ if (lane_id == 0) {
+ buf[warp_id] = max_val;
+ }
+ item_ct1.barrier(sycl::access::fence_space::local_space);
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
+ max_val = buf[lane_id];
+ max_val = warp_reduce_max(max_val, item_ct1);
}
-}
-
-static void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows,
- const sycl::nd_item<3> &item_ct1) {
- static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
-
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row > nrows) return;
-
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
-
- const block_q6_K * x = (const block_q6_K *)vx + ib0;
+ float tmp = 0.f;
- const int tid =
- item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...16
- const int ix =
- item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0, 1
+#pragma unroll
+ for (int col0 = 0; col0 < ncols; col0 += block_size) {
+ const int col = col0 + tid;
+ if (ncols_template == 0 && col >= ncols) {
+ break;
+ }
- const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
+ const float val = sycl::native::exp(vals[col] - max_val);
+ tmp += val;
+ vals[col] = val;
+ }
- const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
- const int in = tid - step*im; // 0...15 or 0...7
+ // find the sum of exps in the block
+ tmp = warp_reduce_sum(tmp, item_ct1);
+ if (block_size > WARP_SIZE) {
+ item_ct1.barrier(sycl::access::fence_space::local_space);
+ if (warp_id == 0) {
+ buf[lane_id] = 0.f;
+ }
+ item_ct1.barrier(sycl::access::fence_space::local_space);
-#if K_QUANTS_PER_ITERATION == 1
- const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15
- const int is = 0;
-#else
- const int l0 = 4 * in; // 0, 4, 8, ..., 28
- const int is = in / 4;
-#endif
- const int ql_offset = 64*im + l0;
- const int qh_offset = 32*im + l0;
- const int s_offset = 8*im + is;
- const int y_offset = 128*im + l0;
-
- float tmp = 0; // partial sum for thread in warp
-
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
-
- const float * y = yy + i * QK_K + y_offset;
- const uint8_t * ql = x[i].ql + ql_offset;
- const uint8_t * qh = x[i].qh + qh_offset;
- const int8_t * s = x[i].scales + s_offset;
-
- const float d = x[i].d;
-
-#if K_QUANTS_PER_ITERATION == 1
- float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
- + y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
- + y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
- + y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
- + y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
- + y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
- + y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
- +y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
- tmp += sum;
-#else
- float sum = 0;
- for (int l = 0; l < 4; ++l) {
- sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
- + y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
- + y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
- + y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
+ if (lane_id == 0) {
+ buf[warp_id] = tmp;
}
- tmp += sum;
-#endif
+ item_ct1.barrier(sycl::access::fence_space::local_space);
+ tmp = buf[lane_id];
+ tmp = warp_reduce_sum(tmp, item_ct1);
}
- // sum up partial sums and write back result
+ const float inv_sum = 1.f / tmp;
+
#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
+ for (int col0 = 0; col0 < ncols; col0 += block_size) {
+ const int col = col0 + tid;
+
+ if (ncols_template == 0 && col >= ncols) {
+ return;
+ }
- if (tid == 0) {
- dst[row] = tmp;
+ const int idst = rowx*ncols + col;
+ dst[idst] = vals[col] * inv_sum;
}
}
-static void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const sycl::half *x = (const sycl::half *)vx;
-
- // automatic half -> float type cast if dfloat == float
- v.x() = x[ib + iqs + 0];
- v.y() = x[ib + iqs + 1];
-}
+static void scale_f32(const float * x, float * dst, const float scale, const int k,
+ const sycl::nd_item<3> &item_ct1) {
+ const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2);
-static void convert_f32(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const float * x = (const float *) vx;
+ if (i >= k) {
+ return;
+ }
- // automatic half -> float type cast if dfloat == float
- v.x() = x[ib + iqs + 0];
- v.y() = x[ib + iqs + 1];
+ dst[i] = scale * x[i];
}
-static void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded,
- const sycl::nd_item<3> &item_ct1) {
- const int ix = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
+static void clamp_f32(const float * x, float * dst, const float min, const float max, const int k,
+ const sycl::nd_item<3> &item_ct1) {
+ const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2);
- if (ix >= kx_padded) {
+ if (i >= k) {
return;
}
- const int iy = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1);
+ dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
+}
- const int i_padded = iy*kx_padded + ix;
+template <typename T>
+static void im2col_kernel(const float *x, T *dst, int offset_delta,
+ int IW, int IH, int OW, int KW, int KH,
+ int pelements, int CHW, int s0, int s1, int p0,
+ int p1, int d0, int d1,
+ const sycl::nd_item<3> &item_ct1) {
+ const int i = item_ct1.get_local_id(2) +
+ item_ct1.get_group(2) * item_ct1.get_local_range(2);
+ if (i >= pelements) {
+ return;
+ }
- block_q8_1 * y = (block_q8_1 *) vy;
+ const int ksize = OW * (KH > 1 ? KW : 1);
+ const int kx = i / ksize;
+ const int kd = kx * ksize;
+ const int ky = (i - kd) / OW;
+ const int ix = i % OW;
- const int ib = i_padded / QK8_1; // block index
- const int iqs = i_padded % QK8_1; // quant index
+ const int64_t iiw = ix * s0 + kx * d0 - p0;
+ const int64_t iih = item_ct1.get_group(1) * s1 + ky * d1 - p1;
- const float xi = ix < kx ? x[iy*kx + ix] : 0.0f;
- float amax = sycl::fabs((float)xi);
- float sum = xi;
+ const int64_t offset_dst =
+ (item_ct1.get_group(1) * OW + ix) * CHW +
+ (item_ct1.get_group(0) * (KW * KH) + ky * KW + kx);
-#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- amax = sycl::fmax(amax, dpct::permute_sub_group_by_xor(
- item_ct1.get_sub_group(), amax, mask));
- sum +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), sum, mask);
- }
-
- const float d = amax / 127;
- const int8_t q = amax == 0.0f ? 0 : sycl::round(xi / d);
-
- y[ib].qs[iqs] = q;
-
- if (iqs > 0) {
- return;
+ if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
+ dst[offset_dst] =
+ sycl::vec<float, 1>(0.0f)
+ .convert<sycl::half, sycl::rounding_mode::automatic>()[0];
+ } else {
+ const int64_t offset_src = item_ct1.get_group(0) * offset_delta;
+ dst[offset_dst] =
+ sycl::vec<float, 1>(x[offset_src + iih * IW + iiw])
+ .convert<sycl::half, sycl::rounding_mode::automatic>()[0];
}
-
- reinterpret_cast<sycl::half &>(y[ib].ds.x()) = d;
- reinterpret_cast<sycl::half &>(y[ib].ds.y()) = sum;
}
-template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
-static void k_get_rows(
- const void * src0, const int32_t * src1, dst_t * dst,
- int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
- /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
- /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
- /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
- size_t s10, size_t s11, size_t s12,
- const sycl::nd_item<3> &item_ct1/*, size_t s13*/) {
-
- const int i00 = (item_ct1.get_group(2) * item_ct1.get_local_range(2) +
- item_ct1.get_local_id(2)) *
- 2;
- const int i10 = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1);
- const int i11 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
- item_ct1.get_local_id(0)) /
- ne12;
- const int i12 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
- item_ct1.get_local_id(0)) %
- ne12;
-
- if (i00 >= ne00) {
- return;
- }
-
- const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
+template <typename Ti, typename To>
+static void pool2d_nchw_kernel(
+ const int ih, const int iw, const int oh, const int ow,
+ const int kh, const int kw, const int sh, const int sw,
+ const int ph, const int pw, const int parallel_elements,
+ const Ti* src, To* dst, const enum ggml_op_pool op,
+ const sycl::nd_item<3> &item_ct1) {
+ int idx = item_ct1.get_local_id(2) +
+ item_ct1.get_group(2) * item_ct1.get_local_range(2);
+ if (idx >= parallel_elements) {
+ return;
+ }
- dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
- const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
+ const int I_HW = ih * iw;
+ const int O_HW = oh * ow;
+ const int nc = idx / O_HW;
+ const int cur_oh = idx % O_HW / ow;
+ const int cur_ow = idx % O_HW % ow;
+ const Ti* i_ptr = src + nc * I_HW;
+ To* o_ptr = dst + nc * O_HW;
+ const int start_h = cur_oh * sh - ph;
+ const int bh = sycl::max(0, start_h);
+ const int eh = sycl::min(ih, start_h + kh);
+ const int start_w = cur_ow * sw - pw;
+ const int bw = sycl::max(0, start_w);
+ const int ew = sycl::min(iw, start_w + kw);
- const int ib = i00/qk; // block index
- const int iqs = (i00%qk)/qr; // quant index
- const int iybs = i00 - i00%qk; // dst block start index
- const int y_offset = qr == 1 ? 1 : qk/2;
+ To res = 0;
- // dequantize
- dfloat2 v;
- dequantize_kernel(src0_row, ib, iqs, v);
+ switch (op) {
+ case GGML_OP_POOL_AVG: res = 0; break;
+ case GGML_OP_POOL_MAX: res = -FLT_MAX; break;
+ }
- dst_row[iybs + iqs + 0] = v.x();
- dst_row[iybs + iqs + y_offset] = v.y();
+ for (int i = bh; i < eh; i += 1) {
+ for (int j = bw; j < ew; j += 1) {
+#if DPCT_COMPATIBILITY_TEMP >= 350
+ /*
+ DPCT1098:106: The '*' expression is used instead of the __ldg
+ call. These two expressions do not provide the exact same
+ functionality. Check the generated code for potential precision
+ and/or performance issues.
+ */
+ Ti cur = *(i_ptr + i * iw + j);
+#else
+ Ti cur = i_ptr[i * iw + j];
+#endif
+ switch (op) {
+ case GGML_OP_POOL_AVG: res += (cur / (kh * kw)); break;
+ case GGML_OP_POOL_MAX: res = sycl::max(res, (To)cur); break;
+ }
+ }
+ }
+ o_ptr[cur_oh * ow + cur_ow] = res;
}
-template<typename src0_t, typename dst_t>
-static void k_get_rows_float(
- const src0_t * src0, const int32_t * src1, dst_t * dst,
- int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
- /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
- /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
- /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
- size_t s10, size_t s11, size_t s12,
- const sycl::nd_item<3> &item_ct1/*, size_t s13*/) {
-
- const int i00 = item_ct1.get_group(2) * item_ct1.get_local_range(2) +
- item_ct1.get_local_id(2);
- const int i10 = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1);
- const int i11 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
- item_ct1.get_local_id(0)) /
- ne12;
- const int i12 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
- item_ct1.get_local_id(0)) %
- ne12;
-
- if (i00 >= ne00) {
- return;
- }
-
- const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
+template <int qk, int qr, dequantize_kernel_t dq>
+static void get_rows_sycl(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
+ ggml_tensor *dst, const void *src0_dd,
+ const int32_t *src1_dd, float *dst_dd,
+ queue_ptr stream) {
- dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
- const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
+ GGML_TENSOR_BINARY_OP_LOCALS
- dst_row[i00] = src0_row[i00];
-}
+ const sycl::range<3> block_dims(1, 1, SYCL_GET_ROWS_BLOCK_SIZE);
+ const int block_num_x = (ne00 + 2*SYCL_GET_ROWS_BLOCK_SIZE - 1) / (2*SYCL_GET_ROWS_BLOCK_SIZE);
+ const sycl::range<3> block_nums(ne11 * ne12, ne10, block_num_x);
-template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
-static void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int k,
- const sycl::nd_item<3> &item_ct1) {
- const int i = 2 * (item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2));
+ // strides in elements
+ //const size_t s0 = nb0 / ggml_element_size(dst);
+ const size_t s1 = nb1 / ggml_element_size(dst);
+ const size_t s2 = nb2 / ggml_element_size(dst);
+ const size_t s3 = nb3 / ggml_element_size(dst);
- if (i >= k) {
- return;
- }
+ const size_t s10 = nb10 / ggml_element_size(src1);
+ const size_t s11 = nb11 / ggml_element_size(src1);
+ const size_t s12 = nb12 / ggml_element_size(src1);
+ //const size_t s13 = nb13 / ggml_element_size(src1);
- const int ib = i/qk; // block index
- const int iqs = (i%qk)/qr; // quant index
- const int iybs = i - i%qk; // y block start index
- const int y_offset = qr == 1 ? 1 : qk/2;
+ GGML_ASSERT(ne00 % 2 == 0);
- // dequantize
- dfloat2 v;
- dequantize_kernel(vx, ib, iqs, v);
+ stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ k_get_rows<qk, qr, dq>(
+ src0_dd, src1_dd, dst_dd, ne00, ne12, s1, s2,
+ s3, nb01, nb02, nb03, s10, s11, s12, item_ct1);
+ });
- y[iybs + iqs + 0] = v.x();
- y[iybs + iqs + y_offset] = v.y();
+ (void) dst;
}
-template <typename src_t, typename dst_t>
-static void convert_unary(const void * __restrict__ vx, dst_t * __restrict__ y, const int k,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
-
- if (i >= k) {
- return;
- }
+template <typename src0_t>
+static void get_rows_sycl_float(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
+ const ggml_tensor *src1, ggml_tensor *dst,
+ const src0_t *src0_dd, const int32_t *src1_dd,
+ float *dst_dd, queue_ptr stream) {
- const src_t * x = (src_t *) vx;
+ GGML_TENSOR_BINARY_OP_LOCALS
- y[i] = x[i];
-}
+ const sycl::range<3> block_dims(1, 1, SYCL_GET_ROWS_BLOCK_SIZE);
+ const int block_num_x = (ne00 + SYCL_GET_ROWS_BLOCK_SIZE - 1) / SYCL_GET_ROWS_BLOCK_SIZE;
+ const sycl::range<3> block_nums(ne11 * ne12, ne10, block_num_x);
-// VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called
-// MMVQ = mul_mat_vec_q, MMQ = mul_mat_q
+ // strides in elements
+ //const size_t s0 = nb0 / ggml_element_size(dst);
+ const size_t s1 = nb1 / ggml_element_size(dst);
+ const size_t s2 = nb2 / ggml_element_size(dst);
+ const size_t s3 = nb3 / ggml_element_size(dst);
-#define VDR_Q4_0_Q8_1_MMVQ 2
-#define VDR_Q4_0_Q8_1_MMQ 4
+ const size_t s10 = nb10 / ggml_element_size(src1);
+ const size_t s11 = nb11 / ggml_element_size(src1);
+ const size_t s12 = nb12 / ggml_element_size(src1);
+ //const size_t s13 = nb13 / ggml_element_size(src1);
-template <int vdr>
-static __dpct_inline__ float vec_dot_q4_0_q8_1_impl(const int *v, const int *u,
- const float &d4,
- const sycl::half2 &ds8) {
- int sumi = 0;
-#pragma unroll
- for (int i = 0; i < vdr; ++i) {
- const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
- const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
- // SIMD dot product of quantized values
- sumi = dpct::dp4a(vi0, u[2 * i + 0], sumi);
- sumi = dpct::dp4a(vi1, u[2 * i + 1], sumi);
+ stream->parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ k_get_rows_float(src0_dd, src1_dd, dst_dd, ne00, ne12, s1, s2,
+ s3, nb01, nb02, nb03, s10, s11, s12, item_ct1);
+ });
}
- const sycl::float2 ds8f =
- ds8.convert<float, sycl::rounding_mode::automatic>();
-
- // second part effectively subtracts 8 from each quant value
- return d4 * (sumi * ds8f.x() - (8 * vdr / QI4_0) * ds8f.y());
+ (void) dst;
}
-#define VDR_Q4_1_Q8_1_MMVQ 2
-#define VDR_Q4_1_Q8_1_MMQ 4
-
-template <int vdr>
-static __dpct_inline__ float vec_dot_q4_1_q8_1_impl(const int *v, const int *u,
- const sycl::half2 &dm4,
- const sycl::half2 &ds8) {
-
- int sumi = 0;
-
-#pragma unroll
- for (int i = 0; i < vdr; ++i) {
- const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
- const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
-
- // SIMD dot product of quantized values
- sumi = dpct::dp4a(vi0, u[2 * i + 0], sumi);
- sumi = dpct::dp4a(vi1, u[2 * i + 1], sumi);
- }
-
-#ifdef GGML_SYCL_F16
- const sycl::float2 tmp =
- (dm4 * ds8).convert<float, sycl::rounding_mode::automatic>();
- const float d4d8 = tmp.x();
- const float m4s8 = tmp.y();
-#else
- const sycl::float2 dm4f =
- dm4.convert<float, sycl::rounding_mode::automatic>();
- const sycl::float2 ds8f =
- ds8.convert<float, sycl::rounding_mode::automatic>();
- const float d4d8 = dm4f.x() * ds8f.x();
- const float m4s8 = dm4f.y() * ds8f.y();
-#endif // GGML_SYCL_F16
-
- // scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it
- return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1));
-}
+template<float (*bin_op)(const float, const float)>
+struct bin_bcast_sycl {
+ template <typename src0_t, typename src1_t, typename dst_t>
+ void operator()(ggml_backend_sycl_context & ctx,
+ const struct ggml_tensor *src0,
+ const struct ggml_tensor *src1, struct ggml_tensor *dst,
+ const src0_t *src0_dd, const src1_t *src1_dd, dst_t *dst_dd,
+ queue_ptr stream) {
-#define VDR_Q5_0_Q8_1_MMVQ 2
-#define VDR_Q5_0_Q8_1_MMQ 4
+ GGML_TENSOR_BINARY_OP_LOCALS
-template <int vdr>
-static __dpct_inline__ float
-vec_dot_q5_0_q8_1_impl(const int *vl, const int *vh, const int *u,
- const float &d5, const sycl::half2 &ds8) {
- int sumi = 0;
+ int nr0 = ne10/ne0;
+ int nr1 = ne11/ne1;
+ int nr2 = ne12/ne2;
+ int nr3 = ne13/ne3;
-#pragma unroll
- for (int i = 0; i < vdr; ++i) {
- int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
- vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
- vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
- vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
- vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
- sumi = dpct::dp4a(vi0, u[2 * i + 0],
- sumi); // SIMD dot product of quantized values
+ int nr[4] = { nr0, nr1, nr2, nr3 };
- int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
- vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
- vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
- vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
- vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
- sumi = dpct::dp4a(vi1, u[2 * i + 1],
- sumi); // SIMD dot product of quantized values
- }
+ // collapse dimensions until first broadcast dimension
+ int64_t cne0[] = {ne0, ne1, ne2, ne3};
+ int64_t cne1[] = {ne10, ne11, ne12, ne13};
+ size_t cnb0[] = {nb0, nb1, nb2, nb3};
+ size_t cnb1[] = {nb10, nb11, nb12, nb13};
+ auto collapse = [](int64_t cne[]) {
+ cne[0] *= cne[1];
+ cne[1] = cne[2];
+ cne[2] = cne[3];
+ cne[3] = 1;
+ };
- const sycl::float2 ds8f =
- ds8.convert<float, sycl::rounding_mode::automatic>();
+ auto collapse_nb = [](size_t cnb[], int64_t cne[]) {
+ cnb[1] *= cne[1];
+ cnb[2] *= cne[2];
+ cnb[3] *= cne[3];
+ };
- // second part effectively subtracts 16 from each quant value
- return d5 * (sumi * ds8f.x() - (16 * vdr / QI5_0) * ds8f.y());
-}
-
-#define VDR_Q5_1_Q8_1_MMVQ 2
-#define VDR_Q5_1_Q8_1_MMQ 4
-
-template <int vdr>
-static __dpct_inline__ float
-vec_dot_q5_1_q8_1_impl(const int *vl, const int *vh, const int *u,
- const sycl::half2 &dm5, const sycl::half2 &ds8) {
-
- int sumi = 0;
-
-#pragma unroll
- for (int i = 0; i < vdr; ++i) {
- int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
- vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
- vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
- vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
- vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
- sumi = dpct::dp4a(vi0, u[2 * i + 0],
- sumi); // SIMD dot product of quantized values
-
- int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
- vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
- vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
- vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
- vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
- sumi = dpct::dp4a(vi1, u[2 * i + 1],
- sumi); // SIMD dot product of quantized values
- }
-
-#ifdef GGML_SYCL_F16
- const sycl::float2 tmp =
- (dm5 * ds8).convert<float, sycl::rounding_mode::automatic>();
- const float d5d8 = tmp.x();
- const float m5s8 = tmp.y();
-
-
-#else
- const sycl::float2 dm5f =
- dm5.convert<float, sycl::rounding_mode::automatic>();
- const sycl::float2 ds8f =
- ds8.convert<float, sycl::rounding_mode::automatic>();
- const float d5d8 = dm5f.x() * ds8f.x();
- const float m5s8 = dm5f.y() * ds8f.y();
-#endif // GGML_SYCL_F16
-
- // scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it
- return sumi*d5d8 + m5s8 / (QI5_1 / vdr);
-}
-
-#define VDR_Q8_0_Q8_1_MMVQ 2
-#define VDR_Q8_0_Q8_1_MMQ 8
-
-template <int vdr>
-static __dpct_inline__ float vec_dot_q8_0_q8_1_impl(const int *v, const int *u,
- const float &d8_0,
- const float &d8_1) {
-
- int sumi = 0;
-
-#pragma unroll
- for (int i = 0; i < vdr; ++i) {
- // SIMD dot product of quantized values
- sumi = dpct::dp4a(v[i], u[i], sumi);
- }
-
- return d8_0*d8_1 * sumi;
-}
-
-template <int vdr>
-static __dpct_inline__ float vec_dot_q8_1_q8_1_impl(const int *v, const int *u,
- const sycl::half2 &dm8,
- const sycl::half2 &ds8) {
-
- int sumi = 0;
-
-#pragma unroll
- for (int i = 0; i < vdr; ++i) {
- // SIMD dot product of quantized values
- sumi = dpct::dp4a(v[i], u[i], sumi);
- }
-
-#ifdef GGML_SYCL_F16
- const sycl::float2 tmp =
- (dm8 * ds8).convert<float, sycl::rounding_mode::automatic>();
- const float d8d8 = tmp.x();
- const float m8s8 = tmp.y();
-#else
- const sycl::float2 dm8f =
- dm8.convert<float, sycl::rounding_mode::automatic>();
- const sycl::float2 ds8f =
- ds8.convert<float, sycl::rounding_mode::automatic>();
- const float d8d8 = dm8f.x() * ds8f.x();
- const float m8s8 = dm8f.y() * ds8f.y();
-#endif // GGML_SYCL_F16
-
- // scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it
- return sumi*d8d8 + m8s8 / (QI8_1 / vdr);
-}
-
-#define VDR_Q2_K_Q8_1_MMVQ 1
-#define VDR_Q2_K_Q8_1_MMQ 2
-
-// contiguous v/x values
-static __dpct_inline__ float vec_dot_q2_K_q8_1_impl_mmvq(
- const int &v, const int *__restrict__ u, const uint8_t *__restrict__ scales,
- const sycl::half2 &dm2, const float *__restrict__ d8) {
-
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
-
-#pragma unroll
- for (int i = 0; i < QR2_K; ++i) {
- const int sc = scales[2*i];
-
- const int vi = (v >> (2*i)) & 0x03030303;
-
- sumf_d +=
- d8[i] * (dpct::dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product
-
- // fill int with 4x m
- int m = sc >> 4;
- m |= m << 8;
- m |= m << 16;
- sumf_m += d8[i] *
- dpct::dp4a(
- m, u[i],
- 0); // multiply constant q2_K part with sum of q8_1 values
- }
-
- const sycl::float2 dm2f =
- dm2.convert<float, sycl::rounding_mode::automatic>();
-
- return dm2f.x() * sumf_d - dm2f.y() * sumf_m;
-}
-
-// contiguous u/y values
-static __dpct_inline__ float
-vec_dot_q2_K_q8_1_impl_mmq(const int *__restrict__ v, const int *__restrict__ u,
- const uint8_t *__restrict__ scales,
- const sycl::half2 &dm2, const float &d8) {
-
- int sumi_d = 0;
- int sumi_m = 0;
-
-#pragma unroll
- for (int i0 = 0; i0 < QI8_1; i0 += QI8_1/2) {
- int sumi_d_sc = 0;
-
- const int sc = scales[i0 / (QI8_1/2)];
-
- // fill int with 4x m
- int m = sc >> 4;
- m |= m << 8;
- m |= m << 16;
-
-#pragma unroll
- for (int i = i0; i < i0 + QI8_1/2; ++i) {
- sumi_d_sc = dpct::dp4a(v[i], u[i], sumi_d_sc); // SIMD dot product
- sumi_m = dpct::dp4a(m, u[i],
- sumi_m); // multiply sum of q8_1 values with m
- }
-
- sumi_d += sumi_d_sc * (sc & 0xF);
- }
-
- const sycl::float2 dm2f =
- dm2.convert<float, sycl::rounding_mode::automatic>();
-
- return d8 * (dm2f.x() * sumi_d - dm2f.y() * sumi_m);
-}
-
-#define VDR_Q3_K_Q8_1_MMVQ 1
-#define VDR_Q3_K_Q8_1_MMQ 2
-
-// contiguous v/x values
-static __dpct_inline__ float vec_dot_q3_K_q8_1_impl_mmvq(
- const int &vl, const int &vh, const int *__restrict__ u,
- const uint8_t *__restrict__ scales, const int &scale_offset,
- const float &d3, const float *__restrict__ d8) {
-
- float sumf = 0.0f;
-
-#pragma unroll
- for (int i = 0; i < QR3_K; ++i) {
- const int isc = scale_offset + 2*i;
-
- const int isc_low = isc % (QK_K/32);
- const int sc_shift_low = 4 * (isc / (QK_K/32));
- const int sc_low = (scales[isc_low] >> sc_shift_low) & 0xF;
-
- const int isc_high = isc % (QK_K/64);
- const int sc_shift_high = 2 * (isc / (QK_K/64));
- const int sc_high = ((scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4;
-
- const int sc = (sc_low | sc_high) - 32;
-
- const int vil = (vl >> (2*i)) & 0x03030303;
-
- const int vih = ((vh >> i) << 2) & 0x04040404;
-
- const int vi =
- dpct::vectorized_binary<sycl::char4>(vil, vih, dpct::sub_sat());
-
- sumf += d8[i] * (dpct::dp4a(vi, u[i], 0) * sc); // SIMD dot product
- }
-
- return d3 * sumf;
-}
-
-// contiguous u/y values
-static __dpct_inline__ float
-vec_dot_q3_K_q8_1_impl_mmq(const int *__restrict__ v, const int *__restrict__ u,
- const int8_t *__restrict__ scales, const float &d3,
- const float &d8) {
-
- int sumi = 0;
-
-#pragma unroll
- for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) {
- int sumi_sc = 0;
-
- for (int i = i0; i < i0 + QI8_1/2; ++i) {
- sumi_sc = dpct::dp4a(v[i], u[i], sumi_sc); // SIMD dot product
- }
-
- sumi += sumi_sc * scales[i0 / (QI8_1/2)];
- }
-
- return d3*d8 * sumi;
-}
-
-#define VDR_Q4_K_Q8_1_MMVQ 2
-#define VDR_Q4_K_Q8_1_MMQ 8
-
-// contiguous v/x values
-static __dpct_inline__ float vec_dot_q4_K_q8_1_impl_vmmq(
- const int *__restrict__ v, const int *__restrict__ u,
- const uint8_t *__restrict__ sc, const uint8_t *__restrict__ m,
- const sycl::half2 &dm4, const float *__restrict__ d8) {
-
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
-
-#pragma unroll
- for (int i = 0; i < QR4_K; ++i) {
- const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F;
- const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F;
-
- const int dot1 =
- dpct::dp4a(v1i, u[2 * i + 1],
- dpct::dp4a(v0i, u[2 * i + 0], 0)); // SIMD dot product
- const int dot2 =
- dpct::dp4a(0x01010101, u[2 * i + 1],
- dpct::dp4a(0x01010101, u[2 * i + 0], 0)); // sum of u
-
- sumf_d += d8[i] * (dot1 * sc[i]);
- sumf_m += d8[i] * (dot2 * m[i]); // multiply constant part of q4_K with sum of q8_1 values
- }
-
- const sycl::float2 dm4f =
- dm4.convert<float, sycl::rounding_mode::automatic>();
-
- return dm4f.x() * sumf_d - dm4f.y() * sumf_m;
-}
-
-// contiguous u/y values
-static __dpct_inline__ float vec_dot_q4_K_q8_1_impl_mmq(
- const int *__restrict__ v, const int *__restrict__ u,
- const uint8_t *__restrict__ sc, const uint8_t *__restrict__ m,
- const sycl::half2 &dm4, const sycl::half2 *__restrict__ ds8) {
-
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
-
-#pragma unroll
- for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) {
- int sumi_d = 0;
-
-#pragma unroll
- for (int j = 0; j < QI8_1; ++j) {
- sumi_d = dpct::dp4a((v[j] >> (4 * i)) & 0x0F0F0F0F,
- u[i * QI8_1 + j], sumi_d); // SIMD dot product
- }
-
- const sycl::float2 ds8f =
- ds8[i].convert<float, sycl::rounding_mode::automatic>();
-
- sumf_d += ds8f.x() * (sc[i] * sumi_d);
- sumf_m += ds8f.y() * m[i]; // sum of q8_1 block * q4_K min val
- }
-
- const sycl::float2 dm4f =
- dm4.convert<float, sycl::rounding_mode::automatic>();
-
- return dm4f.x() * sumf_d - dm4f.y() * sumf_m;
-}
-
-#define VDR_Q5_K_Q8_1_MMVQ 2
-#define VDR_Q5_K_Q8_1_MMQ 8
-
-// contiguous v/x values
-static __dpct_inline__ float vec_dot_q5_K_q8_1_impl_vmmq(
- const int *__restrict__ vl, const int *__restrict__ vh,
- const int *__restrict__ u, const uint8_t *__restrict__ sc,
- const uint8_t *__restrict__ m, const sycl::half2 &dm5,
- const float *__restrict__ d8) {
-
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
-
-#pragma unroll
- for (int i = 0; i < QR5_K; ++i) {
- const int vl0i = (vl[0] >> (4*i)) & 0x0F0F0F0F;
- const int vl1i = (vl[1] >> (4*i)) & 0x0F0F0F0F;
-
- const int vh0i = ((vh[0] >> i) << 4) & 0x10101010;
- const int vh1i = ((vh[1] >> i) << 4) & 0x10101010;
-
- const int v0i = vl0i | vh0i;
- const int v1i = vl1i | vh1i;
-
- const int dot1 =
- dpct::dp4a(v0i, u[2 * i + 0],
- dpct::dp4a(v1i, u[2 * i + 1], 0)); // SIMD dot product
- const int dot2 =
- dpct::dp4a(0x01010101, u[2 * i + 0],
- dpct::dp4a(0x01010101, u[2 * i + 1], 0)); // sum of u
-
- sumf_d += d8[i] * (dot1 * sc[i]);
- sumf_m += d8[i] * (dot2 * m[i]);
-
- }
-
- const sycl::float2 dm5f =
- dm5.convert<float, sycl::rounding_mode::automatic>();
-
- return dm5f.x() * sumf_d - dm5f.y() * sumf_m;
-}
-
-// contiguous u/y values
-static __dpct_inline__ float vec_dot_q5_K_q8_1_impl_mmq(
- const int *__restrict__ v, const int *__restrict__ u,
- const uint8_t *__restrict__ sc, const uint8_t *__restrict__ m,
- const sycl::half2 &dm4, const sycl::half2 *__restrict__ ds8) {
-
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
-
-#pragma unroll
- for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) {
- int sumi_d = 0;
-
-#pragma unroll
- for (int j = 0; j < QI8_1; ++j) {
- sumi_d = dpct::dp4a(v[i * QI8_1 + j], u[i * QI8_1 + j],
- sumi_d); // SIMD dot product
- }
-
- const sycl::float2 ds8f =
- ds8[i].convert<float, sycl::rounding_mode::automatic>();
-
- sumf_d += ds8f.x() * (sc[i] * sumi_d);
- sumf_m += ds8f.y() * m[i]; // sum of q8_1 block * q4_K min val
- }
-
- const sycl::float2 dm4f =
- dm4.convert<float, sycl::rounding_mode::automatic>();
-
- return dm4f.x() * sumf_d - dm4f.y() * sumf_m;
-}
-
-#define VDR_Q6_K_Q8_1_MMVQ 1
-#define VDR_Q6_K_Q8_1_MMQ 8
-
-// contiguous v/x values
-static __dpct_inline__ float
-vec_dot_q6_K_q8_1_impl_mmvq(const int &vl, const int &vh,
- const int *__restrict__ u,
- const int8_t *__restrict__ scales, const float &d,
- const float *__restrict__ d8) {
-
- float sumf = 0.0f;
-
-#pragma unroll
- for (int i = 0; i < QR6_K; ++i) {
- const int sc = scales[4*i];
-
- const int vil = (vl >> (4*i)) & 0x0F0F0F0F;
-
- const int vih = ((vh >> (4*i)) << 4) & 0x30303030;
-
- const int vi = dpct::vectorized_binary<sycl::char4>(
- (vil | vih), 0x20202020, dpct::sub_sat()); // vi = (vil | vih) - 32
-
- sumf += d8[i] * (dpct::dp4a(vi, u[i], 0) * sc); // SIMD dot product
- }
-
- return d*sumf;
-}
-
-// contiguous u/y values
-static __dpct_inline__ float
-vec_dot_q6_K_q8_1_impl_mmq(const int *__restrict__ v, const int *__restrict__ u,
- const int8_t *__restrict__ sc, const float &d6,
- const float *__restrict__ d8) {
-
- float sumf_d = 0.0f;
-
-#pragma unroll
- for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) {
- sycl::int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale
-
-#pragma unroll
- for (int i = i0; i < i0 + 2; ++i) {
- sumi_d.x() = dpct::dp4a(v[2 * i + 0], u[2 * i + 0],
- sumi_d.x()); // SIMD dot product
- sumi_d.x() = dpct::dp4a(v[2 * i + 1], u[2 * i + 1],
- sumi_d.x()); // SIMD dot product
-
- sumi_d.y() = dpct::dp4a(v[2 * i + 4], u[2 * i + 4],
- sumi_d.y()); // SIMD dot product
- sumi_d.y() = dpct::dp4a(v[2 * i + 5], u[2 * i + 5],
- sumi_d.y()); // SIMD dot product
- }
-
- sumf_d += d8[i0 / 4] *
- (sc[i0 / 2 + 0] * sumi_d.x() + sc[i0 / 2 + 1] * sumi_d.y());
- }
-
- return d6 * sumf_d;
-}
-
-static __dpct_inline__ float
-vec_dot_q4_0_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
-
- const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq;
-
- int v[VDR_Q4_0_Q8_1_MMVQ];
- int u[2*VDR_Q4_0_Q8_1_MMVQ];
-
-#pragma unroll
- for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) {
- v[i] = get_int_from_uint8(bq4_0->qs, iqs + i);
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_0);
- }
-
- return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMVQ>(v, u, bq4_0->d, bq8_1->ds);
-}
-
-template <int mmq_y>
-static __dpct_inline__ void
-allocate_tiles_q4_0(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
- int *tile_x_qs_q4_0, float *tile_x_d_q4_0) {
- (void)x_qh; (void)x_sc;
-
- *x_ql = tile_x_qs_q4_0;
- *x_dm = (sycl::half2 *)tile_x_d_q4_0;
-}
-
-template <int mmq_y, int nwarps, bool need_check>
-static __dpct_inline__ void
-load_tiles_q4_0(const void *__restrict__ vx, int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset, const int &i_max,
- const int &k, const int &blocks_per_row) {
- (void)x_qh; (void)x_sc;
- GGML_SYCL_ASSUME(i_offset >= 0);
- GGML_SYCL_ASSUME(i_offset < nwarps);
- GGML_SYCL_ASSUME(k >= 0);
- GGML_SYCL_ASSUME(k < WARP_SIZE);
-
- const int kbx = k / QI4_0;
- const int kqsx = k % QI4_0;
-
- const block_q4_0 * bx0 = (const block_q4_0 *) vx;
-
- float * x_dmf = (float *) x_dm;
-
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
-
- if (need_check) {
- i = sycl::min(i, i_max);
- }
-
- const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbx;
-
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
- // x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbx] = bxi->d;
- }
-
- const int blocks_per_tile_x_row = WARP_SIZE / QI4_0;
- const int kbxd = k % blocks_per_tile_x_row;
-
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) {
- int i = i0 + i_offset * QI4_0 + k / blocks_per_tile_x_row;
-
- if (need_check) {
- i = sycl::min(i, i_max);
- }
-
- const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbxd;
-
- x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbxd] = bxi->d;
- }
-}
-
-static __dpct_inline__ float vec_dot_q4_0_q8_1_mul_mat(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
- const int &i, const int &j, const int &k) {
- (void)x_qh; (void)x_sc;
-
- const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
- const float * x_dmf = (const float *) x_dm;
-
- int u[2*VDR_Q4_0_Q8_1_MMQ];
-
-#pragma unroll
- for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) {
- u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
- u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_0) % WARP_SIZE];
- }
-
- return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ>
- (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dmf[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k/QI4_0],
- y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
-}
-
-static __dpct_inline__ float
-vec_dot_q4_1_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
-
- const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq;
-
- int v[VDR_Q4_1_Q8_1_MMVQ];
- int u[2*VDR_Q4_1_Q8_1_MMVQ];
-
-#pragma unroll
- for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) {
- v[i] = get_int_from_uint8_aligned(bq4_1->qs, iqs + i);
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_1);
- }
-
- return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMVQ>(v, u, bq4_1->dm, bq8_1->ds);
-}
-
-template <int mmq_y>
-static __dpct_inline__ void
-allocate_tiles_q4_1(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
- int *tile_x_qs_q4_1, sycl::half2 *tile_x_dm_q4_1) {
- (void)x_qh; (void)x_sc;
-
- *x_ql = tile_x_qs_q4_1;
- *x_dm = tile_x_dm_q4_1;
-}
-
-template <int mmq_y, int nwarps, bool need_check>
-static __dpct_inline__ void
-load_tiles_q4_1(const void *__restrict__ vx, int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset, const int &i_max,
- const int &k, const int &blocks_per_row) {
- (void)x_qh; (void)x_sc;
-
- GGML_SYCL_ASSUME(i_offset >= 0);
- GGML_SYCL_ASSUME(i_offset < nwarps);
- GGML_SYCL_ASSUME(k >= 0);
- GGML_SYCL_ASSUME(k < WARP_SIZE);
-
- const int kbx = k / QI4_1;
- const int kqsx = k % QI4_1;
-
- const block_q4_1 * bx0 = (const block_q4_1 *) vx;
-
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
-
- if (need_check) {
- i = sycl::min(i, i_max);
- }
-
- const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbx;
-
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
- }
-
- const int blocks_per_tile_x_row = WARP_SIZE / QI4_1;
- const int kbxd = k % blocks_per_tile_x_row;
-
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) {
- int i = i0 + i_offset * QI4_1 + k / blocks_per_tile_x_row;
-
- if (need_check) {
- i = sycl::min(i, i_max);
- }
-
- const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbxd;
-
- x_dm[i * (WARP_SIZE/QI4_1) + i / QI4_1 + kbxd] = bxi->dm;
- }
-}
-
-static __dpct_inline__ float vec_dot_q4_1_q8_1_mul_mat(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
- const int &i, const int &j, const int &k) {
- (void)x_qh; (void)x_sc;
-
- const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
-
- int u[2*VDR_Q4_1_Q8_1_MMQ];
-
-#pragma unroll
- for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) {
- u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
- u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_1) % WARP_SIZE];
- }
-
- return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ>
- (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k/QI4_1],
- y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
-}
-
-static __dpct_inline__ float
-vec_dot_q5_0_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
-
- const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq;
-
- int vl[VDR_Q5_0_Q8_1_MMVQ];
- int vh[VDR_Q5_0_Q8_1_MMVQ];
- int u[2*VDR_Q5_0_Q8_1_MMVQ];
-
-#pragma unroll
- for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) {
- vl[i] = get_int_from_uint8(bq5_0->qs, iqs + i);
- vh[i] = get_int_from_uint8(bq5_0->qh, 0) >> (4 * (iqs + i));
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_0);
- }
-
- return vec_dot_q5_0_q8_1_impl<VDR_Q5_0_Q8_1_MMVQ>(vl, vh, u, bq5_0->d, bq8_1->ds);
-}
-
-template <int mmq_y>
-static __dpct_inline__ void
-allocate_tiles_q5_0(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
- int *tile_x_ql_q5_0, float *tile_x_d_q5_0) {
- (void)x_qh; (void)x_sc;
-
- *x_ql = tile_x_ql_q5_0;
- *x_dm = (sycl::half2 *)tile_x_d_q5_0;
-}
-
-template <int mmq_y, int nwarps, bool need_check>
-static __dpct_inline__ void
-load_tiles_q5_0(const void *__restrict__ vx, int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset, const int &i_max,
- const int &k, const int &blocks_per_row) {
- (void)x_qh; (void)x_sc;
-
- GGML_SYCL_ASSUME(i_offset >= 0);
- GGML_SYCL_ASSUME(i_offset < nwarps);
- GGML_SYCL_ASSUME(k >= 0);
- GGML_SYCL_ASSUME(k < WARP_SIZE);
-
- const int kbx = k / QI5_0;
- const int kqsx = k % QI5_0;
-
- const block_q5_0 * bx0 = (const block_q5_0 *) vx;
-
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
-
- if (need_check) {
- i = sycl::min(i, i_max);
- }
-
- const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbx;
-
- const int ql = get_int_from_uint8(bxi->qs, kqsx);
- const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (k % QI5_0));
-
- int qs0 = (ql >> 0) & 0x0F0F0F0F;
- qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
- qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
- qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
- qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
- qs0 = dpct::vectorized_binary<sycl::char4>(
- qs0, 0x10101010, dpct::sub_sat()); // subtract 16
-
- x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
-
- int qs1 = (ql >> 4) & 0x0F0F0F0F;
- qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
- qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
- qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
- qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
- qs1 = dpct::vectorized_binary<sycl::char4>(
- qs1, 0x10101010, dpct::sub_sat()); // subtract 16
-
- x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
- }
-
- const int blocks_per_tile_x_row = WARP_SIZE / QI5_0;
- const int kbxd = k % blocks_per_tile_x_row;
- float * x_dmf = (float *) x_dm;
-
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) {
- int i = i0 + i_offset * QI5_0 + k / blocks_per_tile_x_row;
-
- if (need_check) {
- i = sycl::min(i, i_max);
- }
-
- const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbxd;
-
- x_dmf[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = bxi->d;
- }
-}
-
-static __dpct_inline__ float vec_dot_q5_0_q8_1_mul_mat(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
- const int &i, const int &j, const int &k) {
- (void)x_qh; (void)x_sc;
-
- const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
- const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0;
- const float * x_dmf = (const float *) x_dm;
- const float * y_df = (const float *) y_ds;
-
- int u[2*VDR_Q5_0_Q8_1_MMQ];
-
-#pragma unroll
- for (int l = 0; l < VDR_Q5_0_Q8_1_MMQ; ++l) {
- u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
- u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE];
- }
-
- return vec_dot_q8_0_q8_1_impl<QR5_0*VDR_Q5_0_Q8_1_MMQ>
- (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
-}
-
-static __dpct_inline__ float
-vec_dot_q5_1_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
-
- const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq;
-
- int vl[VDR_Q5_1_Q8_1_MMVQ];
- int vh[VDR_Q5_1_Q8_1_MMVQ];
- int u[2*VDR_Q5_1_Q8_1_MMVQ];
-
-#pragma unroll
- for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) {
- vl[i] = get_int_from_uint8_aligned(bq5_1->qs, iqs + i);
- vh[i] = get_int_from_uint8_aligned(bq5_1->qh, 0) >> (4 * (iqs + i));
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_1);
- }
-
- return vec_dot_q5_1_q8_1_impl<VDR_Q5_1_Q8_1_MMVQ>(vl, vh, u, bq5_1->dm, bq8_1->ds);
-}
-
-template <int mmq_y>
-static __dpct_inline__ void
-allocate_tiles_q5_1(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
- int *tile_x_ql_q5_1, sycl::half2 *tile_x_dm_q5_1) {
- (void)x_qh; (void)x_sc;
-
- *x_ql = tile_x_ql_q5_1;
- *x_dm = tile_x_dm_q5_1;
-}
-
-template <int mmq_y, int nwarps, bool need_check>
-static __dpct_inline__ void
-load_tiles_q5_1(const void *__restrict__ vx, int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset, const int &i_max,
- const int &k, const int &blocks_per_row) {
- (void)x_qh; (void)x_sc;
-
- GGML_SYCL_ASSUME(i_offset >= 0);
- GGML_SYCL_ASSUME(i_offset < nwarps);
- GGML_SYCL_ASSUME(k >= 0);
- GGML_SYCL_ASSUME(k < WARP_SIZE);
-
- const int kbx = k / QI5_1;
- const int kqsx = k % QI5_1;
-
- const block_q5_1 * bx0 = (const block_q5_1 *) vx;
-
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
-
- if (need_check) {
- i = sycl::min(i, i_max);
- }
-
- const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbx;
-
- const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
- const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (k % QI5_1));
-
- int qs0 = (ql >> 0) & 0x0F0F0F0F;
- qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
- qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
- qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
- qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
-
- x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
-
- int qs1 = (ql >> 4) & 0x0F0F0F0F;
- qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
- qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
- qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
- qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
-
- x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
- }
-
- const int blocks_per_tile_x_row = WARP_SIZE / QI5_1;
- const int kbxd = k % blocks_per_tile_x_row;
-
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) {
- int i = i0 + i_offset * QI5_1 + k / blocks_per_tile_x_row;
-
- if (need_check) {
- i = sycl::min(i, i_max);
- }
-
- const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbxd;
-
- x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm;
- }
-}
-
-static __dpct_inline__ float vec_dot_q5_1_q8_1_mul_mat(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
- const int &i, const int &j, const int &k) {
- (void)x_qh; (void)x_sc;
-
- const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
- const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1;
-
- int u[2*VDR_Q5_1_Q8_1_MMQ];
-
-#pragma unroll
- for (int l = 0; l < VDR_Q5_1_Q8_1_MMQ; ++l) {
- u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
- u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_1) % WARP_SIZE];
- }
-
- return vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ>
- (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dm[index_bx], y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
-}
-
-static __dpct_inline__ float
-vec_dot_q8_0_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
-
- const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq;
-
- int v[VDR_Q8_0_Q8_1_MMVQ];
- int u[VDR_Q8_0_Q8_1_MMVQ];
-
-#pragma unroll
- for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) {
- v[i] = get_int_from_int8(bq8_0->qs, iqs + i);
- u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- }
-
- return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d,
- bq8_1->ds[0]);
-}
-
-template <int mmq_y>
-static __dpct_inline__ void
-allocate_tiles_q8_0(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
- int *tile_x_qs_q8_0, float *tile_x_d_q8_0) {
- (void)x_qh; (void)x_sc;
-
- *x_ql = tile_x_qs_q8_0;
- *x_dm = (sycl::half2 *)tile_x_d_q8_0;
-}
-
-template <int mmq_y, int nwarps, bool need_check>
-static __dpct_inline__ void
-load_tiles_q8_0(const void *__restrict__ vx, int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset, const int &i_max,
- const int &k, const int &blocks_per_row) {
- (void)x_qh; (void)x_sc;
-
- GGML_SYCL_ASSUME(i_offset >= 0);
- GGML_SYCL_ASSUME(i_offset < nwarps);
- GGML_SYCL_ASSUME(k >= 0);
- GGML_SYCL_ASSUME(k < WARP_SIZE);
-
- const int kbx = k / QI8_0;
- const int kqsx = k % QI8_0;
- float * x_dmf = (float *) x_dm;
-
- const block_q8_0 * bx0 = (const block_q8_0 *) vx;
-
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
-
- if (need_check) {
- i = sycl::min(i, i_max);
- }
-
- const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbx;
-
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_int8(bxi->qs, kqsx);
- }
-
- const int blocks_per_tile_x_row = WARP_SIZE / QI8_0;
- const int kbxd = k % blocks_per_tile_x_row;
-
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0) {
- int i = i0 + i_offset * QI8_0 + k / blocks_per_tile_x_row;
-
- if (need_check) {
- i = sycl::min(i, i_max);
- }
-
- const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbxd;
-
- x_dmf[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbxd] = bxi->d;
- }
-}
-
-static __dpct_inline__ float vec_dot_q8_0_q8_1_mul_mat(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
- const int &i, const int &j, const int &k) {
- (void)x_qh; (void)x_sc;
-
- const float * x_dmf = (const float *) x_dm;
- const float * y_df = (const float *) y_ds;
-
- return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMQ>
- (&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0],
- y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]);
-}
-
-static __dpct_inline__ float
-vec_dot_q2_K_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
-
- const block_q2_K * bq2_K = (const block_q2_K *) vbq;
-
- const int bq8_offset = QR2_K * (iqs / QI8_1);
- const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
-
- const uint8_t * scales = bq2_K->scales + scale_offset;
-
- const int v = get_int_from_uint8_aligned(bq2_K->qs, iqs);
- int u[QR2_K];
- float d8[QR2_K];
-
-#pragma unroll
- for (int i = 0; i < QR2_K; ++ i) {
- u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
- d8[i] = bq8_1[bq8_offset + i].ds[0];
- }
-
- return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8);
-}
-
-template <int mmq_y>
-static __dpct_inline__ void
-allocate_tiles_q2_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
- int *tile_x_ql_q2_K, sycl::half2 *tile_x_dm_q2_K,
- int *tile_x_sc_q2_K) {
- (void)x_qh;
-
- *x_ql = tile_x_ql_q2_K;
- *x_dm = tile_x_dm_q2_K;
- *x_sc = tile_x_sc_q2_K;
-}
-
-template <int mmq_y, int nwarps, bool need_check>
-static __dpct_inline__ void
-load_tiles_q2_K(const void *__restrict__ vx, int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset, const int &i_max,
- const int &k, const int &blocks_per_row) {
- (void)x_qh;
-
- GGML_SYCL_ASSUME(i_offset >= 0);
- GGML_SYCL_ASSUME(i_offset < nwarps);
- GGML_SYCL_ASSUME(k >= 0);
- GGML_SYCL_ASSUME(k < WARP_SIZE);
-
- const int kbx = k / QI2_K;
- const int kqsx = k % QI2_K;
-
- const block_q2_K * bx0 = (const block_q2_K *) vx;
-
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
-
- if (need_check) {
- i = sycl::min(i, i_max);
- }
-
- const block_q2_K * bxi = bx0 + i*blocks_per_row + kbx;
-
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
- }
-
- const int blocks_per_tile_x_row = WARP_SIZE / QI2_K;
- const int kbxd = k % blocks_per_tile_x_row;
-
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI2_K) {
- int i = (i0 + i_offset * QI2_K + k / blocks_per_tile_x_row) % mmq_y;
-
- if (need_check) {
- i = sycl::min(i, i_max);
- }
-
- const block_q2_K * bxi = bx0 + i*blocks_per_row + kbxd;
-
- x_dm[i * (WARP_SIZE/QI2_K) + i / QI2_K + kbxd] = bxi->dm;
- }
-
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
- int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
-
- if (need_check) {
- i = sycl::min(i, i_max);
- }
-
- const block_q2_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI2_K/4);
-
- x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = get_int_from_uint8_aligned(bxi->scales, k % (QI2_K/4));
- }
-}
-
-static __dpct_inline__ float vec_dot_q2_K_q8_1_mul_mat(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
- const int &i, const int &j, const int &k) {
- (void)x_qh;
-
- const int kbx = k / QI2_K;
- const int ky = (k % QI2_K) * QR2_K;
- const float * y_df = (const float *) y_ds;
-
- int v[QR2_K*VDR_Q2_K_Q8_1_MMQ];
-
- const int kqsx = i * (WARP_SIZE + 1) + kbx*QI2_K + (QI2_K/2) * (ky/(2*QI2_K)) + ky % (QI2_K/2);
- const int shift = 2 * ((ky % (2*QI2_K)) / (QI2_K/2));
-
-#pragma unroll
- for (int l = 0; l < QR2_K*VDR_Q2_K_Q8_1_MMQ; ++l) {
- v[l] = (x_ql[kqsx + l] >> shift) & 0x03030303;
- }
-
- const uint8_t * scales = ((const uint8_t *) &x_sc[i * (WARP_SIZE/4) + i/4 + kbx*4]) + ky/4;
-
- const int index_y = j * WARP_SIZE + (QR2_K*k) % WARP_SIZE;
- return vec_dot_q2_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dm[i * (WARP_SIZE/QI2_K) + i/QI2_K + kbx], y_df[index_y/QI8_1]);
-}
-
-static __dpct_inline__ float
-vec_dot_q3_K_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
-
- const block_q3_K * bq3_K = (const block_q3_K *) vbq;
-
- const int bq8_offset = QR3_K * (iqs / (QI3_K/2));
- const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
-
- const float d = bq3_K->d;
-
- const int vl = get_int_from_uint8(bq3_K->qs, iqs);
-
- // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
- const int vh = ~get_int_from_uint8(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset;
-
- int u[QR3_K];
- float d8[QR3_K];
-
-#pragma unroll
- for (int i = 0; i < QR3_K; ++i) {
- u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
- d8[i] = bq8_1[bq8_offset + i].ds[0];
- }
-
- return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8);
-}
-
-template <int mmq_y>
-static __dpct_inline__ void
-allocate_tiles_q3_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
- int *tile_x_ql_q3_K, sycl::half2 *tile_x_dm_q3_K,
- int *tile_x_qh_q3_K, int *tile_x_sc_q3_K) {
-
- *x_ql = tile_x_ql_q3_K;
- *x_dm = tile_x_dm_q3_K;
- *x_qh = tile_x_qh_q3_K;
- *x_sc = tile_x_sc_q3_K;
-}
-
-template <int mmq_y, int nwarps, bool need_check>
-static __dpct_inline__ void
-load_tiles_q3_K(const void *__restrict__ vx, int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset, const int &i_max,
- const int &k, const int &blocks_per_row) {
-
- GGML_SYCL_ASSUME(i_offset >= 0);
- GGML_SYCL_ASSUME(i_offset < nwarps);
- GGML_SYCL_ASSUME(k >= 0);
- GGML_SYCL_ASSUME(k < WARP_SIZE);
-
- const int kbx = k / QI3_K;
- const int kqsx = k % QI3_K;
-
- const block_q3_K * bx0 = (const block_q3_K *) vx;
-
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
-
- if (need_check) {
- i = sycl::min(i, i_max);
- }
-
- const block_q3_K * bxi = bx0 + i*blocks_per_row + kbx;
-
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
- }
-
- const int blocks_per_tile_x_row = WARP_SIZE / QI3_K;
- const int kbxd = k % blocks_per_tile_x_row;
- float * x_dmf = (float *) x_dm;
-
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI3_K) {
- int i = (i0 + i_offset * QI3_K + k / blocks_per_tile_x_row) % mmq_y;
-
- if (need_check) {
- i = sycl::min(i, i_max);
- }
-
- const block_q3_K * bxi = bx0 + i*blocks_per_row + kbxd;
-
- x_dmf[i * (WARP_SIZE/QI3_K) + i / QI3_K + kbxd] = bxi->d;
- }
-
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 2) {
- int i = i0 + i_offset * 2 + k / (WARP_SIZE/2);
-
- if (need_check) {
- i = sycl::min(i, i_max);
- }
-
- const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/2)) / (QI3_K/2);
-
- // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
- x_qh[i * (WARP_SIZE/2) + i / 2 + k % (WARP_SIZE/2)] = ~get_int_from_uint8(bxi->hmask, k % (QI3_K/2));
- }
-
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
- int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
-
- if (need_check) {
- i = sycl::min(i, i_max);
- }
-
- const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI3_K/4);
-
- const int ksc = k % (QI3_K/4);
-
- const int ksc_low = ksc % (QI3_K/8);
- const int shift_low = 4 * (ksc / (QI3_K/8));
- const int sc_low = (get_int_from_uint8(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F;
-
- const int ksc_high = QI3_K/8;
- const int shift_high = 2 * ksc;
- const int sc_high = ((get_int_from_uint8(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030;
-
- const int sc = dpct::vectorized_binary<sycl::char4>(
- sc_low | sc_high, 0x20202020, dpct::sub_sat());
-
- x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = sc;
- }
-}
-
-static __dpct_inline__ float vec_dot_q3_K_q8_1_mul_mat(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
- const int &i, const int &j, const int &k) {
-
- const int kbx = k / QI3_K;
- const int ky = (k % QI3_K) * QR3_K;
- const float * x_dmf = (const float *) x_dm;
- const float * y_df = (const float *) y_ds;
-
- const int8_t * scales = ((const int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4;
-
- int v[QR3_K*VDR_Q3_K_Q8_1_MMQ];
-
-#pragma unroll
- for (int l = 0; l < QR3_K*VDR_Q3_K_Q8_1_MMQ; ++l) {
- const int kqsx = i * (WARP_SIZE + 1) + kbx*QI3_K + (QI3_K/2) * (ky/(2*QI3_K)) + ky % (QI3_K/2);
- const int shift = 2 * ((ky % 32) / 8);
- const int vll = (x_ql[kqsx + l] >> shift) & 0x03030303;
-
- const int vh = x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI3_K/2) + (ky+l)%8] >> ((ky+l) / 8);
- const int vlh = (vh << 2) & 0x04040404;
-
- v[l] = dpct::vectorized_binary<sycl::char4>(vll, vlh, dpct::sub_sat());
- }
-
- const int index_y = j * WARP_SIZE + (k*QR3_K) % WARP_SIZE;
- return vec_dot_q3_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dmf[i * (WARP_SIZE/QI3_K) + i/QI3_K + kbx], y_df[index_y/QI8_1]);
-}
-
-static __dpct_inline__ float
-vec_dot_q4_K_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
-
- const block_q4_K * bq4_K = (const block_q4_K *) vbq;
-
- int v[2];
- int u[2*QR4_K];
- float d8[QR4_K];
-
- // iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6
- const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2));
-
- // iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12
- // iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44
- // iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76
- // iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108
-
- const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
- v[0] = q4[0];
- v[1] = q4[4];
-
- const uint16_t * scales = (const uint16_t *)bq4_K->scales;
- uint16_t aux[2];
- const int j = bq8_offset/2;
- if (j < 2) {
- aux[0] = scales[j+0] & 0x3f3f;
- aux[1] = scales[j+2] & 0x3f3f;
- } else {
- aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
- aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
- }
- const uint8_t * sc = (const uint8_t *)aux;
- const uint8_t * m = sc + 2;
-
- for (int i = 0; i < QR4_K; ++i) {
- const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
- d8[i] = bq8i->ds[0];
-
- const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
- u[2*i+0] = q8[0];
- u[2*i+1] = q8[4];
- }
-
- return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
-}
-
-template <int mmq_y>
-static __dpct_inline__ void
-allocate_tiles_q4_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
- int *tile_x_ql_q4_K, sycl::half2 *tile_x_dm_q4_K,
- int *tile_x_sc_q4_K) {
- (void)x_qh;
-
- *x_ql = tile_x_ql_q4_K;
- *x_dm = tile_x_dm_q4_K;
- *x_sc = tile_x_sc_q4_K;
-}
-
-template <int mmq_y, int nwarps, bool need_check>
-static __dpct_inline__ void
-load_tiles_q4_K(const void *__restrict__ vx, int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset, const int &i_max,
- const int &k, const int &blocks_per_row) {
- (void)x_qh;
-
- GGML_SYCL_ASSUME(i_offset >= 0);
- GGML_SYCL_ASSUME(i_offset < nwarps);
- GGML_SYCL_ASSUME(k >= 0);
- GGML_SYCL_ASSUME(k < WARP_SIZE);
-
- const int kbx = k / QI4_K; // == 0 if QK_K == 256
- const int kqsx = k % QI4_K; // == k if QK_K == 256
-
- const block_q4_K * bx0 = (const block_q4_K *) vx;
-
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
-
- if (need_check) {
- i = sycl::min(i, i_max);
- }
-
- const block_q4_K * bxi = bx0 + i*blocks_per_row + kbx;
-
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
- }
-
- const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256
- const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
-
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_K) {
- int i = (i0 + i_offset * QI4_K + k / blocks_per_tile_x_row) % mmq_y;
-
- if (need_check) {
- i = sycl::min(i, i_max);
- }
-
- const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
-
- x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
- }
-
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
- int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
-
- if (need_check) {
- i = sycl::min(i, i_max);
- }
-
- const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8);
-
- const int * scales = (const int *) bxi->scales;
-
- const int ksc = k % (WARP_SIZE/8);
-
- // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
- int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
- scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
-
- x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
- }
-}
-
-static __dpct_inline__ float vec_dot_q4_K_q8_1_mul_mat(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
- const int &i, const int &j, const int &k) {
- (void)x_qh;
-
- const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8);
-
- const int index_y = j * WARP_SIZE + (QR4_K*k) % WARP_SIZE;
- return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[index_y], sc, sc+8,
- x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]);
-}
-
-static __dpct_inline__ float
-vec_dot_q5_K_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
-
- const block_q5_K * bq5_K = (const block_q5_K *) vbq;
-
- int vl[2];
- int vh[2];
- int u[2*QR5_K];
- float d8[QR5_K];
-
- const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2));
- const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
- const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4));
-
- vl[0] = ql[0];
- vl[1] = ql[4];
-
- vh[0] = qh[0] >> bq8_offset;
- vh[1] = qh[4] >> bq8_offset;
-
- const uint16_t * scales = (const uint16_t *)bq5_K->scales;
- uint16_t aux[2];
- const int j = bq8_offset/2;
- if (j < 2) {
- aux[0] = scales[j+0] & 0x3f3f;
- aux[1] = scales[j+2] & 0x3f3f;
- } else {
- aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
- aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
- }
- const uint8_t * sc = (const uint8_t *)aux;
- const uint8_t * m = sc + 2;
-
-#pragma unroll
- for (int i = 0; i < QR5_K; ++i) {
- const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
- d8[i] = bq8i->ds[0];
-
- const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
- u[2*i+0] = q8[0];
- u[2*i+1] = q8[4];
- }
-
- return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
-}
-
-template <int mmq_y>
-static __dpct_inline__ void
-allocate_tiles_q5_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
- int *tile_x_ql_q5_K, sycl::half2 *tile_x_dm_q5_K,
- int *tile_x_sc_q5_K) {
- (void)x_qh;
-
- *x_ql = tile_x_ql_q5_K;
- *x_dm = tile_x_dm_q5_K;
- *x_sc = tile_x_sc_q5_K;
-}
-
-template <int mmq_y, int nwarps, bool need_check>
-static __dpct_inline__ void
-load_tiles_q5_K(const void *__restrict__ vx, int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset, const int &i_max,
- const int &k, const int &blocks_per_row) {
- (void)x_qh;
-
- GGML_SYCL_ASSUME(i_offset >= 0);
- GGML_SYCL_ASSUME(i_offset < nwarps);
- GGML_SYCL_ASSUME(k >= 0);
- GGML_SYCL_ASSUME(k < WARP_SIZE);
-
- const int kbx = k / QI5_K; // == 0 if QK_K == 256
- const int kqsx = k % QI5_K; // == k if QK_K == 256
-
- const block_q5_K * bx0 = (const block_q5_K *) vx;
-
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
-
- if (need_check) {
- i = sycl::min(i, i_max);
- }
-
- const block_q5_K * bxi = bx0 + i*blocks_per_row + kbx;
- const int ky = QR5_K*kqsx;
-
- const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
- const int ql0 = (ql >> 0) & 0x0F0F0F0F;
- const int ql1 = (ql >> 4) & 0x0F0F0F0F;
-
- const int qh = get_int_from_uint8_aligned(bxi->qh, kqsx % (QI5_K/4));
- const int qh0 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 0)) << 4) & 0x10101010;
- const int qh1 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 1)) << 4) & 0x10101010;
-
- const int kq0 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + 0;
- const int kq1 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + (QI5_K/4);
-
- x_ql[i * (2*WARP_SIZE + 1) + kq0] = ql0 | qh0;
- x_ql[i * (2*WARP_SIZE + 1) + kq1] = ql1 | qh1;
- }
-
- const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256
- const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
-
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_K) {
- int i = (i0 + i_offset * QI5_K + k / blocks_per_tile_x_row) % mmq_y;
-
- if (need_check) {
- i = sycl::min(i, i_max);
- }
-
- const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
-
- x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
- }
-
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
- int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
-
- if (need_check) {
- i = sycl::min(i, i_max);
- }
-
- const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8);
-
- const int * scales = (const int *) bxi->scales;
-
- const int ksc = k % (WARP_SIZE/8);
-
- // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
- int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
- scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
-
- x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
- }
-}
-
-static __dpct_inline__ float vec_dot_q5_K_q8_1_mul_mat(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
- const int &i, const int &j, const int &k) {
- (void)x_qh;
-
- const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8);
-
- const int index_x = i * (QR5_K*WARP_SIZE + 1) + QR5_K*k;
- const int index_y = j * WARP_SIZE + (QR5_K*k) % WARP_SIZE;
- return vec_dot_q5_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8,
- x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]);
-}
-
-static __dpct_inline__ float
-vec_dot_q6_K_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
-
- const block_q6_K * bq6_K = (const block_q6_K *) vbq;
-
- const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4);
- const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8);
- const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4));
-
- const int vl = get_int_from_uint8(bq6_K->ql, iqs);
- const int vh = get_int_from_uint8(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift;
-
- const int8_t * scales = bq6_K->scales + scale_offset;
-
- int u[QR6_K];
- float d8[QR6_K];
-
-#pragma unroll
- for (int i = 0; i < QR6_K; ++i) {
- u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1);
- d8[i] = bq8_1[bq8_offset + 2 * i].ds[0];
- }
-
- return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8);
-}
-
-template <int mmq_y>
-static __dpct_inline__ void
-allocate_tiles_q6_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
- int *tile_x_ql, sycl::half2 *tile_x_dm, int *tile_x_sc) {
- (void)x_qh;
-
- *x_ql = tile_x_ql;
- *x_dm = tile_x_dm;
- *x_sc = tile_x_sc;
-}
-
-template <int mmq_y, int nwarps, bool need_check>
-static __dpct_inline__ void
-load_tiles_q6_K(const void *__restrict__ vx, int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset, const int &i_max,
- const int &k, const int &blocks_per_row) {
- (void)x_qh;
-
- GGML_SYCL_ASSUME(i_offset >= 0);
- GGML_SYCL_ASSUME(i_offset < nwarps);
- GGML_SYCL_ASSUME(k >= 0);
- GGML_SYCL_ASSUME(k < WARP_SIZE);
-
- const int kbx = k / QI6_K; // == 0 if QK_K == 256
- const int kqsx = k % QI6_K; // == k if QK_K == 256
-
- const block_q6_K * bx0 = (const block_q6_K *) vx;
-
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
-
- if (need_check) {
- i = sycl::min(i, i_max);
- }
-
- const block_q6_K * bxi = bx0 + i*blocks_per_row + kbx;
- const int ky = QR6_K*kqsx;
-
- const int ql = get_int_from_uint8(bxi->ql, kqsx);
- const int ql0 = (ql >> 0) & 0x0F0F0F0F;
- const int ql1 = (ql >> 4) & 0x0F0F0F0F;
-
- const int qh = get_int_from_uint8(bxi->qh, (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4));
- const int qh0 = ((qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) << 4) & 0x30303030;
- const int qh1 = (qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) & 0x30303030;
-
- const int kq0 = ky - ky % QI6_K + k % (QI6_K/2) + 0;
- const int kq1 = ky - ky % QI6_K + k % (QI6_K/2) + (QI6_K/2);
-
- x_ql[i * (2 * WARP_SIZE + 1) + kq0] =
- dpct::vectorized_binary<sycl::char4>(ql0 | qh0, 0x20202020,
- dpct::sub_sat());
- x_ql[i * (2 * WARP_SIZE + 1) + kq1] =
- dpct::vectorized_binary<sycl::char4>(ql1 | qh1, 0x20202020,
- dpct::sub_sat());
- }
-
- const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256
- const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
- float * x_dmf = (float *) x_dm;
-
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) {
- int i = (i0 + i_offset * QI6_K + k / blocks_per_tile_x_row) % mmq_y;
-
- if (need_check) {
- i = sycl::min(i, i_max);
- }
-
- const block_q6_K * bxi = bx0 + i*blocks_per_row + kbxd;
-
- x_dmf[i * (WARP_SIZE/QI6_K) + i / QI6_K + kbxd] = bxi->d;
- }
-
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
- int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
-
- if (need_check) {
- i = sycl::min(i, i_max);
- }
-
- const block_q6_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / 4;
-
- x_sc[i * (WARP_SIZE/8) + i / 8 + k % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, k % (QI6_K/8));
- }
-}
-
-static __dpct_inline__ float vec_dot_q6_K_q8_1_mul_mat(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
- const int &i, const int &j, const int &k) {
- (void)x_qh;
-
- const float * x_dmf = (const float *) x_dm;
- const float * y_df = (const float *) y_ds;
-
- const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/8]);
-
- const int index_x = i * (QR6_K*WARP_SIZE + 1) + QR6_K*k;
- const int index_y = j * WARP_SIZE + (QR6_K*k) % WARP_SIZE;
- return vec_dot_q6_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]);
-}
-
-
-static __dpct_inline__ float
-vec_dot_iq2_xxs_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs,
- const uint64_t *iq2xxs_grid, const uint8_t *ksigns_iq2xs,
- const uint8_t *kmask_iq2xs) {
- const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq;
-
-#if QR2_XXS == 8
- const int ib32 = iqs;
- const uint16_t * q2 = bq2->qs + 4*ib32;
- const uint8_t * aux8 = (const uint8_t *)q2;
- const int8_t * q8 = bq8_1[ib32].qs;
- uint32_t aux32 = q2[2] | (q2[3] << 16);
- int sumi = 0;
- for (int l = 0; l < 4; ++l) {
- const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
- const uint8_t signs = ksigns_iq2xs[aux32 & 127];
- for (int j = 0; j < 8; ++j) {
- sumi += q8[j] * grid[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
- }
- q8 += 8;
- aux32 >>= 7;
- }
- const float d = (float)bq2->d * (0.5f + aux32) * bq8_1[ib32].ds[0] * 0.25f;
- return d * sumi;
-#else
- // iqs is 0...15
- const int ib32 = iqs/2;
- const int il = iqs%2;
- const uint16_t * q2 = bq2->qs + 4*ib32;
- const uint8_t * aux8 = (const uint8_t *)q2;
- const uint8_t * grid1 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+0]);
- const uint8_t * grid2 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+1]);
- const uint32_t aux32 = q2[2] | (q2[3] << 16);
- const float d = (float)bq2->d * (0.5f + (aux32 >> 28)) * bq8_1[ib32].ds[0] * 0.25f;
- const uint8_t signs1 = ksigns_iq2xs[(aux32 >> 14*il) & 127];
- const uint8_t signs2 = ksigns_iq2xs[(aux32 >> (14*il + 7)) & 127];
- const int8_t * q8 = bq8_1[ib32].qs + 16*il;
- int sumi1 = 0, sumi2 = 0;
- for (int j = 0; j < 8; ++j) {
- sumi1 += q8[j+0] * grid1[j] * (signs1 & kmask_iq2xs[j] ? -1 : 1);
- sumi2 += q8[j+8] * grid2[j] * (signs2 & kmask_iq2xs[j] ? -1 : 1);
- }
- return d * (sumi1 + sumi2);
-#endif
-}
-
-static __dpct_inline__ float
-vec_dot_iq2_xs_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs,
- const uint64_t *iq2xs_grid, const uint64_t *ksigns64) {
-#if DPCT_COMPATIBILITY_TEMP >= \
- MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq;
-
- const int ib32 = iqs;
- const uint16_t * q2 = bq2->qs + 4*ib32;
- const int8_t * q8 = bq8_1[ib32].qs;
- const uint8_t ls1 = bq2->scales[ib32] & 0xf;
- const uint8_t ls2 = bq2->scales[ib32] >> 4;
- int sumi1 = 0;
- for (int l = 0; l < 2; ++l) {
- const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511));
- const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9));
- const int grid_l = dpct::vectorized_binary<sycl::uchar4>(
- grid[0] ^ signs[0], signs[0], std::minus<>());
- const int grid_h = dpct::vectorized_binary<sycl::uchar4>(
- grid[1] ^ signs[1], signs[1], std::minus<>());
- sumi1 = dpct::dp4a(grid_l, *((const int *)q8 + 0), sumi1);
- sumi1 = dpct::dp4a(grid_h, *((const int *)q8 + 1), sumi1);
- q8 += 8;
- }
- int sumi2 = 0;
- for (int l = 2; l < 4; ++l) {
- const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511));
- const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9));
- const int grid_l = dpct::vectorized_binary<sycl::uchar4>(
- grid[0] ^ signs[0], signs[0], std::minus<>());
- const int grid_h = dpct::vectorized_binary<sycl::uchar4>(
- grid[1] ^ signs[1], signs[1], std::minus<>());
- sumi2 = dpct::dp4a(grid_l, *((const int *)q8 + 0), sumi2);
- sumi2 = dpct::dp4a(grid_h, *((const int *)q8 + 1), sumi2);
- q8 += 8;
- }
- const float d = (float)bq2->d * bq8_1[ib32].ds[0] * 0.25f;
- return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2);
-#else
- assert(false);
- return 0.f;
-#endif
-}
-
-static __dpct_inline__ float
-vec_dot_iq2_s_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
- const block_iq2_s * bq2 = (const block_iq2_s *) vbq;
-
- const int ib32 = iqs;
- const int8_t * q8 = bq8_1[ib32].qs;
- const uint8_t * signs = bq2->qs + QK_K/8 + 4*ib32;
- const uint8_t ls1 = bq2->scales[ib32] & 0xf;
- const uint8_t ls2 = bq2->scales[ib32] >> 4;
- int sumi1 = 0;
- for (int l = 0; l < 2; ++l) {
- const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300)));
- const uint32_t signs0 = dpct::vectorized_binary<sycl::uchar4>(
- ((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201,
- std::equal_to<>());
- const uint32_t signs1 = dpct::vectorized_binary<sycl::uchar4>(
- ((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201,
- std::equal_to<>());
- const int grid_l = dpct::vectorized_binary<sycl::uchar4>(
- grid[0] ^ signs0, signs0, std::minus<>());
- const int grid_h = dpct::vectorized_binary<sycl::uchar4>(
- grid[1] ^ signs1, signs1, std::minus<>());
- sumi1 = dpct::dp4a(grid_l, *((const int *)q8 + 0), sumi1);
- sumi1 = dpct::dp4a(grid_h, *((const int *)q8 + 1), sumi1);
- q8 += 8;
- }
- int sumi2 = 0;
- for (int l = 2; l < 4; ++l) {
- const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300)));
- const uint32_t signs0 = dpct::vectorized_binary<sycl::uchar4>(
- ((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201,
- std::equal_to<>());
- const uint32_t signs1 = dpct::vectorized_binary<sycl::uchar4>(
- ((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201,
- std::equal_to<>());
- const int grid_l = dpct::vectorized_binary<sycl::uchar4>(
- grid[0] ^ signs0, signs0, std::minus<>());
- const int grid_h = dpct::vectorized_binary<sycl::uchar4>(
- grid[1] ^ signs1, signs1, std::minus<>());
- sumi2 = dpct::dp4a(grid_l, *((const int *)q8 + 0), sumi2);
- sumi2 = dpct::dp4a(grid_h, *((const int *)q8 + 1), sumi2);
- q8 += 8;
- }
- const float d = (float)bq2->d * bq8_1[ib32].ds[0] * 0.25f;
- return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2);
-}
-
-static __dpct_inline__ float
-vec_dot_iq3_xxs_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs,
- const uint32_t *iq3xxs_grid, const uint64_t *ksigns64) {
-#if DPCT_COMPATIBILITY_TEMP >= \
- MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const block_iq3_xxs * bq2 = (const block_iq3_xxs *) vbq;
-
- const int ib32 = iqs;
- const uint8_t * q3 = bq2->qs + 8*ib32;
- const uint16_t * gas = (const uint16_t *)(bq2->qs + QK_K/4) + 2*ib32;
- const int8_t * q8 = bq8_1[ib32].qs;
- uint32_t aux32 = gas[0] | (gas[1] << 16);
- int sumi = 0;
- for (int l = 0; l < 4; ++l) {
- const uint32_t * grid1 = iq3xxs_grid + q3[2*l+0];
- const uint32_t * grid2 = iq3xxs_grid + q3[2*l+1];
- const uint32_t * signs = (const uint32_t *)(ksigns64 + (aux32 & 127));
- const int grid_l = dpct::vectorized_binary<sycl::uchar4>(
- grid1[0] ^ signs[0], signs[0], std::minus<>());
- const int grid_h = dpct::vectorized_binary<sycl::uchar4>(
- grid2[0] ^ signs[1], signs[1], std::minus<>());
- sumi = dpct::dp4a(grid_l, *((int *)q8 + 0), sumi);
- sumi = dpct::dp4a(grid_h, *((int *)q8 + 1), sumi);
- q8 += 8;
- aux32 >>= 7;
- }
- const float d = (float)bq2->d * (0.5f + aux32) * bq8_1[ib32].ds[0] * 0.5f;
- return d * sumi;
-#else
- assert(false);
- return 0.f;
-#endif
-}
-
-static __dpct_inline__ float
-vec_dot_iq3_s_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs,
- const uint32_t *iq3s_grid) {
- const block_iq3_s * bq2 = (const block_iq3_s *) vbq;
-
- const int ib32 = iqs;
- const uint8_t * qs = bq2->qs + 8*ib32;
- const int8_t * q8 = bq8_1[ib32].qs;
- int sumi = 0;
- for (int l = 0; l < 4; ++l) {
- const uint32_t * grid1 = iq3s_grid + (qs[2*l+0] | ((bq2->qh[ib32] << (8 - 2*l)) & 256));
- const uint32_t * grid2 = iq3s_grid + (qs[2*l+1] | ((bq2->qh[ib32] << (7 - 2*l)) & 256));
- uint32_t signs0 = dpct::vectorized_binary<sycl::uchar4>(
- ((bq2->signs[4 * ib32 + l] & 0xf) * 0x01010101) & 0x08040201,
- 0x08040201, std::equal_to<>());
- uint32_t signs1 = dpct::vectorized_binary<sycl::uchar4>(
- ((bq2->signs[4 * ib32 + l] >> 4) * 0x01010101) & 0x08040201,
- 0x08040201, std::equal_to<>());
- const int grid_l = dpct::vectorized_binary<sycl::uchar4>(
- grid1[0] ^ signs0, signs0, std::minus<>());
- const int grid_h = dpct::vectorized_binary<sycl::uchar4>(
- grid2[0] ^ signs1, signs1, std::minus<>());
- sumi = dpct::dp4a(grid_l, *((int *)q8 + 0), sumi);
- sumi = dpct::dp4a(grid_h, *((int *)q8 + 1), sumi);
- q8 += 8;
- }
- const float d =
- (float)bq2->d *
- (1 + 2 * ((bq2->scales[ib32 / 2] >> 4 * (ib32 % 2)) & 0xf)) *
- bq8_1[ib32].ds[0];
- return d * sumi;
-}
-
-static __dpct_inline__ float
-vec_dot_iq1_s_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs,
- const uint32_t *iq1s_grid_gpu) {
- const block_iq1_s * bq1 = (const block_iq1_s *) vbq;
-
- const int ib32 = iqs;
- int sumi = 0;
- const int * q8 = (const int *)bq8_1[ib32].qs;
- for (int l = 0; l < 4; ++l) {
- const int * grid = (const int *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8)));
- int grid0 = grid[0] & 0x0f0f0f0f;
- int grid1 = (grid[0] >> 4) & 0x0f0f0f0f;
- sumi = dpct::dp4a(q8[2 * l + 1], grid1,
- dpct::dp4a(q8[2 * l + 0], grid0, sumi));
- }
-
- const float delta = bq1->qh[ib32] & 0x8000 ? -1-IQ1S_DELTA : -1+IQ1S_DELTA;
- const float d1q = (float)bq1->d * (2*((bq1->qh[ib32] >> 12) & 7) + 1);
- const float d = d1q * bq8_1[ib32].ds[0];
- const float m = d1q * bq8_1[ib32].ds[1];
- return d * sumi + m * delta;
-}
-
-static __dpct_inline__ float
-vec_dot_iq1_m_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
- const block_iq1_m * bq1 = (const block_iq1_m *) vbq;
-
- const int ib32 = iqs;
- int sumi[2] = {0, 0};
- float sumf[2] = {0.f, 0.f};
-
- const int * q8 = (const int *)bq8_1[ib32].qs;
- for (int l = 0; l < 4; ++l) {
- const int * grid = (const int *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 7) << 8)));
- int grid0 = grid[0] & 0x0f0f0f0f;
- int grid1 = (grid[0] >> 4) & 0x0f0f0f0f;
- sumi[l / 2] = dpct::dp4a(q8[2 * l + 1], grid1,
- dpct::dp4a(q8[2 * l + 0], grid0, sumi[l / 2]));
- const float delta = (bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 0x08 ? -1-IQ1M_DELTA : -1+IQ1M_DELTA;
- const int sumy = dpct::dp4a(q8[2 * l + 1], 0x01010101,
- dpct::dp4a(q8[2 * l + 0], 0x01010101, 0));
- sumf[l/2] += delta*sumy;
- }
-
- iq1m_scale_t scale;
- const uint16_t * sc = (const uint16_t *)bq1->scales;
- scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
- const float d = (float)scale.f16 * bq8_1[ib32].ds[0];
- return d * ((sumi[0] + sumf[0]) * (2*((sc[ib32/2] >> 6*(ib32%2)) & 0x7) + 1) + (sumi[1] + sumf[1]) * (2*((sc[ib32/2] >> (6*(ib32%2)+3)) & 0x7) + 1));
-}
-
-static __dpct_inline__ void get_int_from_table_16(const uint32_t &q4,
- const uint8_t *values,
- int &val1, int &val2) {
-
- uint32_t aux32; const uint8_t * q8 = (const uint8_t *)&aux32;
- aux32 = q4 & 0x0f0f0f0f;
- uint16_t v1 = values[q8[0]] | (values[q8[1]] << 8);
- uint16_t v2 = values[q8[2]] | (values[q8[3]] << 8);
- val1 = v1 | (v2 << 16);
- aux32 = (q4 >> 4) & 0x0f0f0f0f;
- v1 = values[q8[0]] | (values[q8[1]] << 8);
- v2 = values[q8[2]] | (values[q8[3]] << 8);
- val2 = v1 | (v2 << 16);
-}
-
-
-static __dpct_inline__ float
-vec_dot_iq4_nl_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
-
- const block_iq4_nl * bq = (const block_iq4_nl *) vbq;
-
- const uint16_t * q4 = (const uint16_t *)bq->qs + 2*iqs;
- const int32_t * q8 = (const int32_t *)bq8_1->qs + iqs;
-
- const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
-
- int v1, v2;
- int sumi1 = 0, sumi2 = 0;
- for (int l = 0; l < VDR_Q4_0_Q8_1_MMVQ; ++l) {
- const uint32_t aux = q4[2*l] | (q4[2*l+1] << 16);
- get_int_from_table_16(aux, values, v1, v2);
- sumi1 = dpct::dp4a(v1, q8[l + 0], sumi1);
- sumi2 = dpct::dp4a(v2, q8[l + 4], sumi2);
- }
-
- const float d = (float)bq->d * bq8_1->ds[0];
- return d * (sumi1 + sumi2);
-}
-
-
-static __dpct_inline__ float
-vec_dot_iq4_xs_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
-
- const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq;
- const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
-
- // iqs is 0...7
- const int ib32 = iqs;
- const int32_t * q8 = (const int *)bq8_1[ib32].qs;
- const uint32_t * q4 = (const uint32_t *)bq4->qs + 4*ib32;
- const int8_t ls = ((bq4->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((bq4->scales_h >> 2*ib32) & 3) << 4);
- const float d = (float)bq4->d * (ls - 32) * bq8_1[ib32].ds[0];
- int v1, v2;
- int sumi1 = 0, sumi2 = 0;
- for (int j = 0; j < 4; ++j) {
- get_int_from_table_16(q4[j], values, v1, v2);
- sumi1 = dpct::dp4a(v1, q8[j + 0], sumi1);
- sumi2 = dpct::dp4a(v2, q8[j + 4], sumi2);
- }
- return d * (sumi1 + sumi2);
-}
-
-template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x,
- int mmq_y, int nwarps, load_tiles_sycl_t load_tiles, int vdr,
- vec_dot_q_mul_mat_sycl_t vec_dot>
-/*
-DPCT1110:8: The total declared local variable size in device function mul_mat_q
-exceeds 128 bytes and may cause high register pressure. Consult with your
-hardware vendor to find the total register size available and adjust the code,
-or use smaller sub-group size to avoid high register pressure.
-*/
-static __dpct_inline__ void
-mul_mat_q(const void *__restrict__ vx, const void *__restrict__ vy,
- float *__restrict__ dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst,
- int *tile_x_ql, sycl::half2 *tile_x_dm, int *tile_x_qh,
- int *tile_x_sc, const sycl::nd_item<3> &item_ct1, int *tile_y_qs,
- sycl::half2 *tile_y_ds) {
-
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
-
- const int blocks_per_row_x = ncols_x / qk;
- const int blocks_per_col_y = nrows_y / QK8_1;
- const int blocks_per_warp = WARP_SIZE / qi;
-
- const int & ncols_dst = ncols_y;
-
- const int row_dst_0 = item_ct1.get_group(2) * mmq_y;
- const int & row_x_0 = row_dst_0;
-
- const int col_dst_0 = item_ct1.get_group(1) * mmq_x;
- const int & col_y_0 = col_dst_0;
-
- float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {{0.0f}};
-
- for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) {
-
- load_tiles(x + row_x_0 * blocks_per_row_x + ib0, tile_x_ql, tile_x_dm,
- tile_x_qh, tile_x_sc, item_ct1.get_local_id(1),
- nrows_x - row_x_0 - 1, item_ct1.get_local_id(2),
- blocks_per_row_x);
-
-#pragma unroll
- for (int ir = 0; ir < qr; ++ir) {
- const int kqs = ir * WARP_SIZE + item_ct1.get_local_id(2);
- const int kbxd = kqs / QI8_1;
-
-#pragma unroll
- for (int i = 0; i < mmq_x; i += nwarps) {
- const int col_y_eff = dpct::min(
- (unsigned int)(col_y_0 + item_ct1.get_local_id(1) + i),
- ncols_y - 1); // to prevent out-of-bounds memory accesses
-
- const block_q8_1 * by0 = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + kbxd];
-
- const int index_y = (item_ct1.get_local_id(1) + i) * WARP_SIZE +
- kqs % WARP_SIZE;
- tile_y_qs[index_y] = get_int_from_int8_aligned(
- by0->qs, item_ct1.get_local_id(2) % QI8_1);
- }
-
-#pragma unroll
- for (int ids0 = 0; ids0 < mmq_x; ids0 += nwarps * QI8_1) {
- const int ids =
- (ids0 + item_ct1.get_local_id(1) * QI8_1 +
- item_ct1.get_local_id(2) / (WARP_SIZE / QI8_1)) %
- mmq_x;
- const int kby = item_ct1.get_local_id(2) % (WARP_SIZE / QI8_1);
- const int col_y_eff = sycl::min(col_y_0 + ids, ncols_y - 1);
-
- // if the sum is not needed it's faster to transform the scale to f32 ahead of time
- const sycl::half2 *dsi_src =
- &y[col_y_eff * blocks_per_col_y + ib0 * (qk / QK8_1) +
- ir * (WARP_SIZE / QI8_1) + kby]
- .ds;
- sycl::half2 *dsi_dst =
- &tile_y_ds[ids * (WARP_SIZE / QI8_1) + kby];
- if (need_sum) {
- *dsi_dst = *dsi_src;
- } else {
- float * dfi_dst = (float *) dsi_dst;
- *dfi_dst = (*dsi_src)[0];
- }
- }
-
- /*
- DPCT1118:9: SYCL group functions and algorithms must be encountered
- in converged control flow. You may need to adjust the code.
- */
- /*
- DPCT1065:56: Consider replacing sycl::nd_item::barrier() with
- sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
- better performance if there is no access to global memory.
- */
- item_ct1.barrier();
-
-// #pragma unroll // unrolling this loop causes too much register pressure
- for (int k = ir*WARP_SIZE/qr; k < (ir+1)*WARP_SIZE/qr; k += vdr) {
-#pragma unroll
- for (int j = 0; j < mmq_x; j += nwarps) {
-#pragma unroll
- for (int i = 0; i < mmq_y; i += WARP_SIZE) {
- sum[i / WARP_SIZE][j / nwarps] += vec_dot(
- tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc,
- tile_y_qs, tile_y_ds, item_ct1.get_local_id(2) + i,
- item_ct1.get_local_id(1) + j, k);
- }
- }
- }
-
- /*
- DPCT1118:10: SYCL group functions and algorithms must be encountered
- in converged control flow. You may need to adjust the code.
- */
- /*
- DPCT1065:57: Consider replacing sycl::nd_item::barrier() with
- sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
- better performance if there is no access to global memory.
- */
- item_ct1.barrier();
- }
- }
-
-#pragma unroll
- for (int j = 0; j < mmq_x; j += nwarps) {
- const int col_dst = col_dst_0 + j + item_ct1.get_local_id(1);
-
- if (col_dst >= ncols_dst) {
- return;
- }
-
-#pragma unroll
- for (int i = 0; i < mmq_y; i += WARP_SIZE) {
- const int row_dst = row_dst_0 + item_ct1.get_local_id(2) + i;
-
- if (row_dst >= nrows_dst) {
- continue;
- }
-
- dst[col_dst*nrows_dst + row_dst] = sum[i/WARP_SIZE][j/nwarps];
- }
- }
-}
-
-#define MMQ_X_Q4_0_RDNA2 64
-#define MMQ_Y_Q4_0_RDNA2 128
-#define NWARPS_Q4_0_RDNA2 8
-#define MMQ_X_Q4_0_RDNA1 64
-#define MMQ_Y_Q4_0_RDNA1 64
-#define NWARPS_Q4_0_RDNA1 8
-#if defined(SYCL_USE_XMX)
-#define MMQ_X_Q4_0_AMPERE 4
-#define MMQ_Y_Q4_0_AMPERE 32
-#define NWARPS_Q4_0_AMPERE 4
-#else
-#define MMQ_X_Q4_0_AMPERE 64
-#define MMQ_Y_Q4_0_AMPERE 128
-#define NWARPS_Q4_0_AMPERE 4
-#endif
-#define MMQ_X_Q4_0_PASCAL 64
-#define MMQ_Y_Q4_0_PASCAL 64
-#define NWARPS_Q4_0_PASCAL 8
-
-template <bool need_check> static void
- mul_mat_q4_0(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
- const sycl::nd_item<3> &item_ct1, int *tile_x_qs_q4_0, float *tile_x_d_q4_0,
- int *tile_y_qs, sycl::half2 *tile_y_ds) {
- int * tile_x_ql = nullptr;
- sycl::half2 *tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- int * tile_x_sc = nullptr;
-
-//sycl_todo: change according to hardware
-
- const int mmq_x = MMQ_X_Q4_0_AMPERE;
- const int mmq_y = MMQ_Y_Q4_0_AMPERE;
- const int nwarps = NWARPS_Q4_0_AMPERE;
- allocate_tiles_q4_0<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
- tile_x_qs_q4_0, tile_x_d_q4_0);
- mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps,
- load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ,
- vec_dot_q4_0_q8_1_mul_mat>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
- tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
-}
-
-#define MMQ_X_Q4_1_RDNA2 64
-#define MMQ_Y_Q4_1_RDNA2 128
-#define NWARPS_Q4_1_RDNA2 8
-#define MMQ_X_Q4_1_RDNA1 64
-#define MMQ_Y_Q4_1_RDNA1 64
-#define NWARPS_Q4_1_RDNA1 8
-#if defined(SYCL_USE_XMX)
-#define MMQ_X_Q4_1_AMPERE 4
-#define MMQ_Y_Q4_1_AMPERE 32
-#define NWARPS_Q4_1_AMPERE 4
-#else
-#define MMQ_X_Q4_1_AMPERE 64
-#define MMQ_Y_Q4_1_AMPERE 128
-#define NWARPS_Q4_1_AMPERE 4
-#endif
-#define MMQ_X_Q4_1_PASCAL 64
-#define MMQ_Y_Q4_1_PASCAL 64
-#define NWARPS_Q4_1_PASCAL 8
-
-template <bool need_check> static void
- mul_mat_q4_1(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
- const sycl::nd_item<3> &item_ct1, int *tile_x_qs_q4_1,
- sycl::half2 *tile_x_dm_q4_1, int *tile_y_qs, sycl::half2 *tile_y_ds) {
- int * tile_x_ql = nullptr;
- sycl::half2 *tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- int * tile_x_sc = nullptr;
-
-//sycl_todo: change according to hardware
- const int mmq_x = MMQ_X_Q4_1_AMPERE;
- const int mmq_y = MMQ_Y_Q4_1_AMPERE;
- const int nwarps = NWARPS_Q4_1_AMPERE;
- allocate_tiles_q4_1<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
- tile_x_qs_q4_1, tile_x_dm_q4_1);
- mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps,
- load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ,
- vec_dot_q4_1_q8_1_mul_mat>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
- tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
-}
-
-#define MMQ_X_Q5_0_RDNA2 64
-#define MMQ_Y_Q5_0_RDNA2 128
-#define NWARPS_Q5_0_RDNA2 8
-#define MMQ_X_Q5_0_RDNA1 64
-#define MMQ_Y_Q5_0_RDNA1 64
-#define NWARPS_Q5_0_RDNA1 8
-#if defined(SYCL_USE_XMX)
-#define MMQ_X_Q5_0_AMPERE 4
-#define MMQ_Y_Q5_0_AMPERE 32
-#define NWARPS_Q5_0_AMPERE 4
-#else
-#define MMQ_X_Q5_0_AMPERE 128
-#define MMQ_Y_Q5_0_AMPERE 64
-#define NWARPS_Q5_0_AMPERE 4
-#endif
-#define MMQ_X_Q5_0_PASCAL 64
-#define MMQ_Y_Q5_0_PASCAL 64
-#define NWARPS_Q5_0_PASCAL 8
-
-template <bool need_check> static void
- mul_mat_q5_0(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
- const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q5_0, float *tile_x_d_q5_0,
- int *tile_y_qs, sycl::half2 *tile_y_ds) {
- int * tile_x_ql = nullptr;
- sycl::half2 *tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- int * tile_x_sc = nullptr;
-
-//sycl_todo: change according to hardware
- const int mmq_x = MMQ_X_Q5_0_AMPERE;
- const int mmq_y = MMQ_Y_Q5_0_AMPERE;
- const int nwarps = NWARPS_Q5_0_AMPERE;
- allocate_tiles_q5_0<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
- tile_x_ql_q5_0, tile_x_d_q5_0);
- mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps,
- load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ,
- vec_dot_q5_0_q8_1_mul_mat>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
- tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
-}
-
-#define MMQ_X_Q5_1_RDNA2 64
-#define MMQ_Y_Q5_1_RDNA2 128
-#define NWARPS_Q5_1_RDNA2 8
-#define MMQ_X_Q5_1_RDNA1 64
-#define MMQ_Y_Q5_1_RDNA1 64
-#define NWARPS_Q5_1_RDNA1 8
-#if defined(SYCL_USE_XMX)
-#define MMQ_X_Q5_1_AMPERE 4
-#define MMQ_Y_Q5_1_AMPERE 32
-#define NWARPS_Q5_1_AMPERE 4
-#else
-#define MMQ_X_Q5_1_AMPERE 128
-#define MMQ_Y_Q5_1_AMPERE 64
-#define NWARPS_Q5_1_AMPERE 4
-#endif
-#define MMQ_X_Q5_1_PASCAL 64
-#define MMQ_Y_Q5_1_PASCAL 64
-#define NWARPS_Q5_1_PASCAL 8
-
-template <bool need_check> static void
-mul_mat_q5_1(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
- const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q5_1,
- sycl::half2 *tile_x_dm_q5_1, int *tile_y_qs, sycl::half2 *tile_y_ds) {
- int * tile_x_ql = nullptr;
- sycl::half2 *tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- int * tile_x_sc = nullptr;
-
-//sycl_todo: change according to hardware
- const int mmq_x = MMQ_X_Q5_1_AMPERE;
- const int mmq_y = MMQ_Y_Q5_1_AMPERE;
- const int nwarps = NWARPS_Q5_1_AMPERE;
- allocate_tiles_q5_1<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
- tile_x_ql_q5_1, tile_x_dm_q5_1);
- mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps,
- load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ,
- vec_dot_q5_1_q8_1_mul_mat>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
- tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
-}
-
-#define MMQ_X_Q8_0_RDNA2 64
-#define MMQ_Y_Q8_0_RDNA2 128
-#define NWARPS_Q8_0_RDNA2 8
-#define MMQ_X_Q8_0_RDNA1 64
-#define MMQ_Y_Q8_0_RDNA1 64
-#define NWARPS_Q8_0_RDNA1 8
-#if defined(SYCL_USE_XMX)
-#define MMQ_X_Q8_0_AMPERE 4
-#define MMQ_Y_Q8_0_AMPERE 32
-#define NWARPS_Q8_0_AMPERE 4
-#else
-#define MMQ_X_Q8_0_AMPERE 128
-#define MMQ_Y_Q8_0_AMPERE 64
-#define NWARPS_Q8_0_AMPERE 4
-#endif
-#define MMQ_X_Q8_0_PASCAL 64
-#define MMQ_Y_Q8_0_PASCAL 64
-#define NWARPS_Q8_0_PASCAL 8
-
-template <bool need_check> static void
- mul_mat_q8_0(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
- const sycl::nd_item<3> &item_ct1, int *tile_x_qs_q8_0, float *tile_x_d_q8_0,
- int *tile_y_qs, sycl::half2 *tile_y_ds) {
- int * tile_x_ql = nullptr;
- sycl::half2 *tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- int * tile_x_sc = nullptr;
-
-//sycl_todo: change according to hardware
- const int mmq_x = MMQ_X_Q8_0_AMPERE;
- const int mmq_y = MMQ_Y_Q8_0_AMPERE;
- const int nwarps = NWARPS_Q8_0_AMPERE;
- allocate_tiles_q8_0<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
- tile_x_qs_q8_0, tile_x_d_q8_0);
- mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps,
- load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ,
- vec_dot_q8_0_q8_1_mul_mat>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
- tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
-}
-
-#define MMQ_X_Q2_K_RDNA2 64
-#define MMQ_Y_Q2_K_RDNA2 128
-#define NWARPS_Q2_K_RDNA2 8
-#define MMQ_X_Q2_K_RDNA1 128
-#define MMQ_Y_Q2_K_RDNA1 32
-#define NWARPS_Q2_K_RDNA1 8
-#if defined(SYCL_USE_XMX)
-#define MMQ_X_Q2_K_AMPERE 4
-#define MMQ_Y_Q2_K_AMPERE 32
-#define NWARPS_Q2_K_AMPERE 4
-#else
-#define MMQ_X_Q2_K_AMPERE 64
-#define MMQ_Y_Q2_K_AMPERE 128
-#define NWARPS_Q2_K_AMPERE 4
-#endif
-#define MMQ_X_Q2_K_PASCAL 64
-#define MMQ_Y_Q2_K_PASCAL 64
-#define NWARPS_Q2_K_PASCAL 8
-
-template <bool need_check> static void
-mul_mat_q2_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
- const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q2_K,
- sycl::half2 *tile_x_dm_q2_K, int *tile_x_sc_q2_K, int *tile_y_qs,
- sycl::half2 *tile_y_ds) {
- int * tile_x_ql = nullptr;
- sycl::half2 *tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- int * tile_x_sc = nullptr;
-
-//sycl_todo: change according to hardware
- const int mmq_x = MMQ_X_Q2_K_AMPERE;
- const int mmq_y = MMQ_Y_Q2_K_AMPERE;
- const int nwarps = NWARPS_Q2_K_AMPERE;
- allocate_tiles_q2_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
- tile_x_ql_q2_K, tile_x_dm_q2_K, tile_x_sc_q2_K);
- mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps,
- load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ,
- vec_dot_q2_K_q8_1_mul_mat>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
- tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
-}
-
-#define MMQ_X_Q3_K_RDNA2 128
-#define MMQ_Y_Q3_K_RDNA2 64
-#define NWARPS_Q3_K_RDNA2 8
-#define MMQ_X_Q3_K_RDNA1 32
-#define MMQ_Y_Q3_K_RDNA1 128
-#define NWARPS_Q3_K_RDNA1 8
-#if defined(SYCL_USE_XMX)
-#define MMQ_X_Q3_K_AMPERE 4
-#define MMQ_Y_Q3_K_AMPERE 32
-#define NWARPS_Q3_K_AMPERE 4
-#else
-#define MMQ_X_Q3_K_AMPERE 128
-#define MMQ_Y_Q3_K_AMPERE 128
-#define NWARPS_Q3_K_AMPERE 4
-#endif
-#define MMQ_X_Q3_K_PASCAL 64
-#define MMQ_Y_Q3_K_PASCAL 64
-#define NWARPS_Q3_K_PASCAL 8
-
-template <bool need_check> static void
-mul_mat_q3_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
- const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q3_K,
- sycl::half2 *tile_x_dm_q3_K, int *tile_x_qh_q3_K, int *tile_x_sc_q3_K,
- int *tile_y_qs, sycl::half2 *tile_y_ds) {
- int * tile_x_ql = nullptr;
- sycl::half2 *tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- int * tile_x_sc = nullptr;
-
-//sycl_todo: change according to hardware
- const int mmq_x = MMQ_X_Q3_K_AMPERE;
- const int mmq_y = MMQ_Y_Q3_K_AMPERE;
- const int nwarps = NWARPS_Q3_K_AMPERE;
- allocate_tiles_q3_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
- tile_x_ql_q3_K, tile_x_dm_q3_K, tile_x_qh_q3_K,
- tile_x_sc_q3_K);
- mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps,
- load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ,
- vec_dot_q3_K_q8_1_mul_mat>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
- tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
-}
-
-#define MMQ_X_Q4_K_RDNA2 64
-#define MMQ_Y_Q4_K_RDNA2 128
-#define NWARPS_Q4_K_RDNA2 8
-#define MMQ_X_Q4_K_RDNA1 32
-#define MMQ_Y_Q4_K_RDNA1 64
-#define NWARPS_Q4_K_RDNA1 8
-#if defined(SYCL_USE_XMX)
-#define MMQ_X_Q4_K_AMPERE 4
-#define MMQ_Y_Q4_K_AMPERE 32
-#define NWARPS_Q4_K_AMPERE 4
-#else
-#define MMQ_X_Q4_K_AMPERE 64
-#define MMQ_Y_Q4_K_AMPERE 128
-#define NWARPS_Q4_K_AMPERE 4
-#endif
-#define MMQ_X_Q4_K_PASCAL 64
-#define MMQ_Y_Q4_K_PASCAL 64
-#define NWARPS_Q4_K_PASCAL 8
-
-template <bool need_check> static void
- mul_mat_q4_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
- const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q4_K,
- sycl::half2 *tile_x_dm_q4_K, int *tile_x_sc_q4_K, int *tile_y_qs,
- sycl::half2 *tile_y_ds) {
- int * tile_x_ql = nullptr;
- sycl::half2 *tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- int * tile_x_sc = nullptr;
-
-//sycl_todo: change according to hardware
- const int mmq_x = MMQ_X_Q4_K_AMPERE;
- const int mmq_y = MMQ_Y_Q4_K_AMPERE;
- const int nwarps = NWARPS_Q4_K_AMPERE;
- allocate_tiles_q4_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
- tile_x_ql_q4_K, tile_x_dm_q4_K, tile_x_sc_q4_K);
- mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps,
- load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ,
- vec_dot_q4_K_q8_1_mul_mat>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
- tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
-}
-
-#define MMQ_X_Q5_K_RDNA2 64
-#define MMQ_Y_Q5_K_RDNA2 128
-#define NWARPS_Q5_K_RDNA2 8
-#define MMQ_X_Q5_K_RDNA1 32
-#define MMQ_Y_Q5_K_RDNA1 64
-#define NWARPS_Q5_K_RDNA1 8
-#if defined(SYCL_USE_XMX)
-#define MMQ_X_Q5_K_AMPERE 4
-#define MMQ_Y_Q5_K_AMPERE 32
-#define NWARPS_Q5_K_AMPERE 4
-#else
-#define MMQ_X_Q5_K_AMPERE 64
-#define MMQ_Y_Q5_K_AMPERE 128
-#define NWARPS_Q5_K_AMPERE 4
-#endif
-#define MMQ_X_Q5_K_PASCAL 64
-#define MMQ_Y_Q5_K_PASCAL 64
-#define NWARPS_Q5_K_PASCAL 8
-
-template <bool need_check> static void
-mul_mat_q5_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
- const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q5_K,
- sycl::half2 *tile_x_dm_q5_K, int *tile_x_sc_q5_K, int *tile_y_qs,
- sycl::half2 *tile_y_ds) {
- int * tile_x_ql = nullptr;
- sycl::half2 *tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- int * tile_x_sc = nullptr;
-
-//sycl_todo: change according to hardware
- const int mmq_x = MMQ_X_Q5_K_AMPERE;
- const int mmq_y = MMQ_Y_Q5_K_AMPERE;
- const int nwarps = NWARPS_Q5_K_AMPERE;
- allocate_tiles_q5_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
- tile_x_ql_q5_K, tile_x_dm_q5_K, tile_x_sc_q5_K);
- mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps,
- load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ,
- vec_dot_q5_K_q8_1_mul_mat>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
- tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
-}
-
-#define MMQ_X_Q6_K_RDNA2 64
-#define MMQ_Y_Q6_K_RDNA2 128
-#define NWARPS_Q6_K_RDNA2 8
-#define MMQ_X_Q6_K_RDNA1 32
-#define MMQ_Y_Q6_K_RDNA1 64
-#define NWARPS_Q6_K_RDNA1 8
-#if defined(SYCL_USE_XMX)
-#define MMQ_X_Q6_K_AMPERE 4
-#define MMQ_Y_Q6_K_AMPERE 32
-#define NWARPS_Q6_K_AMPERE 4
-#else
-#define MMQ_X_Q6_K_AMPERE 64
-#define MMQ_Y_Q6_K_AMPERE 64
-#define NWARPS_Q6_K_AMPERE 4
-#endif
-#define MMQ_X_Q6_K_PASCAL 64
-#define MMQ_Y_Q6_K_PASCAL 64
-#define NWARPS_Q6_K_PASCAL 8
-
-template <bool need_check> static void
- mul_mat_q6_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
- const sycl::nd_item<3> &item_ct1, int *tile_x_ql, sycl::half2 *tile_x_dm,
- int *tile_x_sc, int *tile_y_qs, sycl::half2 *tile_y_ds) {
- // int * tile_x_ql = nullptr;
- // sycl::half2 *tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- // int * tile_x_sc = nullptr;
-
-//sycl_todo: change according to hardware
- const int mmq_x = MMQ_X_Q6_K_AMPERE;
- const int mmq_y = MMQ_Y_Q6_K_AMPERE;
- const int nwarps = NWARPS_Q6_K_AMPERE;
- allocate_tiles_q6_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
- tile_x_ql, tile_x_dm, tile_x_sc);
- mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps,
- load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ,
- vec_dot_q6_K_q8_1_mul_mat>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
- tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
-}
-
-template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_sycl_t vec_dot_q_sycl>
-static void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols, const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
-
- if (row >= nrows) {
- return;
- }
-
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
-
- const int qi_vdr = (qi / vdr); // N_threads processing 1 qk block
-
- // partial sum for each thread
- float tmp = 0.0f;
-
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
-
- for (int i = item_ct1.get_local_id(2) / qi_vdr; i < blocks_per_row;
- i += blocks_per_warp) {
- const int ibx = row * blocks_per_row + i; // x block index
-
- const int iby = i * (qk / QK8_1); // y block index that aligns with ibx
-
- const int iqs =
- vdr *
- (item_ct1.get_local_id(2) -
- i * qi_vdr); // x block quant index when casting the quants to int
-
- tmp += vec_dot_q_sycl(&x[ibx], &y[iby], iqs);
- }
-
- // sum up partial sums and write back result
-#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
-
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
-}
-
-template <int qk, int qi, typename block_q_t, int vdr>
-static void mul_mat_vec_q_iq2_xxs_q8_1(const void *__restrict__ vx,
- const void *__restrict__ vy,
- float *__restrict__ dst, const int ncols,
- const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
-
- if (row >= nrows) {
- return;
- }
-
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
-
-// partial sum for each thread
- float tmp = 0.0f;
-
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
-
- for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row;
- i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i; // x block index
-
- const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
-
- const int iqs =
- vdr *
- (item_ct1.get_local_id(2) %
- (qi / vdr)); // x block quant index when casting the quants to int
-
- tmp += vec_dot_iq2_xxs_q8_1(&x[ibx], &y[iby], iqs, iq2xxs_grid, ksigns_iq2xs, kmask_iq2xs);
- }
-
- // sum up partial sums and write back result
-#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
-
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
-}
-
-template <int qk, int qi, typename block_q_t, int vdr>
-static void mul_mat_vec_q_iq2_xs_q8_1(const void *__restrict__ vx,
- const void *__restrict__ vy,
- float *__restrict__ dst, const int ncols,
- const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
-
- if (row >= nrows) {
- return;
- }
-
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
-
-// partial sum for each thread
- float tmp = 0.0f;
-
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
-
- for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row;
- i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i; // x block index
-
- const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
-
- const int iqs =
- vdr *
- (item_ct1.get_local_id(2) %
- (qi / vdr)); // x block quant index when casting the quants to int
-
- tmp += vec_dot_iq2_xs_q8_1(&x[ibx], &y[iby], iqs, iq2xs_grid, ksigns64);
- }
-
- // sum up partial sums and write back result
-#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
-
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
-}
-
-template <int qk, int qi, typename block_q_t, int vdr>
-static void mul_mat_vec_q_iq2_s_q8_1(const void *__restrict__ vx,
- const void *__restrict__ vy,
- float *__restrict__ dst, const int ncols,
- const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
-
- if (row >= nrows) {
- return;
- }
-
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
-
-// partial sum for each thread
- float tmp = 0.0f;
-
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
-
- for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row;
- i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i; // x block index
-
- const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
-
- const int iqs =
- vdr *
- (item_ct1.get_local_id(2) %
- (qi / vdr)); // x block quant index when casting the quants to int
-
- tmp += vec_dot_iq2_s_q8_1(&x[ibx], &y[iby], iqs);
- }
-
- // sum up partial sums and write back result
-#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
-
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
-}
-
-template <int qk, int qi, typename block_q_t, int vdr>
-static void mul_mat_vec_q_iq3_xxs_q8_1(const void *__restrict__ vx,
- const void *__restrict__ vy,
- float *__restrict__ dst, const int ncols,
- const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
-
- if (row >= nrows) {
- return;
- }
-
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
-
-// partial sum for each thread
- float tmp = 0.0f;
-
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
-
- for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row;
- i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i; // x block index
-
- const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
-
- const int iqs =
- vdr *
- (item_ct1.get_local_id(2) %
- (qi / vdr)); // x block quant index when casting the quants to int
-
- tmp += vec_dot_iq3_xxs_q8_1(&x[ibx], &y[iby], iqs, iq3xxs_grid, ksigns64);
- }
-
- // sum up partial sums and write back result
-#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
-
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
-}
-
-template <int qk, int qi, typename block_q_t, int vdr>
-static void mul_mat_vec_q_iq3_s_q8_1(const void *__restrict__ vx,
- const void *__restrict__ vy,
- float *__restrict__ dst, const int ncols,
- const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
-
- if (row >= nrows) {
- return;
- }
-
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
-
-// partial sum for each thread
- float tmp = 0.0f;
-
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
-
- for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row;
- i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i; // x block index
-
- const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
-
- const int iqs =
- vdr *
- (item_ct1.get_local_id(2) %
- (qi / vdr)); // x block quant index when casting the quants to int
-
- tmp += vec_dot_iq3_s_q8_1(&x[ibx], &y[iby], iqs, iq3s_grid);
- }
-
- // sum up partial sums and write back result
-#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
-
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
-}
-
-template <int qk, int qi, typename block_q_t, int vdr>
-static void mul_mat_vec_q_iq1_s_q8_1(const void *__restrict__ vx,
- const void *__restrict__ vy,
- float *__restrict__ dst, const int ncols,
- const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
-
- if (row >= nrows) {
- return;
- }
-
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
-
-// partial sum for each thread
- float tmp = 0.0f;
-
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
-
- for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row;
- i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i; // x block index
-
- const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
-
- const int iqs =
- vdr *
- (item_ct1.get_local_id(2) %
- (qi / vdr)); // x block quant index when casting the quants to int
-
- tmp += vec_dot_iq1_s_q8_1(&x[ibx], &y[iby], iqs, iq1s_grid_gpu);
- }
-
- // sum up partial sums and write back result
-#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
-
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
-}
-
-template <int qk, int qi, typename block_q_t, int vdr>
-static void mul_mat_vec_q_iq1_m_q8_1(const void *__restrict__ vx,
- const void *__restrict__ vy,
- float *__restrict__ dst, const int ncols,
- const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
-
- if (row >= nrows) {
- return;
- }
-
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
-
-// partial sum for each thread
- float tmp = 0.0f;
-
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
-
- for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row;
- i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i; // x block index
-
- const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
-
- const int iqs =
- vdr *
- (item_ct1.get_local_id(2) %
- (qi / vdr)); // x block quant index when casting the quants to int
-
- tmp += vec_dot_iq1_m_q8_1(&x[ibx], &y[iby], iqs);
- }
-
- // sum up partial sums and write back result
-#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
-
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
-}
-
-template <int qk, int qi, typename block_q_t, int vdr>
-static void mul_mat_vec_q_iq4_nl_q8_1(const void *__restrict__ vx,
- const void *__restrict__ vy,
- float *__restrict__ dst, const int ncols,
- const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
-
- if (row >= nrows) {
- return;
- }
-
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
-
-// partial sum for each thread
- float tmp = 0.0f;
-
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
-
- for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row;
- i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i; // x block index
-
- const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
-
- const int iqs =
- vdr *
- (item_ct1.get_local_id(2) %
- (qi / vdr)); // x block quant index when casting the quants to int
-
- tmp += vec_dot_iq4_nl_q8_1(&x[ibx], &y[iby], iqs);
- }
-
- // sum up partial sums and write back result
-#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
-
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
-}
-
-
-template <int qk, int qi, typename block_q_t, int vdr>
-static void mul_mat_vec_q_iq4_xs_q8_1(const void *__restrict__ vx,
- const void *__restrict__ vy,
- float *__restrict__ dst, const int ncols,
- const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
-
- if (row >= nrows) {
- return;
- }
-
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
-
-// partial sum for each thread
- float tmp = 0.0f;
-
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
-
- for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row;
- i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i; // x block index
-
- const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
-
- const int iqs =
- vdr *
- (item_ct1.get_local_id(2) %
- (qi / vdr)); // x block quant index when casting the quants to int
-
- tmp += vec_dot_iq4_xs_q8_1(&x[ibx], &y[iby], iqs);
- }
-
- // sum up partial sums and write back result
-#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
-
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
-}
-
-
-template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
-static void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- // qk = quantized weights per x block
- // qr = number of quantized weights per data value in x block
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
-
- if (row >= nrows) {
- return;
- }
-
- const int tid = item_ct1.get_local_id(2);
-
- const int iter_stride = 2*GGML_SYCL_DMMV_X;
- const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
- const int y_offset = qr == 1 ? 1 : qk/2;
-
-// partial sum for each thread
-#ifdef GGML_SYCL_F16
- sycl::half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
-#else
- float tmp = 0.0f;
-#endif // GGML_SYCL_F16
-
- for (int i = 0; i < ncols; i += iter_stride) {
- const int col = i + vals_per_iter*tid;
- const int ib = (row*ncols + col)/qk; // x block index
- const int iqs = (col%qk)/qr; // x quant index
- const int iybs = col - col%qk; // y block start index
-
-// processing >2 values per i iter is faster for fast GPUs
-#pragma unroll
- for (int j = 0; j < vals_per_iter; j += 2) {
- // process 2 vals per j iter
-
- // dequantize
- // for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
- dfloat2 v;
- dequantize_kernel(vx, ib, iqs + j/qr, v);
-
- // matrix multiplication
- // for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
-#ifdef GGML_SYCL_F16
- dfloat2 t1{y[iybs + iqs + j / qr + 0],
- y[iybs + iqs + j / qr + y_offset]};
-
- tmp += v * t1;
-#else
- tmp += v.x() * y[iybs + iqs + j / qr + 0];
- tmp += v.y() * y[iybs + iqs + j / qr + y_offset];
-#endif // GGML_SYCL_F16
- }
- }
-
- // sum up partial sums and write back result
-#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
-
- if (tid == 0) {
-#ifdef GGML_SYCL_F16
- dst[row] = tmp.x() + tmp.y();
-#else
- dst[row] = tmp;
-#endif // GGML_SYCL_F16
- }
-}
-
-static void mul_mat_p021_f16_f32(
- const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y,
- const sycl::nd_item<3> &item_ct1) {
-
- const sycl::half *x = (const sycl::half *)vx;
-
- const int row_x = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1);
- const int channel = item_ct1.get_local_range(0) * item_ct1.get_group(0) +
- item_ct1.get_local_id(0);
- const int channel_x = channel / (nchannels_y / nchannels_x);
-
- const int nrows_y = ncols_x;
- const int nrows_dst = nrows_x;
- const int row_dst = row_x;
-
- float tmp = 0.0f;
-
- for (int col_x0 = 0; col_x0 < ncols_x;
- col_x0 += item_ct1.get_local_range(2)) {
- const int col_x = col_x0 + item_ct1.get_local_id(2);
-
- if (col_x >= ncols_x) {
- break;
- }
-
- // x is transposed and permuted
- const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
- const float xi =
- sycl::vec<sycl::half, 1>(x[ix])
- .convert<float, sycl::rounding_mode::automatic>()[0];
-
- const int row_y = col_x;
-
-
- // y is not transposed but permuted
- const int iy = channel*nrows_y + row_y;
-
- tmp += xi * y[iy];
- }
-
- // dst is not transposed and not permuted
- const int idst = channel*nrows_dst + row_dst;
-
- // sum up partial sums and write back result
-#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
-
- if (item_ct1.get_local_id(2) == 0) {
- dst[idst] = tmp;
- }
-}
-
-static void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
- const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
- const int row_stride_x, const int channel_stride_x, const int channel_x_divisor,
- const sycl::nd_item<3> &item_ct1) {
-
- const sycl::half *x = (const sycl::half *)vx;
-
- const int row_x = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1);
- const int channel = item_ct1.get_local_range(0) * item_ct1.get_group(0) +
- item_ct1.get_local_id(0);
- const int channel_x = channel / channel_x_divisor;
-
- const int nrows_y = ncols_x;
- const int nrows_dst = nrows_x;
- const int row_dst = row_x;
-
- const int idst = channel*nrows_dst + row_dst;
-
- float tmp = 0.0f;
-
- for (int col_x0 = 0; col_x0 < ncols_x;
- col_x0 += item_ct1.get_local_range(2)) {
- const int col_x = col_x0 + item_ct1.get_local_id(2);
-
- if (col_x >= ncols_x) {
- break;
- }
-
- const int row_y = col_x;
-
- const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
- const int iy = channel*nrows_y + row_y;
-
- const float xi =
- sycl::vec<sycl::half, 1>(x[ix])
- .convert<float, sycl::rounding_mode::automatic>()[0];
-
- tmp += xi * y[iy];
- }
-
- // sum up partial sums and write back result
-#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
-
- if (item_ct1.get_local_id(2) == 0) {
- dst[idst] = tmp;
- }
-}
-
-static void cpy_1_f32_f32(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- float * dsti = (float *) cdsti;
-
- *dsti = *xi;
-}
-
-static void cpy_1_f32_f16(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- sycl::half *dsti = (sycl::half *)cdsti;
-
- *dsti = sycl::vec<float, 1>(*xi)
- .convert<sycl::half, sycl::rounding_mode::automatic>()[0];
-}
-
-static void cpy_1_f16_f16(const char * cxi, char * cdsti) {
- const sycl::half *xi = (const sycl::half *)cxi;
- sycl::half *dsti = (sycl::half *)cdsti;
-
- *dsti = *xi;
-}
-
-static void cpy_1_f16_f32(const char * cxi, char * cdsti) {
- const sycl::half *xi = (const sycl::half *)cxi;
- float * dsti = (float *) cdsti;
-
- *dsti = *xi;
-}
-
-static void cpy_1_i16_i16(const char * cxi, char * cdsti) {
- const int16_t *xi = (const int16_t *)cxi;
- int16_t *dsti = (int16_t *)cdsti;
-
- *dsti = *xi;
-}
-
-static void cpy_1_i32_i32(const char * cxi, char * cdsti) {
- const int32_t *xi = (const int32_t *)cxi;
- int32_t *dsti = (int32_t *)cdsti;
-
- *dsti = *xi;
-}
-
-template <cpy_kernel_t cpy_1>
-static void cpy_f32_f16(const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
- const int nb12, const int nb13, const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
-
- if (i >= ne) {
- return;
- }
-
- // determine indices i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
- // then combine those indices with the corresponding byte offsets to get the total offsets
- const int i03 = i/(ne00 * ne01 * ne02);
- const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
- const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
- const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
- const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
-
- const int i13 = i/(ne10 * ne11 * ne12);
- const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
- const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
- const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
- const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
-
- cpy_1(cx + x_offset, cdst + dst_offset);
-}
-
-static void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- block_q8_0 * dsti = (block_q8_0 *) cdsti;
-
- float amax = 0.0f; // absolute max
-
- for (int j = 0; j < QK8_0; j++) {
- const float v = xi[j];
- amax = sycl::fmax(amax, sycl::fabs((float)v));
- }
-
- const float d = amax / ((1 << 7) - 1);
- const float id = d ? 1.0f/d : 0.0f;
-
- dsti->d = d;
-
- for (int j = 0; j < QK8_0; ++j) {
- const float x0 = xi[j]*id;
-
- dsti->qs[j] = sycl::round((float)x0);
- }
-}
-
-static void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- block_q4_0 * dsti = (block_q4_0 *) cdsti;
-
- float amax = 0.0f;
- float vmax = 0.0f;
-
- for (int j = 0; j < QK4_0; ++j) {
- const float v = xi[j];
- if (amax < sycl::fabs((float)v)) {
- amax = sycl::fabs((float)v);
- vmax = v;
- }
- }
-
- const float d = vmax / -8;
- const float id = d ? 1.0f/d : 0.0f;
-
- dsti->d = d;
-
- for (int j = 0; j < QK4_0/2; ++j) {
- const float x0 = xi[0 + j]*id;
- const float x1 = xi[QK4_0/2 + j]*id;
-
- const uint8_t xi0 = dpct::min(15, (int8_t)(x0 + 8.5f));
- const uint8_t xi1 = dpct::min(15, (int8_t)(x1 + 8.5f));
-
- dsti->qs[j] = xi0;
- dsti->qs[j] |= xi1 << 4;
- }
-}
-
-static void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- block_q4_1 * dsti = (block_q4_1 *) cdsti;
-
- float vmin = FLT_MAX;
- float vmax = -FLT_MAX;
-
- for (int j = 0; j < QK4_1; ++j) {
- const float v = xi[j];
-
- if (v < vmin) vmin = v;
- if (v > vmax) vmax = v;
- }
-
- const float d = (vmax - vmin) / ((1 << 4) - 1);
- const float id = d ? 1.0f/d : 0.0f;
-
- dsti->dm.x() = d;
- dsti->dm.y() = vmin;
-
- for (int j = 0; j < QK4_1/2; ++j) {
- const float x0 = (xi[0 + j] - vmin)*id;
- const float x1 = (xi[QK4_1/2 + j] - vmin)*id;
-
- const uint8_t xi0 = dpct::min(15, (int8_t)(x0 + 0.5f));
- const uint8_t xi1 = dpct::min(15, (int8_t)(x1 + 0.5f));
-
- dsti->qs[j] = xi0;
- dsti->qs[j] |= xi1 << 4;
- }
-}
-
-template <cpy_kernel_t cpy_blck, int qk>
-static void cpy_f32_q(const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
- const int nb12, const int nb13, const sycl::nd_item<3> &item_ct1) {
- const int i = (item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2)) *
- qk;
-
- if (i >= ne) {
- return;
- }
-
- const int i03 = i/(ne00 * ne01 * ne02);
- const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
- const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
- const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
- const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
-
- const int i13 = i/(ne10 * ne11 * ne12);
- const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
- const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
- const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
- const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
-
- cpy_blck(cx + x_offset, cdst + dst_offset);
-}
-
-static float rope_yarn_ramp(const float low, const float high, const int i0) {
- const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low);
- return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y));
-}
-
-struct rope_corr_dims {
- float v[4];
-};
-
-// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
-// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
-static void rope_yarn(
- float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
- float * cos_theta, float * sin_theta
-) {
- // Get n-d rotational scaling corrected for extrapolation
- float theta_interp = freq_scale * theta_extrap;
- float theta = theta_interp;
- if (ext_factor != 0.0f) {
- float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
- theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
-
- // Get n-d magnitude scaling corrected for interpolation
- mscale *= 1.0f + 0.1f * sycl::log(1.0f / freq_scale);
- }
- *cos_theta = sycl::cos(theta) * mscale;
- *sin_theta = sycl::sin(theta) * mscale;
-}
-
-// rope == RoPE == rotary positional embedding
-template<typename T, bool has_pos>
-static void rope(
- const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
- float ext_factor, float attn_factor, rope_corr_dims corr_dims
-,
- const sycl::nd_item<3> &item_ct1) {
- const int col = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1));
-
- if (col >= ncols) {
- return;
- }
-
- const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- const int i = row*ncols + col;
- const int i2 = row/p_delta_rows;
-
- const int p = has_pos ? pos[i2] : 0;
- const float theta_base = p * dpct::pow(freq_base, -float(col) / ncols);
-
- float cos_theta, sin_theta;
- rope_yarn(theta_base, freq_scale, corr_dims, col, ext_factor, attn_factor, &cos_theta, &sin_theta);
-
- const float x0 = x[i + 0];
- const float x1 = x[i + 1];
-
- dst[i + 0] = x0*cos_theta - x1*sin_theta;
- dst[i + 1] = x0*sin_theta + x1*cos_theta;
-}
-
-template<typename T, bool has_pos, bool has_freq_facs>
-static void rope_neox(
- const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
- float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims,
- const float * freq_factors, const sycl::nd_item<3> &item_ct1) {
- const int col = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1));
-
- if (col >= ncols) {
- return;
- }
-
- const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- const int ib = col / n_dims;
- const int ic = col % n_dims;
-
- if (ib > 0) {
- const int i = row*ncols + ib*n_dims + ic;
-
- dst[i + 0] = x[i + 0];
- dst[i + 1] = x[i + 1];
-
- return;
- }
-
- const int i = row*ncols + ib*n_dims + ic/2;
- const int i2 = row/p_delta_rows;
-
- float cur_rot = inv_ndims * ic - ib;
-
- const int p = has_pos ? pos[i2] : 0;
- const float freq_factor = has_freq_facs ? freq_factors[ic/2] : 1.0f;
-
- const float theta_base =
- p * freq_scale * dpct::pow(theta_scale, col / 2.0f)/freq_factor;
-
- float cos_theta, sin_theta;
- rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
-
- const float x0 = x[i + 0];
- const float x1 = x[i + n_dims/2];
-
- dst[i + 0] = x0*cos_theta - x1*sin_theta;
- dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
-}
-
-static void k_sum_rows_f32(const float * x, float * dst, const int ncols,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(1);
- const int col = item_ct1.get_local_id(2);
-
- float sum = 0.0f;
- for (int i = col; i < ncols; i += item_ct1.get_local_range(2)) {
- sum += x[row * ncols + i];
- }
-
- sum = warp_reduce_sum(sum, item_ct1);
-
- if (col == 0) {
- dst[row] = sum;
- }
-}
-
-
-template<typename T>
-static inline void ggml_sycl_swap(T & a, T & b) {
- T tmp = a;
- a = b;
- b = tmp;
-}
-
-template <ggml_sort_order order>
-__dpct_inline__ static void
-k_argsort_f32_i32(const float *x, int *dst, const int ncols, int ncols_pad,
- const sycl::nd_item<3> &item_ct1, uint8_t *dpct_local) {
- // bitonic sort
- int col = item_ct1.get_local_id(2);
- int row = item_ct1.get_group(1);
-
- if (col >= ncols_pad) {
- return;
- }
-
- const float * x_row = x + row * ncols;
- auto dst_row = (int *)dpct_local;
-
- // initialize indices
- dst_row[col] = col;
-
- item_ct1.barrier(sycl::access::fence_space::local_space);
-
- for (int k = 2; k <= ncols_pad; k *= 2) {
- for (int j = k / 2; j > 0; j /= 2) {
- int ixj = col ^ j;
- if (ixj > col) {
- if ((col & k) == 0) {
- if (dst_row[col] >= ncols ||
- (dst_row[ixj] < ncols && (order == GGML_SORT_ORDER_ASC ?
- x_row[dst_row[col]] > x_row[dst_row[ixj]] :
- x_row[dst_row[col]] < x_row[dst_row[ixj]]))
- ) {
- ggml_sycl_swap(dst_row[col], dst_row[ixj]);
- }
- } else {
- if (dst_row[ixj] >= ncols ||
- (dst_row[col] < ncols && (order == GGML_SORT_ORDER_ASC ?
- x_row[dst_row[col]] < x_row[dst_row[ixj]] :
- x_row[dst_row[col]] > x_row[dst_row[ixj]]))
- ) {
- ggml_sycl_swap(dst_row[col], dst_row[ixj]);
- }
- }
- }
- /*
- DPCT1118:1: SYCL group functions and algorithms must be encountered
- in converged control flow. You may need to adjust the code.
- */
- item_ct1.barrier(sycl::access::fence_space::local_space);
- }
- }
-
- // copy the result to dst without the padding
- if (col < ncols) {
- dst[row * ncols + col] = dst_row[col];
- }
-}
-
-
-static void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past,
- const sycl::nd_item<3> &item_ct1) {
- const int col = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1);
- const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
-
- if (col >= ncols) {
- return;
- }
-
- const int i = row*ncols + col;
- //dst[i] = col > (n_past + row % rows_per_channel) ? -INFINITY : x[i];
- //dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
- dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
-}
-
-
-template <bool vals_smem, int ncols_template, int block_size_template>
-static void soft_max_f32(const float * x, const float * mask, float * dst, const int ncols_par,
- const int nrows_y, const float scale, const float max_bias, const float m0,
- const float m1, uint32_t n_head_log2, const sycl::nd_item<3> &item_ct1, float *buf) {
- const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
-
- const int tid = item_ct1.get_local_id(2);
- const int rowx = item_ct1.get_group(2);
- const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension
-
- const int block_size = block_size_template == 0 ? item_ct1.get_local_range(2) : block_size_template;
-
- const int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
- const int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
-
- float slope = 1.0f;
-
- // ALiBi
- if (max_bias > 0.0f) {
- const uint32_t h = rowx/nrows_y; // head index
-
- const float base = h < n_head_log2 ? m0 : m1;
- const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
-
- slope = sycl::pow(base, float(exp));
- }
-
- float * vals = vals_smem ? buf + WARP_SIZE : dst + rowx*ncols;
- float max_val = -INFINITY;
-
- for (int col0 = 0; col0 < ncols; col0 += block_size) {
- const int col = col0 + tid;
-
- if (ncols_template == 0 && col >= ncols) {
- break;
- }
-
- const int ix = rowx*ncols + col;
- const int iy = rowy*ncols + col;
-
- const float val = x[ix]*scale + (mask ? slope*mask[iy] : 0.0f);
-
- vals[col] = val;
- max_val = sycl::max(max_val, val);
- }
-
- // find the max value in the block
- max_val = warp_reduce_max(max_val, item_ct1);
- if (block_size > WARP_SIZE) {
- if (warp_id == 0) {
- buf[lane_id] = -INFINITY;
- }
- item_ct1.barrier(sycl::access::fence_space::local_space);
-
- if (lane_id == 0) {
- buf[warp_id] = max_val;
- }
- item_ct1.barrier(sycl::access::fence_space::local_space);
-
- max_val = buf[lane_id];
- max_val = warp_reduce_max(max_val, item_ct1);
- }
-
- float tmp = 0.f;
-
-#pragma unroll
- for (int col0 = 0; col0 < ncols; col0 += block_size) {
- const int col = col0 + tid;
- if (ncols_template == 0 && col >= ncols) {
- break;
- }
-
- const float val = sycl::native::exp(vals[col] - max_val);
- tmp += val;
- vals[col] = val;
- }
-
- // find the sum of exps in the block
- tmp = warp_reduce_sum(tmp, item_ct1);
- if (block_size > WARP_SIZE) {
- item_ct1.barrier(sycl::access::fence_space::local_space);
- if (warp_id == 0) {
- buf[lane_id] = 0.f;
- }
- item_ct1.barrier(sycl::access::fence_space::local_space);
-
- if (lane_id == 0) {
- buf[warp_id] = tmp;
- }
- item_ct1.barrier(sycl::access::fence_space::local_space);
-
- tmp = buf[lane_id];
- tmp = warp_reduce_sum(tmp, item_ct1);
- }
-
- const float inv_sum = 1.f / tmp;
-
-#pragma unroll
- for (int col0 = 0; col0 < ncols; col0 += block_size) {
- const int col = col0 + tid;
-
- if (ncols_template == 0 && col >= ncols) {
- return;
- }
-
- const int idst = rowx*ncols + col;
- dst[idst] = vals[col] * inv_sum;
- }
-}
-
-static void scale_f32(const float * x, float * dst, const float scale, const int k,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
-
- if (i >= k) {
- return;
- }
-
- dst[i] = scale * x[i];
-}
-
-static void clamp_f32(const float * x, float * dst, const float min, const float max, const int k,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
-
- if (i >= k) {
- return;
- }
-
- dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
-}
-
-template <typename T>
-static void im2col_kernel(const float *x, T *dst, int offset_delta,
- int IW, int IH, int OW, int KW, int KH,
- int pelements, int CHW, int s0, int s1, int p0,
- int p1, int d0, int d1,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_id(2) +
- item_ct1.get_group(2) * item_ct1.get_local_range(2);
- if (i >= pelements) {
- return;
- }
-
- const int ksize = OW * (KH > 1 ? KW : 1);
- const int kx = i / ksize;
- const int kd = kx * ksize;
- const int ky = (i - kd) / OW;
- const int ix = i % OW;
-
- const int64_t iiw = ix * s0 + kx * d0 - p0;
- const int64_t iih = item_ct1.get_group(1) * s1 + ky * d1 - p1;
-
- const int64_t offset_dst =
- (item_ct1.get_group(1) * OW + ix) * CHW +
- (item_ct1.get_group(0) * (KW * KH) + ky * KW + kx);
-
- if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
- dst[offset_dst] =
- sycl::vec<float, 1>(0.0f)
- .convert<sycl::half, sycl::rounding_mode::automatic>()[0];
- } else {
- const int64_t offset_src = item_ct1.get_group(0) * offset_delta;
- dst[offset_dst] =
- sycl::vec<float, 1>(x[offset_src + iih * IW + iiw])
- .convert<sycl::half, sycl::rounding_mode::automatic>()[0];
- }
-}
-
-template <typename Ti, typename To>
-static void pool2d_nchw_kernel(
- const int ih, const int iw, const int oh, const int ow,
- const int kh, const int kw, const int sh, const int sw,
- const int ph, const int pw, const int parallel_elements,
- const Ti* src, To* dst, const enum ggml_op_pool op,
- const sycl::nd_item<3> &item_ct1) {
- int idx = item_ct1.get_local_id(2) +
- item_ct1.get_group(2) * item_ct1.get_local_range(2);
- if (idx >= parallel_elements) {
- return;
- }
-
- const int I_HW = ih * iw;
- const int O_HW = oh * ow;
- const int nc = idx / O_HW;
- const int cur_oh = idx % O_HW / ow;
- const int cur_ow = idx % O_HW % ow;
- const Ti* i_ptr = src + nc * I_HW;
- To* o_ptr = dst + nc * O_HW;
- const int start_h = cur_oh * sh - ph;
- const int bh = sycl::max(0, start_h);
- const int eh = sycl::min(ih, start_h + kh);
- const int start_w = cur_ow * sw - pw;
- const int bw = sycl::max(0, start_w);
- const int ew = sycl::min(iw, start_w + kw);
-
- To res = 0;
-
- switch (op) {
- case GGML_OP_POOL_AVG: res = 0; break;
- case GGML_OP_POOL_MAX: res = -FLT_MAX; break;
- }
-
- for (int i = bh; i < eh; i += 1) {
- for (int j = bw; j < ew; j += 1) {
-#if DPCT_COMPATIBILITY_TEMP >= 350
- /*
- DPCT1098:106: The '*' expression is used instead of the __ldg
- call. These two expressions do not provide the exact same
- functionality. Check the generated code for potential precision
- and/or performance issues.
- */
- Ti cur = *(i_ptr + i * iw + j);
-#else
- Ti cur = i_ptr[i * iw + j];
-#endif
- switch (op) {
- case GGML_OP_POOL_AVG: res += (cur / (kh * kw)); break;
- case GGML_OP_POOL_MAX: res = sycl::max(res, (To)cur); break;
- }
- }
- }
- o_ptr[cur_oh * ow + cur_ow] = res;
-}
-
-template <int qk, int qr, dequantize_kernel_t dq>
-static void get_rows_sycl(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const void *src0_dd,
- const int32_t *src1_dd, float *dst_dd,
- queue_ptr stream) {
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const sycl::range<3> block_dims(1, 1, SYCL_GET_ROWS_BLOCK_SIZE);
- const int block_num_x = (ne00 + 2*SYCL_GET_ROWS_BLOCK_SIZE - 1) / (2*SYCL_GET_ROWS_BLOCK_SIZE);
- const sycl::range<3> block_nums(ne11 * ne12, ne10, block_num_x);
-
- // strides in elements
- //const size_t s0 = nb0 / ggml_element_size(dst);
- const size_t s1 = nb1 / ggml_element_size(dst);
- const size_t s2 = nb2 / ggml_element_size(dst);
- const size_t s3 = nb3 / ggml_element_size(dst);
-
- const size_t s10 = nb10 / ggml_element_size(src1);
- const size_t s11 = nb11 / ggml_element_size(src1);
- const size_t s12 = nb12 / ggml_element_size(src1);
- //const size_t s13 = nb13 / ggml_element_size(src1);
-
- GGML_ASSERT(ne00 % 2 == 0);
-
- stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- k_get_rows<qk, qr, dq>(
- src0_dd, src1_dd, dst_dd, ne00, ne12, s1, s2,
- s3, nb01, nb02, nb03, s10, s11, s12, item_ct1);
- });
-
- (void) dst;
-}
-
-template <typename src0_t>
-static void get_rows_sycl_float(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const src0_t *src0_dd, const int32_t *src1_dd,
- float *dst_dd, queue_ptr stream) {
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const sycl::range<3> block_dims(1, 1, SYCL_GET_ROWS_BLOCK_SIZE);
- const int block_num_x = (ne00 + SYCL_GET_ROWS_BLOCK_SIZE - 1) / SYCL_GET_ROWS_BLOCK_SIZE;
- const sycl::range<3> block_nums(ne11 * ne12, ne10, block_num_x);
-
- // strides in elements
- //const size_t s0 = nb0 / ggml_element_size(dst);
- const size_t s1 = nb1 / ggml_element_size(dst);
- const size_t s2 = nb2 / ggml_element_size(dst);
- const size_t s3 = nb3 / ggml_element_size(dst);
-
- const size_t s10 = nb10 / ggml_element_size(src1);
- const size_t s11 = nb11 / ggml_element_size(src1);
- const size_t s12 = nb12 / ggml_element_size(src1);
- //const size_t s13 = nb13 / ggml_element_size(src1);
-
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- k_get_rows_float(src0_dd, src1_dd, dst_dd, ne00, ne12, s1, s2,
- s3, nb01, nb02, nb03, s10, s11, s12, item_ct1);
- });
- }
-
- (void) dst;
-}
-
-template<float (*bin_op)(const float, const float)>
-struct bin_bcast_sycl {
- template <typename src0_t, typename src1_t, typename dst_t>
- void operator()(ggml_backend_sycl_context & ctx,
- const struct ggml_tensor *src0,
- const struct ggml_tensor *src1, struct ggml_tensor *dst,
- const src0_t *src0_dd, const src1_t *src1_dd, dst_t *dst_dd,
- queue_ptr stream) {
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- int nr0 = ne10/ne0;
- int nr1 = ne11/ne1;
- int nr2 = ne12/ne2;
- int nr3 = ne13/ne3;
-
- int nr[4] = { nr0, nr1, nr2, nr3 };
-
- // collapse dimensions until first broadcast dimension
- int64_t cne0[] = {ne0, ne1, ne2, ne3};
- int64_t cne1[] = {ne10, ne11, ne12, ne13};
- size_t cnb0[] = {nb0, nb1, nb2, nb3};
- size_t cnb1[] = {nb10, nb11, nb12, nb13};
- auto collapse = [](int64_t cne[]) {
- cne[0] *= cne[1];
- cne[1] = cne[2];
- cne[2] = cne[3];
- cne[3] = 1;
- };
-
- auto collapse_nb = [](size_t cnb[], int64_t cne[]) {
- cnb[1] *= cne[1];
- cnb[2] *= cne[2];
- cnb[3] *= cne[3];
- };
-
- for (int i = 0; i < 4; i++) {
- if (nr[i] != 1) {
- break;
- }
- if (i > 0) {
- collapse_nb(cnb0, cne0);
- collapse_nb(cnb1, cne1);
- collapse(cne0);
- collapse(cne1);
- }
- }
- {
- int64_t ne0 = cne0[0];
- int64_t ne1 = cne0[1];
- int64_t ne2 = cne0[2];
- int64_t ne3 = cne0[3];
-
- int64_t ne10 = cne1[0];
- int64_t ne11 = cne1[1];
- int64_t ne12 = cne1[2];
- int64_t ne13 = cne1[3];
-
- size_t nb0 = cnb0[0];
- size_t nb1 = cnb0[1];
- size_t nb2 = cnb0[2];
- size_t nb3 = cnb0[3];
-
- size_t nb10 = cnb1[0];
- size_t nb11 = cnb1[1];
- size_t nb12 = cnb1[2];
- size_t nb13 = cnb1[3];
-
- size_t s0 = nb0 / sizeof(dst_t);
- size_t s1 = nb1 / sizeof(dst_t);
- size_t s2 = nb2 / sizeof(dst_t);
- size_t s3 = nb3 / sizeof(dst_t);
-
- size_t s10 = nb10 / sizeof(src1_t);
- size_t s11 = nb11 / sizeof(src1_t);
- size_t s12 = nb12 / sizeof(src1_t);
- size_t s13 = nb13 / sizeof(src1_t);
-
- GGML_ASSERT(s0 == 1);
- GGML_ASSERT(s10 == 1);
-
- const int block_size = 128;
-
- int64_t hne0 = std::max(ne0/2LL, 1LL);
-
- sycl::range<3> block_dims(1, 1, 1);
- block_dims[2] = std::min<unsigned int>(hne0, block_size);
- block_dims[1] = std::min<unsigned int>(
- ne1, block_size / (unsigned int)block_dims[2]);
- block_dims[0] = std::min(
- std::min<unsigned int>(
- ne2 * ne3, block_size / (unsigned int)block_dims[2] /
- (unsigned int)block_dims[1]),
- 64U);
-
- sycl::range<3> block_nums(
- (ne2 * ne3 + block_dims[0] - 1) / block_dims[0],
- (ne1 + block_dims[1] - 1) / block_dims[1],
- (hne0 + block_dims[2] - 1) / block_dims[2]);
-
- if (block_nums[0] > 65535) {
- // this is the maximum number of blocks in z direction, fallback to 1D grid kernel
- int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, block_num) *
- sycl::range<3>(1, 1, block_size),
- sycl::range<3>(1, 1, block_size)),
- [=](sycl::nd_item<3> item_ct1) {
- k_bin_bcast_unravel<bin_op>(
- src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3,
- ne10, ne11, ne12, ne13, s1, s2, s3, s11, s12,
- s13, item_ct1);
- });
- }
- } else {
- /*
- DPCT1049:16: The work-group size passed to the SYCL kernel may
- exceed the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if
- needed.
- */
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- k_bin_bcast<bin_op>(src0_dd, src1_dd, dst_dd, ne0, ne1,
- ne2, ne3, ne10, ne11, ne12, ne13,
- s1, s2, s3, s11, s12, s13,
- item_ct1);
- });
- }
- }
- }
-};
-
-static void acc_f32_sycl(const float *x, const float *y, float *dst,
- const int n_elements, const int ne10, const int ne11,
- const int ne12, const int nb1, const int nb2,
- const int offset, queue_ptr stream) {
- int num_blocks = (n_elements + SYCL_ACC_BLOCK_SIZE - 1) / SYCL_ACC_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_ACC_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_ACC_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- acc_f32(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset,
- item_ct1);
- });
-}
-
-static void gelu_f32_sycl(const float *x, float *dst, const int k,
- queue_ptr stream) {
- const int num_blocks = (k + SYCL_GELU_BLOCK_SIZE - 1) / SYCL_GELU_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- gelu_f32(x, dst, k, item_ct1);
- });
-}
-
-static void silu_f32_sycl(const float *x, float *dst, const int k,
- queue_ptr stream) {
- const int num_blocks = (k + SYCL_SILU_BLOCK_SIZE - 1) / SYCL_SILU_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_SILU_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_SILU_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- silu_f32(x, dst, k, item_ct1);
- });
-}
-
-static void gelu_quick_f32_sycl(const float *x, float *dst, const int k,
- queue_ptr stream) {
- const int num_blocks = (k + SYCL_GELU_BLOCK_SIZE - 1) / SYCL_GELU_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- gelu_quick_f32(x, dst, k, item_ct1);
- });
-}
-
-static void tanh_f32_sycl(const float *x, float *dst, const int k,
- queue_ptr stream) {
- const int num_blocks = (k + SYCL_TANH_BLOCK_SIZE - 1) / SYCL_TANH_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_TANH_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_TANH_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- tanh_f32(x, dst, k, item_ct1);
- });
-}
-
-static void relu_f32_sycl(const float *x, float *dst, const int k,
- queue_ptr stream) {
- const int num_blocks = (k + SYCL_RELU_BLOCK_SIZE - 1) / SYCL_RELU_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- relu_f32(x, dst, k, item_ct1);
- });
-}
-
-static void hardsigmoid_f32_sycl(const float *x, float *dst, const int k,
- queue_ptr stream) {
- const int num_blocks = (k + SYCL_HARDSIGMOID_BLOCK_SIZE - 1) / SYCL_HARDSIGMOID_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_HARDSIGMOID_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_HARDSIGMOID_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- hardsigmoid_f32(x, dst, k, item_ct1);
- });
-}
-
-static void hardswish_f32_sycl(const float *x, float *dst, const int k,
- queue_ptr stream) {
- const int num_blocks = (k + SYCL_HARDSWISH_BLOCK_SIZE - 1) / SYCL_HARDSWISH_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_HARDSWISH_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_HARDSWISH_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- hardswish_f32(x, dst, k, item_ct1);
- });
-}
-
-static void leaky_relu_f32_sycl(const float *x, float *dst, const int k,
- const float negative_slope,
- queue_ptr stream) {
- const int num_blocks = (k + SYCL_RELU_BLOCK_SIZE - 1) / SYCL_RELU_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- leaky_relu_f32(x, dst, k, negative_slope, item_ct1);
- });
-}
-
-static void sqr_f32_sycl(const float *x, float *dst, const int k,
- queue_ptr stream) {
- const int num_blocks = (k + SYCL_SQR_BLOCK_SIZE - 1) / SYCL_SQR_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_SQR_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_SQR_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- sqr_f32(x, dst, k, item_ct1);
- });
-}
-
-static void norm_f32_sycl(const float *x, float *dst, const int ncols,
- const int nrows, const float eps,
- queue_ptr stream) {
- GGML_ASSERT(ncols % WARP_SIZE == 0);
- if (ncols < 1024) {
- const sycl::range<3> block_dims(1, 1, WARP_SIZE);
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
- sycl::range<1>(32), cgh);
-
- cgh.parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
- block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- norm_f32(x, dst, ncols, eps, item_ct1,
- s_sum_acc_ct1.get_pointer(), WARP_SIZE);
- });
- });
- } else {
- // FIXME: 1024 from cuda
- const int work_group_size = GROUP_SIZE;
- const sycl::range<3> block_dims(1, 1, work_group_size);
- /*
- DPCT1049:17: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
- sycl::range<1>(32), cgh);
-
- cgh.parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
- block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- norm_f32(x, dst, ncols, eps, item_ct1,
- s_sum_acc_ct1.get_pointer(), work_group_size);
- });
- });
- }
-}
-
-static void group_norm_f32_sycl(const float *x, float *dst,
- const int num_groups, const int group_size,
- const int ne_elements, queue_ptr stream) {
- static const float eps = 1e-6f;
- if (group_size < 1024) {
- const sycl::range<3> block_dims(1, 1, WARP_SIZE);
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
- cgh);
-
- const float eps_ct4 = eps;
-
- cgh.parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
- block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- group_norm_f32(
- x, dst, group_size, ne_elements, eps_ct4, item_ct1,
- s_sum_acc_ct1.get_pointer(), WARP_SIZE);
- });
- });
- } else {
- const int work_group_size = GROUP_SIZE;
- const sycl::range<3> block_dims(1, 1, work_group_size);
- /*
- DPCT1049:18: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
-
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
- cgh);
-
- const float eps_ct4 = eps;
-
- cgh.parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
- block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- group_norm_f32(x, dst, group_size, ne_elements,
- eps_ct4, item_ct1,
- s_sum_acc_ct1.get_pointer(), work_group_size);
- });
- });
- }
-}
-
-static void concat_f32_sycl(const float *x, const float *y, float *dst,
- const int ne0, int ne1, int ne2, int ne02,
- queue_ptr stream) {
- int num_blocks = (ne0 + SYCL_CONCAT_BLOCK_SIZE - 1) / SYCL_CONCAT_BLOCK_SIZE;
- sycl::range<3> gridDim(ne2, ne1, num_blocks);
- stream->parallel_for(
- sycl::nd_range<3>(gridDim *
- sycl::range<3>(1, 1, SYCL_CONCAT_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_CONCAT_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- concat_f32(x, y, dst, ne0, ne02, item_ct1);
- });
-}
-
-static void upscale_f32_sycl(const float *x, float *dst, const int nb00, const int nb01,
- const int nb02, const int nb03, const int ne10, const int ne11,
- const int ne12, const int ne13, const float sf0, const float sf1,
- const float sf2, const float sf3, queue_ptr stream) {
- int dst_size = ne10 * ne11 * ne12 * ne13;
- int num_blocks = (dst_size + SYCL_UPSCALE_BLOCK_SIZE - 1) / SYCL_UPSCALE_BLOCK_SIZE;
- sycl::range<1> gridDim(num_blocks * SYCL_UPSCALE_BLOCK_SIZE);
- stream->parallel_for(
- sycl::nd_range<1>(gridDim, sycl::range<1>(SYCL_UPSCALE_BLOCK_SIZE)),
- [=](sycl::nd_item<1> item_ct1) {
- upscale_f32(x, dst, nb00, nb01, nb02, nb03, ne10, ne11, ne12, ne13, sf0, sf1, sf2, sf3, item_ct1);
- });
-}
-
-static void pad_f32_sycl(const float *x, float *dst, const int ne00,
- const int ne01, const int ne02, const int ne0,
- const int ne1, const int ne2, queue_ptr stream) {
- int num_blocks = (ne0 + SYCL_PAD_BLOCK_SIZE - 1) / SYCL_PAD_BLOCK_SIZE;
- sycl::range<3> gridDim(ne2, ne1, num_blocks);
- stream->parallel_for(
- sycl::nd_range<3>(gridDim * sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- pad_f32(x, dst, ne0, ne00, ne01, ne02, item_ct1);
- });
-}
-
-static void rms_norm_f32_sycl(const float *x, float *dst, const int ncols,
- const int nrows, const float eps,
- queue_ptr stream) {
- GGML_ASSERT(ncols % WARP_SIZE == 0);
- // printf("%s ncols=%d, nrows=%d, WARP_SIZE=%d\n", __func__, ncols, nrows, WARP_SIZE);
- if (ncols < 1024) {
- const sycl::range<3> block_dims(1, 1, WARP_SIZE);
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
- cgh);
-
- cgh.parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
- block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- rms_norm_f32(x, dst, ncols, eps, item_ct1,
- s_sum_acc_ct1.get_pointer(), WARP_SIZE);
- });
- });
- } else {
- const int work_group_size = GROUP_SIZE;
- const sycl::range<3> block_dims(1, 1, work_group_size);
- /*
- DPCT1049:19: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
- cgh);
-
- cgh.parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
- block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- rms_norm_f32(x, dst, ncols, eps, item_ct1,
- s_sum_acc_ct1.get_pointer(), work_group_size);
- });
- });
- }
-}
-
-static void quantize_row_q8_1_sycl(const float *x, void *vy, const int kx,
- const int ky, const int kx_padded,
- queue_ptr stream) {
- const int block_num_x = (kx_padded + SYCL_QUANTIZE_BLOCK_SIZE - 1) / SYCL_QUANTIZE_BLOCK_SIZE;
- const sycl::range<3> num_blocks(1, ky, block_num_x);
- const sycl::range<3> block_size(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->parallel_for(
- sycl::nd_range<3>(num_blocks * block_size, block_size),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- quantize_q8_1(x, vy, kx, kx_padded, item_ct1);
- });
- }
-}
-
-template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
-static void dequantize_block_sycl(const void *__restrict__ vx,
- dst_t *__restrict__ y, const int k,
- queue_ptr stream) {
- const int num_blocks = (k + 2*SYCL_DEQUANTIZE_BLOCK_SIZE - 1) / (2*SYCL_DEQUANTIZE_BLOCK_SIZE);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(
- sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block<qk, qr, dequantize_kernel>(vx, y, k, item_ct1);
- });
- }
-}
-
-template <typename dst_t>
-static void dequantize_row_q2_K_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 64),
- sycl::range<3>(1, 1, 64)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_q2_K(vx, y, item_ct1);
- });
- }
-}
-
-template <typename dst_t>
-static void dequantize_row_q3_K_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 64),
- sycl::range<3>(1, 1, 64)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_q3_K(vx, y, item_ct1);
- });
- }
-}
-
-template <typename dst_t>
-static void dequantize_row_q4_0_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb32 = k / 32;
- const int nb = (k + 255) / 256;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_q4_0(vx, y, nb32, item_ct1);
- });
- }
-}
-
-template <typename dst_t>
-static void dequantize_row_q4_1_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb32 = k / 32;
- const int nb = (k + 255) / 256;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_q4_1(vx, y, nb32, item_ct1);
- });
- }
-}
-
-
-template <typename dst_t>
-static void dequantize_row_q4_K_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_q4_K(vx, y, item_ct1);
- });
- }
-}
-
-template <typename dst_t>
-static void dequantize_row_q5_K_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 64),
- sycl::range<3>(1, 1, 64)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_q5_K(vx, y, item_ct1);
- });
- }
-}
-
-template <typename dst_t>
-static void dequantize_row_q6_K_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 64),
- sycl::range<3>(1, 1, 64)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_q6_K(vx, y, item_ct1);
- });
- }
-}
-
-template <typename dst_t>
-static void dequantize_row_iq1_s_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_iq1_s(
- vx, y, item_ct1, iq1s_grid_gpu
- );
- });
- });
- }
-}
-
-template <typename dst_t>
-static void dequantize_row_iq1_m_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_iq1_m(
- vx, y, item_ct1, iq1s_grid_gpu
- );
- });
- });
- }
-}
-
-template <typename dst_t>
-static void dequantize_row_iq2_xxs_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_iq2_xxs(
- vx, y, item_ct1, iq2xxs_grid,
- ksigns_iq2xs, kmask_iq2xs);
- });
- });
- }
-}
-
-template <typename dst_t>
-static void dequantize_row_iq2_xs_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_iq2_xs(
- vx, y, item_ct1, iq2xs_grid,
- ksigns_iq2xs, kmask_iq2xs);
- });
- });
- }
-}
-
-template <typename dst_t>
-static void dequantize_row_iq2_s_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_iq2_s(vx, y, item_ct1);
- });
- });
- }
-}
-
-
-template <typename dst_t>
-static void dequantize_row_iq3_xxs_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_iq3_xxs(
- vx, y, item_ct1, iq3xxs_grid,
- ksigns_iq2xs, kmask_iq2xs);
- });
- });
- }
-}
-
-template <typename dst_t>
-static void dequantize_row_iq3_s_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_iq3_s(
- vx, y, item_ct1, kmask_iq2xs, iq3s_grid);
- });
- });
- }
-}
-
-template <typename dst_t>
-static void dequantize_row_iq4_xs_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb = (k + QK_K - 1) / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_iq4_xs(vx, y, item_ct1);
- });
- });
- }
-}
-
-
-template <typename dst_t>
-static void dequantize_row_iq4_nl_sycl(const void *vx, dst_t *y, const int k,
- queue_ptr stream) {
- const int nb = (k + QK_K - 1) / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_iq4_nl(vx, y, item_ct1);
- });
- });
- }
-}
-
-
-
-template <typename src_t, typename dst_t>
-static void convert_unary_sycl(const void *__restrict__ vx,
- dst_t *__restrict__ y, const int k,
- queue_ptr stream) {
- const int num_blocks = (k + SYCL_DEQUANTIZE_BLOCK_SIZE - 1) / SYCL_DEQUANTIZE_BLOCK_SIZE;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->parallel_for(
- sycl::nd_range<3>(
- sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- convert_unary<src_t>(vx, y, k, item_ct1);
- });
- }
-}
-
-
-static to_fp16_sycl_t ggml_get_to_fp16_sycl(ggml_type type) try {
- int id;
- switch (type) {
- case GGML_TYPE_Q4_0:
- return dequantize_block_sycl<QK4_0, QR4_0, dequantize_q4_0>;
- case GGML_TYPE_Q4_1:
- return dequantize_block_sycl<QK4_1, QR4_1, dequantize_q4_1>;
- case GGML_TYPE_Q5_0:
- return dequantize_block_sycl<QK5_0, QR5_0, dequantize_q5_0>;
- case GGML_TYPE_Q5_1:
- return dequantize_block_sycl<QK5_1, QR5_1, dequantize_q5_1>;
- case GGML_TYPE_Q8_0:
- return dequantize_block_sycl<QK8_0, QR8_0, dequantize_q8_0>;
- case GGML_TYPE_Q2_K:
- return dequantize_row_q2_K_sycl;
- case GGML_TYPE_Q3_K:
- return dequantize_row_q3_K_sycl;
- case GGML_TYPE_Q4_K:
- return dequantize_row_q4_K_sycl;
- case GGML_TYPE_Q5_K:
- return dequantize_row_q5_K_sycl;
- case GGML_TYPE_Q6_K:
- return dequantize_row_q6_K_sycl;
- case GGML_TYPE_IQ1_S:
- return dequantize_row_iq1_s_sycl;
- case GGML_TYPE_IQ1_M:
- return dequantize_row_iq1_m_sycl;
- case GGML_TYPE_IQ2_XXS:
- return dequantize_row_iq2_xxs_sycl;
- case GGML_TYPE_IQ2_XS:
- return dequantize_row_iq2_xs_sycl;
- case GGML_TYPE_IQ2_S:
- return dequantize_row_iq2_s_sycl;
- case GGML_TYPE_IQ3_XXS:
- return dequantize_row_iq3_xxs_sycl;
- case GGML_TYPE_IQ3_S:
- return dequantize_row_iq3_s_sycl;
- case GGML_TYPE_IQ4_XS:
- return dequantize_row_iq4_xs_sycl;
- case GGML_TYPE_IQ4_NL:
- return dequantize_row_iq4_nl_sycl;
- case GGML_TYPE_F32:
- return convert_unary_sycl<float>;
- default:
- return nullptr;
- }
-}
-catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
-}
-
-static to_fp32_sycl_t ggml_get_to_fp32_sycl(ggml_type type) {
- switch (type) {
- case GGML_TYPE_Q4_0:
- return dequantize_row_q4_0_sycl;
- case GGML_TYPE_Q4_1:
- return dequantize_row_q4_1_sycl;
- case GGML_TYPE_Q5_0:
- return dequantize_block_sycl<QK5_0, QR5_0, dequantize_q5_0>;
- case GGML_TYPE_Q5_1:
- return dequantize_block_sycl<QK5_1, QR5_1, dequantize_q5_1>;
- case GGML_TYPE_Q8_0:
- return dequantize_block_sycl<QK8_0, QR8_0, dequantize_q8_0>;
- case GGML_TYPE_Q2_K:
- return dequantize_row_q2_K_sycl;
- case GGML_TYPE_Q3_K:
- return dequantize_row_q3_K_sycl;
- case GGML_TYPE_Q4_K:
- return dequantize_row_q4_K_sycl;
- case GGML_TYPE_Q5_K:
- return dequantize_row_q5_K_sycl;
- case GGML_TYPE_Q6_K:
- return dequantize_row_q6_K_sycl;
- case GGML_TYPE_IQ1_S:
- return dequantize_row_iq1_s_sycl;
- case GGML_TYPE_IQ1_M:
- return dequantize_row_iq1_m_sycl;
- case GGML_TYPE_IQ2_XXS:
- return dequantize_row_iq2_xxs_sycl;
- case GGML_TYPE_IQ2_XS:
- return dequantize_row_iq2_xs_sycl;
- case GGML_TYPE_IQ2_S:
- return dequantize_row_iq2_s_sycl;
- case GGML_TYPE_IQ3_XXS:
- return dequantize_row_iq3_xxs_sycl;
- case GGML_TYPE_IQ3_S:
- return dequantize_row_iq3_s_sycl;
- case GGML_TYPE_IQ4_XS:
- return dequantize_row_iq4_xs_sycl;
- case GGML_TYPE_IQ4_NL:
- return dequantize_row_iq4_nl_sycl;
- case GGML_TYPE_F16:
- return convert_unary_sycl<sycl::half>;
- default:
- return nullptr;
- }
-}
-
-static void dequantize_mul_mat_vec_q4_0_sycl(const void *vx, const dfloat *y,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- // the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>(
- vx, y, dst, ncols, nrows, item_ct1);
- });
- }
-}
-
-static void dequantize_mul_mat_vec_q4_1_sycl(const void *vx, const dfloat *y,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>(
- vx, y, dst, ncols, nrows, item_ct1);
- });
- }
-}
-
-static void dequantize_mul_mat_vec_q5_0_sycl(const void *vx, const dfloat *y,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>(
- vx, y, dst, ncols, nrows, item_ct1);
- });
- }
-}
-
-static void dequantize_mul_mat_vec_q5_1_sycl(const void *vx, const dfloat *y,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>(
- vx, y, dst, ncols, nrows, item_ct1);
- });
- }
-}
-
-static void dequantize_mul_mat_vec_q8_0_sycl(const void *vx, const dfloat *y,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>(
- vx, y, dst, ncols, nrows, item_ct1);
- });
- }
-}
-
-static void dequantize_mul_mat_vec_q2_K_sycl(const void *vx, const float *y,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
- const int block_num_y = (nrows + ny - 1) / ny;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, ny, 32);
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec_q2_k(vx, y, dst, ncols, nrows, item_ct1);
- });
-}
-
-static void dequantize_mul_mat_vec_q3_K_sycl(const void *vx, const float *y,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2 / K_QUANTS_PER_ITERATION;
- const int block_num_y = (nrows + ny - 1) / ny;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, ny, 32);
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec_q3_k(vx, y, dst, ncols, nrows, item_ct1);
- });
-}
-
-static void dequantize_mul_mat_vec_q4_K_sycl(const void *vx, const float *y,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2 / K_QUANTS_PER_ITERATION;
- const int block_num_y = (nrows + ny - 1) / ny;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, ny, 32);
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec_q4_k(vx, y, dst, ncols, nrows, item_ct1);
- });
-}
-
-static void dequantize_mul_mat_vec_q5_K_sycl(const void *vx, const float *y,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const sycl::range<3> block_dims(1, 1, 32);
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec_q5_k(vx, y, dst, ncols, item_ct1);
- });
-}
-
-static void dequantize_mul_mat_vec_q6_K_sycl(const void *vx, const float *y,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2 / K_QUANTS_PER_ITERATION;
- const int block_num_y = (nrows + ny - 1) / ny;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, ny, 32);
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec_q6_k(vx, y, dst, ncols, nrows, item_ct1);
- });
-}
-
-static void convert_mul_mat_vec_f16_sycl(const void *vx, const dfloat *y,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec<1, 1, convert_f16>(vx, y, dst, ncols,
- nrows, item_ct1);
- });
- }
-}
-
-
-static void mul_mat_vec_q4_0_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK4_0 == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
-
- stream->submit([&](sycl::handler &cgh) {
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q<QK4_0, QI4_0, block_q4_0,
- VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
-}
-
-static void mul_mat_vec_q4_1_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK4_1 == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
-
- stream->submit([&](sycl::handler &cgh) {
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q<QK4_0, QI4_1, block_q4_1,
- VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
-}
-
-static void mul_mat_vec_q5_0_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK5_0 == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
-
- stream->submit([&](sycl::handler &cgh) {
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q<QK5_0, QI5_0, block_q5_0,
- VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
-}
-
-static void mul_mat_vec_q5_1_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK5_1 == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
-
- stream->submit([&](sycl::handler &cgh) {
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q<QK5_1, QI5_1, block_q5_1,
- VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
-}
-
-static void mul_mat_vec_q8_0_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK8_0 == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
-
- stream->submit([&](sycl::handler &cgh) {
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q<QK8_0, QI8_0, block_q8_0,
- VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
-}
-
-static void mul_mat_vec_q2_K_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
-
- stream->submit([&](sycl::handler &cgh) {
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q<QK_K, QI2_K, block_q2_K,
- VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
-}
-
-static void mul_mat_vec_q3_K_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
-
- stream->submit([&](sycl::handler &cgh) {
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q<QK_K, QI3_K, block_q3_K,
- VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
-}
-
-static void mul_mat_vec_q4_K_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
-
- stream->submit([&](sycl::handler &cgh) {
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q<QK_K, QI4_K, block_q4_K,
- VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
-}
-
-static void mul_mat_vec_q5_K_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
-
- stream->submit([&](sycl::handler &cgh) {
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q<QK_K, QI5_K, block_q5_K,
- VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
-}
-
-static void mul_mat_vec_q6_K_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
-
- stream->submit([&](sycl::handler &cgh) {
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q<QK_K, QI6_K, block_q6_K,
- VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
-}
-
-
-static void mul_mat_vec_iq2_xxs_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq2_xxs_q8_1<QK_K, QI2_XXS, block_iq2_xxs, 1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
-}
-
-static void mul_mat_vec_iq2_xs_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
-
- stream->submit([&](sycl::handler &cgh) {
- auto iq2xs_grid_ptr_ct1 = &iq2xs_grid[0];
- auto ksigns64_ptr_ct1 = &ksigns64[0];
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq2_xs_q8_1<QK_K, QI2_XS, block_iq2_xs, 1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
-}
-
-static void mul_mat_vec_iq2_s_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
-
- stream->submit([&](sycl::handler &cgh) {
- auto iq2xs_grid_ptr_ct1 = &iq2xs_grid[0];
- auto ksigns64_ptr_ct1 = &ksigns64[0];
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq2_s_q8_1<QK_K, QI2_S, block_iq2_s, 1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
-}
-
-static void mul_mat_vec_iq3_xxs_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
-
- stream->submit([&](sycl::handler &cgh) {
- auto iq3xxs_grid_ptr_ct1 = &iq3xxs_grid[0];
- auto ksigns64_ptr_ct1 = &ksigns64[0];
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq3_xxs_q8_1<QK_K, QI3_XXS, block_iq3_xxs, 1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
-}
-
-static void mul_mat_vec_iq3_s_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
-
- stream->submit([&](sycl::handler &cgh) {
- auto iq3s_grid_ptr_ct1 = &iq3s_grid[0];
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq3_s_q8_1<QK_K, QI3_XS, block_iq3_s, 1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
-}
-
-static void mul_mat_vec_iq1_s_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
-
- stream->submit([&](sycl::handler &cgh) {
- auto iq1s_grid_ptr_ct1 = &iq1s_grid_gpu[0];
- auto ksigns64_ptr_ct1 = &ksigns64[0];
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq1_s_q8_1<QK_K, QI1_S, block_iq1_s, 1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
-}
-
-static void mul_mat_vec_iq1_m_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq1_m_q8_1<QK_K, QI1_S, block_iq1_m, 1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
-}
-
-static void mul_mat_vec_iq4_nl_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK4_NL == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
-
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq4_nl_q8_1<QK4_NL, QI4_NL, block_iq4_nl, 1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
-}
-
-static void mul_mat_vec_iq4_xs_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
-
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq4_xs_q8_1<QK_K, QI4_XS, block_iq4_xs, 1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
-}
-
-static void ggml_mul_mat_q4_0_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols_x,
- const int nrows_x, const int ncols_y,
- const int nrows_y, const int nrows_dst,
- queue_ptr stream) try {
-
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- const int compute_capability = ggml_sycl_info().devices[id].cc;
-
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= VER_GEN13) {
- mmq_x = MMQ_X_Q4_0_RDNA2;
- mmq_y = MMQ_Y_Q4_0_RDNA2;
- nwarps = NWARPS_Q4_0_RDNA2;
- } else if (compute_capability >= VER_GEN12) {
- mmq_x = MMQ_X_Q4_0_RDNA1;
- mmq_y = MMQ_Y_Q4_0_RDNA1;
- nwarps = NWARPS_Q4_0_RDNA1;
- } else if (compute_capability >= VER_GEN9) {
- mmq_x = MMQ_X_Q4_0_AMPERE;
- mmq_y = MMQ_Y_Q4_0_AMPERE;
- nwarps = NWARPS_Q4_0_AMPERE;
- } else if (compute_capability >= VER_4VEC) {
- mmq_x = MMQ_X_Q4_0_PASCAL;
- mmq_y = MMQ_Y_Q4_0_PASCAL;
- nwarps = NWARPS_Q4_0_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
-
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const sycl::range<3> block_nums(1, block_num_y, block_num_x);
- const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
-
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- /*
- DPCT1049:20: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_qs_q4_0_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<float, 1> tile_x_d_q4_0_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI4_0) + mmq_y / QI4_0),
- cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q4_0<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_qs_q4_0_acc_ct1.get_pointer(),
- tile_x_d_q4_0_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- } else {
- const bool need_check = true;
- /*
- DPCT1049:21: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_qs_q4_0_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<float, 1> tile_x_d_q4_0_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI4_0) + mmq_y / QI4_0),
- cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q4_0<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_qs_q4_0_acc_ct1.get_pointer(),
- tile_x_d_q4_0_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- }
-}
-catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
-}
-
-static void ggml_mul_mat_q4_1_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols_x,
- const int nrows_x, const int ncols_y,
- const int nrows_y, const int nrows_dst,
- queue_ptr stream) try {
-
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- const int compute_capability = ggml_sycl_info().devices[id].cc;
-
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= VER_GEN13) {
- mmq_x = MMQ_X_Q4_1_RDNA2;
- mmq_y = MMQ_Y_Q4_1_RDNA2;
- nwarps = NWARPS_Q4_1_RDNA2;
- } else if (compute_capability >= VER_GEN12) {
- mmq_x = MMQ_X_Q4_1_RDNA1;
- mmq_y = MMQ_Y_Q4_1_RDNA1;
- nwarps = NWARPS_Q4_1_RDNA1;
- } else if (compute_capability >= VER_GEN9) {
- mmq_x = MMQ_X_Q4_1_AMPERE;
- mmq_y = MMQ_Y_Q4_1_AMPERE;
- nwarps = NWARPS_Q4_1_AMPERE;
- } else if (compute_capability >= VER_4VEC) {
- mmq_x = MMQ_X_Q4_1_PASCAL;
- mmq_y = MMQ_Y_Q4_1_PASCAL;
- nwarps = NWARPS_Q4_1_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
-
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const sycl::range<3> block_nums(1, block_num_y, block_num_x);
- const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
-
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- /*
- DPCT1049:22: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_qs_q4_1_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + +mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_1_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI4_1) + mmq_y / QI4_1),
- cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q4_1<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_qs_q4_1_acc_ct1.get_pointer(),
- tile_x_dm_q4_1_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- } else {
- const bool need_check = true;
- /*
- DPCT1049:23: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_qs_q4_1_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + +mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_1_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI4_1) + mmq_y / QI4_1),
- cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q4_1<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_qs_q4_1_acc_ct1.get_pointer(),
- tile_x_dm_q4_1_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- }
-}
-catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
-}
-
-static void ggml_mul_mat_q5_0_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols_x,
- const int nrows_x, const int ncols_y,
- const int nrows_y, const int nrows_dst,
- queue_ptr stream) try {
-
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- const int compute_capability = ggml_sycl_info().devices[id].cc;
-
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= VER_GEN13) {
- mmq_x = MMQ_X_Q5_0_RDNA2;
- mmq_y = MMQ_Y_Q5_0_RDNA2;
- nwarps = NWARPS_Q5_0_RDNA2;
- } else if (compute_capability >= VER_GEN12) {
- mmq_x = MMQ_X_Q5_0_RDNA1;
- mmq_y = MMQ_Y_Q5_0_RDNA1;
- nwarps = NWARPS_Q5_0_RDNA1;
- } else if (compute_capability >= VER_GEN9) {
- mmq_x = MMQ_X_Q5_0_AMPERE;
- mmq_y = MMQ_Y_Q5_0_AMPERE;
- nwarps = NWARPS_Q5_0_AMPERE;
- } else if (compute_capability >= VER_4VEC) {
- mmq_x = MMQ_X_Q5_0_PASCAL;
- mmq_y = MMQ_Y_Q5_0_PASCAL;
- nwarps = NWARPS_Q5_0_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
-
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const sycl::range<3> block_nums(1, block_num_y, block_num_x);
- const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
-
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- /*
- DPCT1049:24: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
-
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q5_0_acc_ct1(
- sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<float, 1> tile_x_d_q5_0_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI5_0) + mmq_y / QI5_0),
- cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q5_0<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q5_0_acc_ct1.get_pointer(),
- tile_x_d_q5_0_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
+ for (int i = 0; i < 4; i++) {
+ if (nr[i] != 1) {
+ break;
+ }
+ if (i > 0) {
+ collapse_nb(cnb0, cne0);
+ collapse_nb(cnb1, cne1);
+ collapse(cne0);
+ collapse(cne1);
+ }
}
- } else {
- const bool need_check = true;
- /*
- DPCT1049:25: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
{
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
+ int64_t ne0 = cne0[0];
+ int64_t ne1 = cne0[1];
+ int64_t ne2 = cne0[2];
+ int64_t ne3 = cne0[3];
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q5_0_acc_ct1(
- sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<float, 1> tile_x_d_q5_0_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI5_0) + mmq_y / QI5_0),
- cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q5_0<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q5_0_acc_ct1.get_pointer(),
- tile_x_d_q5_0_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- }
-}
-catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
-}
+ int64_t ne10 = cne1[0];
+ int64_t ne11 = cne1[1];
+ int64_t ne12 = cne1[2];
+ int64_t ne13 = cne1[3];
-static void ggml_mul_mat_q5_1_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols_x,
- const int nrows_x, const int ncols_y,
- const int nrows_y, const int nrows_dst,
- queue_ptr stream) try {
+ size_t nb0 = cnb0[0];
+ size_t nb1 = cnb0[1];
+ size_t nb2 = cnb0[2];
+ size_t nb3 = cnb0[3];
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- const int compute_capability = ggml_sycl_info().devices[id].cc;
-
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= VER_GEN13) {
- mmq_x = MMQ_X_Q5_1_RDNA2;
- mmq_y = MMQ_Y_Q5_1_RDNA2;
- nwarps = NWARPS_Q5_1_RDNA2;
- } else if (compute_capability >= VER_GEN12) {
- mmq_x = MMQ_X_Q5_1_RDNA1;
- mmq_y = MMQ_Y_Q5_1_RDNA1;
- nwarps = NWARPS_Q5_1_RDNA1;
- } else if (compute_capability >= VER_GEN9) {
- mmq_x = MMQ_X_Q5_1_AMPERE;
- mmq_y = MMQ_Y_Q5_1_AMPERE;
- nwarps = NWARPS_Q5_1_AMPERE;
- } else if (compute_capability >= VER_4VEC) {
- mmq_x = MMQ_X_Q5_1_PASCAL;
- mmq_y = MMQ_Y_Q5_1_PASCAL;
- nwarps = NWARPS_Q5_1_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
+ size_t nb10 = cnb1[0];
+ size_t nb11 = cnb1[1];
+ size_t nb12 = cnb1[2];
+ size_t nb13 = cnb1[3];
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const sycl::range<3> block_nums(1, block_num_y, block_num_x);
- const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
+ size_t s0 = nb0 / sizeof(dst_t);
+ size_t s1 = nb1 / sizeof(dst_t);
+ size_t s2 = nb2 / sizeof(dst_t);
+ size_t s3 = nb3 / sizeof(dst_t);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- /*
- DPCT1049:26: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
+ size_t s10 = nb10 / sizeof(src1_t);
+ size_t s11 = nb11 / sizeof(src1_t);
+ size_t s12 = nb12 / sizeof(src1_t);
+ size_t s13 = nb13 / sizeof(src1_t);
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q5_1_acc_ct1(
- sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_1_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI5_1) + mmq_y / QI5_1),
- cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q5_1<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q5_1_acc_ct1.get_pointer(),
- tile_x_dm_q5_1_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- } else {
- const bool need_check = true;
- /*
- DPCT1049:27: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
+ GGML_ASSERT(s0 == 1);
+ GGML_ASSERT(s10 == 1);
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q5_1_acc_ct1(
- sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_1_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI5_1) + mmq_y / QI5_1),
- cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q5_1<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q5_1_acc_ct1.get_pointer(),
- tile_x_dm_q5_1_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- }
-}
-catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
-}
+ const int block_size = 128;
-static void ggml_mul_mat_q8_0_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols_x,
- const int nrows_x, const int ncols_y,
- const int nrows_y, const int nrows_dst,
- queue_ptr stream) try {
+ int64_t hne0 = std::max(ne0/2LL, 1LL);
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- const int compute_capability = ggml_sycl_info().devices[id].cc;
-
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= VER_GEN13) {
- mmq_x = MMQ_X_Q8_0_RDNA2;
- mmq_y = MMQ_Y_Q8_0_RDNA2;
- nwarps = NWARPS_Q8_0_RDNA2;
- } else if (compute_capability >= VER_GEN12) {
- mmq_x = MMQ_X_Q8_0_RDNA1;
- mmq_y = MMQ_Y_Q8_0_RDNA1;
- nwarps = NWARPS_Q8_0_RDNA1;
- } else if (compute_capability >= VER_GEN9) {
- mmq_x = MMQ_X_Q8_0_AMPERE;
- mmq_y = MMQ_Y_Q8_0_AMPERE;
- nwarps = NWARPS_Q8_0_AMPERE;
- } else if (compute_capability >= VER_4VEC) {
- mmq_x = MMQ_X_Q8_0_PASCAL;
- mmq_y = MMQ_Y_Q8_0_PASCAL;
- nwarps = NWARPS_Q8_0_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
+ sycl::range<3> block_dims(1, 1, 1);
+ block_dims[2] = std::min<unsigned int>(hne0, block_size);
+ block_dims[1] = std::min<unsigned int>(
+ ne1, block_size / (unsigned int)block_dims[2]);
+ block_dims[0] = std::min(
+ std::min<unsigned int>(
+ ne2 * ne3, block_size / (unsigned int)block_dims[2] /
+ (unsigned int)block_dims[1]),
+ 64U);
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const sycl::range<3> block_nums(1, block_num_y, block_num_x);
- const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
+ sycl::range<3> block_nums(
+ (ne2 * ne3 + block_dims[0] - 1) / block_dims[0],
+ (ne1 + block_dims[1] - 1) / block_dims[1],
+ (hne0 + block_dims[2] - 1) / block_dims[2]);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- /*
- DPCT1049:28: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
+ if (block_nums[0] > 65535) {
+ // this is the maximum number of blocks in z direction, fallback to 1D grid kernel
+ int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_qs_q8_0_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<float, 1> tile_x_d_q8_0_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI8_0) + mmq_y / QI8_0),
- cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q8_0<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_qs_q8_0_acc_ct1.get_pointer(),
- tile_x_d_q8_0_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- } else {
- const bool need_check = true;
- /*
- DPCT1049:29: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
+ stream->parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, block_num) *
+ sycl::range<3>(1, 1, block_size),
+ sycl::range<3>(1, 1, block_size)),
+ [=](sycl::nd_item<3> item_ct1) {
+ k_bin_bcast_unravel<bin_op>(
+ src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3,
+ ne10, ne11, ne12, ne13, s1, s2, s3, s11, s12,
+ s13, item_ct1);
+ });
+ }
+ } else {
+ /*
+ DPCT1049:16: The work-group size passed to the SYCL kernel may
+ exceed the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if
+ needed.
+ */
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_qs_q8_0_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<float, 1> tile_x_d_q8_0_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI8_0) + mmq_y / QI8_0),
- cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
-
- cgh.parallel_for(
+ stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
- mul_mat_q8_0<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_qs_q8_0_acc_ct1.get_pointer(),
- tile_x_d_q8_0_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
+ k_bin_bcast<bin_op>(src0_dd, src1_dd, dst_dd, ne0, ne1,
+ ne2, ne3, ne10, ne11, ne12, ne13,
+ s1, s2, s3, s11, s12, s13,
+ item_ct1);
});
- });
+ }
}
}
-}
-catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
-}
+};
-static void ggml_mul_mat_q2_K_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols_x,
- const int nrows_x, const int ncols_y,
- const int nrows_y, const int nrows_dst,
- queue_ptr stream) try {
+static void acc_f32_sycl(const float *x, const float *y, float *dst,
+ const int n_elements, const int ne10, const int ne11,
+ const int ne12, const int nb1, const int nb2,
+ const int offset, queue_ptr stream) {
+ int num_blocks = (n_elements + SYCL_ACC_BLOCK_SIZE - 1) / SYCL_ACC_BLOCK_SIZE;
+ stream->parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+ sycl::range<3>(1, 1, SYCL_ACC_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_ACC_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ acc_f32(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset,
+ item_ct1);
+ });
+}
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- const int compute_capability = ggml_sycl_info().devices[id].cc;
-
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= VER_GEN13) {
- mmq_x = MMQ_X_Q2_K_RDNA2;
- mmq_y = MMQ_Y_Q2_K_RDNA2;
- nwarps = NWARPS_Q2_K_RDNA2;
- } else if (compute_capability >= VER_GEN12) {
- mmq_x = MMQ_X_Q2_K_RDNA1;
- mmq_y = MMQ_Y_Q2_K_RDNA1;
- nwarps = NWARPS_Q2_K_RDNA1;
- } else if (compute_capability >= VER_GEN9) {
- mmq_x = MMQ_X_Q2_K_AMPERE;
- mmq_y = MMQ_Y_Q2_K_AMPERE;
- nwarps = NWARPS_Q2_K_AMPERE;
- } else if (compute_capability >= VER_4VEC) {
- mmq_x = MMQ_X_Q2_K_PASCAL;
- mmq_y = MMQ_Y_Q2_K_PASCAL;
- nwarps = NWARPS_Q2_K_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
+static void gelu_f32_sycl(const float *x, float *dst, const int k,
+ queue_ptr stream) {
+ const int num_blocks = (k + SYCL_GELU_BLOCK_SIZE - 1) / SYCL_GELU_BLOCK_SIZE;
+ stream->parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+ sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ gelu_f32(x, dst, k, item_ct1);
+ });
+}
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const sycl::range<3> block_nums(1, block_num_y, block_num_x);
- const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
+static void silu_f32_sycl(const float *x, float *dst, const int k,
+ queue_ptr stream) {
+ const int num_blocks = (k + SYCL_SILU_BLOCK_SIZE - 1) / SYCL_SILU_BLOCK_SIZE;
+ stream->parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+ sycl::range<3>(1, 1, SYCL_SILU_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_SILU_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ silu_f32(x, dst, k, item_ct1);
+ });
+}
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- /*
- DPCT1049:30: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
+static void gelu_quick_f32_sycl(const float *x, float *dst, const int k,
+ queue_ptr stream) {
+ const int num_blocks = (k + SYCL_GELU_BLOCK_SIZE - 1) / SYCL_GELU_BLOCK_SIZE;
+ stream->parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+ sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ gelu_quick_f32(x, dst, k, item_ct1);
+ });
+}
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q2_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q2_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI2_K) + mmq_y / QI2_K),
- cgh);
- sycl::local_accessor<int, 1> tile_x_sc_q2_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q2_K<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q2_K_acc_ct1.get_pointer(),
- tile_x_dm_q2_K_acc_ct1.get_pointer(),
- tile_x_sc_q2_K_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- } else {
- const bool need_check = true;
- /*
- DPCT1049:31: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
+static void tanh_f32_sycl(const float *x, float *dst, const int k,
+ queue_ptr stream) {
+ const int num_blocks = (k + SYCL_TANH_BLOCK_SIZE - 1) / SYCL_TANH_BLOCK_SIZE;
+ stream->parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+ sycl::range<3>(1, 1, SYCL_TANH_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_TANH_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ tanh_f32(x, dst, k, item_ct1);
+ });
+}
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q2_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q2_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI2_K) + mmq_y / QI2_K),
- cgh);
- sycl::local_accessor<int, 1> tile_x_sc_q2_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q2_K<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q2_K_acc_ct1.get_pointer(),
- tile_x_dm_q2_K_acc_ct1.get_pointer(),
- tile_x_sc_q2_K_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- }
+static void relu_f32_sycl(const float *x, float *dst, const int k,
+ queue_ptr stream) {
+ const int num_blocks = (k + SYCL_RELU_BLOCK_SIZE - 1) / SYCL_RELU_BLOCK_SIZE;
+ stream->parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+ sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ relu_f32(x, dst, k, item_ct1);
+ });
}
-catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
+
+static void hardsigmoid_f32_sycl(const float *x, float *dst, const int k,
+ queue_ptr stream) {
+ const int num_blocks = (k + SYCL_HARDSIGMOID_BLOCK_SIZE - 1) / SYCL_HARDSIGMOID_BLOCK_SIZE;
+ stream->parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+ sycl::range<3>(1, 1, SYCL_HARDSIGMOID_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_HARDSIGMOID_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ hardsigmoid_f32(x, dst, k, item_ct1);
+ });
}
-static void ggml_mul_mat_q3_K_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols_x,
- const int nrows_x, const int ncols_y,
- const int nrows_y, const int nrows_dst,
- queue_ptr stream) try {
+static void hardswish_f32_sycl(const float *x, float *dst, const int k,
+ queue_ptr stream) {
+ const int num_blocks = (k + SYCL_HARDSWISH_BLOCK_SIZE - 1) / SYCL_HARDSWISH_BLOCK_SIZE;
+ stream->parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+ sycl::range<3>(1, 1, SYCL_HARDSWISH_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_HARDSWISH_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ hardswish_f32(x, dst, k, item_ct1);
+ });
+}
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- const int compute_capability = ggml_sycl_info().devices[id].cc;
-
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= VER_GEN13) {
- mmq_x = MMQ_X_Q3_K_RDNA2;
- mmq_y = MMQ_Y_Q3_K_RDNA2;
- nwarps = NWARPS_Q3_K_RDNA2;
- } else if (compute_capability >= VER_GEN12) {
- mmq_x = MMQ_X_Q3_K_RDNA1;
- mmq_y = MMQ_Y_Q3_K_RDNA1;
- nwarps = NWARPS_Q3_K_RDNA1;
- } else if (compute_capability >= VER_GEN9) {
- mmq_x = MMQ_X_Q3_K_AMPERE;
- mmq_y = MMQ_Y_Q3_K_AMPERE;
- nwarps = NWARPS_Q3_K_AMPERE;
- } else if (compute_capability >= VER_4VEC) {
- mmq_x = MMQ_X_Q3_K_PASCAL;
- mmq_y = MMQ_Y_Q3_K_PASCAL;
- nwarps = NWARPS_Q3_K_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
+static void leaky_relu_f32_sycl(const float *x, float *dst, const int k,
+ const float negative_slope,
+ queue_ptr stream) {
+ const int num_blocks = (k + SYCL_RELU_BLOCK_SIZE - 1) / SYCL_RELU_BLOCK_SIZE;
+ stream->parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+ sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ leaky_relu_f32(x, dst, k, negative_slope, item_ct1);
+ });
+}
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const sycl::range<3> block_nums(1, block_num_y, block_num_x);
- const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
+static void sqr_f32_sycl(const float *x, float *dst, const int k,
+ queue_ptr stream) {
+ const int num_blocks = (k + SYCL_SQR_BLOCK_SIZE - 1) / SYCL_SQR_BLOCK_SIZE;
+ stream->parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
+ sycl::range<3>(1, 1, SYCL_SQR_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_SQR_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ sqr_f32(x, dst, k, item_ct1);
+ });
+}
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- /*
- DPCT1049:32: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
+static void norm_f32_sycl(const float *x, float *dst, const int ncols,
+ const int nrows, const float eps,
+ queue_ptr stream) {
+ GGML_ASSERT(ncols % WARP_SIZE == 0);
+ if (ncols < 1024) {
+ const sycl::range<3> block_dims(1, 1, WARP_SIZE);
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
+ sycl::range<1>(32), cgh);
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q3_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q3_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI3_K) + mmq_y / QI3_K),
- cgh);
- sycl::local_accessor<int, 1> tile_x_qh_q3_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 2) + mmq_y / 2), cgh);
- sycl::local_accessor<int, 1> tile_x_sc_q3_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q3_K<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q3_K_acc_ct1.get_pointer(),
- tile_x_dm_q3_K_acc_ct1.get_pointer(),
- tile_x_qh_q3_K_acc_ct1.get_pointer(),
- tile_x_sc_q3_K_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
+ cgh.parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
+ block_dims),
+ [=](sycl::nd_item<3> item_ct1)
+ [[intel::reqd_sub_group_size(32)]] {
+ norm_f32(x, dst, ncols, eps, item_ct1,
+ s_sum_acc_ct1.get_pointer(), WARP_SIZE);
});
- });
- }
+ });
} else {
- const bool need_check = true;
+ const int work_group_size = get_work_group_size(stream->get_device());
+ const sycl::range<3> block_dims(1, 1, work_group_size);
/*
- DPCT1049:33: The work-group size passed to the SYCL kernel may exceed
+ DPCT1049:17: The work-group size passed to the SYCL kernel may exceed
the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if needed.
*/
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
+ sycl::range<1>(32), cgh);
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q3_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q3_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI3_K) + mmq_y / QI3_K),
- cgh);
- sycl::local_accessor<int, 1> tile_x_qh_q3_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 2) + mmq_y / 2), cgh);
- sycl::local_accessor<int, 1> tile_x_sc_q3_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q3_K<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q3_K_acc_ct1.get_pointer(),
- tile_x_dm_q3_K_acc_ct1.get_pointer(),
- tile_x_qh_q3_K_acc_ct1.get_pointer(),
- tile_x_sc_q3_K_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
+ cgh.parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
+ block_dims),
+ [=](sycl::nd_item<3> item_ct1)
+ [[intel::reqd_sub_group_size(32)]] {
+ norm_f32(x, dst, ncols, eps, item_ct1,
+ s_sum_acc_ct1.get_pointer(), work_group_size);
});
- });
- }
+ });
}
}
-catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
-}
-
-static void ggml_mul_mat_q4_K_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols_x,
- const int nrows_x, const int ncols_y,
- const int nrows_y, const int nrows_dst,
- queue_ptr stream) try {
-
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- const int compute_capability = ggml_sycl_info().devices[id].cc;
-
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= VER_GEN13) {
- mmq_x = MMQ_X_Q4_K_RDNA2;
- mmq_y = MMQ_Y_Q4_K_RDNA2;
- nwarps = NWARPS_Q4_K_RDNA2;
- } else if (compute_capability >= VER_GEN12) {
- mmq_x = MMQ_X_Q4_K_RDNA1;
- mmq_y = MMQ_Y_Q4_K_RDNA1;
- nwarps = NWARPS_Q4_K_RDNA1;
- } else if (compute_capability >= VER_GEN9) {
- mmq_x = MMQ_X_Q4_K_AMPERE;
- mmq_y = MMQ_Y_Q4_K_AMPERE;
- nwarps = NWARPS_Q4_K_AMPERE;
- } else if (compute_capability >= VER_4VEC) {
- mmq_x = MMQ_X_Q4_K_PASCAL;
- mmq_y = MMQ_Y_Q4_K_PASCAL;
- nwarps = NWARPS_Q4_K_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const sycl::range<3> block_nums(1, block_num_y, block_num_x);
- const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
+static void group_norm_f32_sycl(const float *x, float *dst,
+ const int num_groups, const int group_size,
+ const int ne_elements, queue_ptr stream) {
+ static const float eps = 1e-6f;
+ if (group_size < 1024) {
+ const sycl::range<3> block_dims(1, 1, WARP_SIZE);
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
+ cgh);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- /*
- DPCT1049:34: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
+ const float eps_ct4 = eps;
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q4_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI4_K) + mmq_y / QI4_K),
- cgh);
- sycl::local_accessor<int, 1> tile_x_sc_q4_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q4_K<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q4_K_acc_ct1.get_pointer(),
- tile_x_dm_q4_K_acc_ct1.get_pointer(),
- tile_x_sc_q4_K_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
+ cgh.parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
+ block_dims),
+ [=](sycl::nd_item<3> item_ct1)
+ [[intel::reqd_sub_group_size(32)]] {
+ group_norm_f32(
+ x, dst, group_size, ne_elements, eps_ct4, item_ct1,
+ s_sum_acc_ct1.get_pointer(), WARP_SIZE);
});
- });
- }
+ });
} else {
- const bool need_check = true;
+ const int work_group_size = get_work_group_size(stream->get_device());
+ const sycl::range<3> block_dims(1, 1, work_group_size);
/*
- DPCT1049:35: The work-group size passed to the SYCL kernel may exceed
+ DPCT1049:18: The work-group size passed to the SYCL kernel may exceed
the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if needed.
*/
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q4_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI4_K) + mmq_y / QI4_K),
- cgh);
- sycl::local_accessor<int, 1> tile_x_sc_q4_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q4_K<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q4_K_acc_ct1.get_pointer(),
- tile_x_dm_q4_K_acc_ct1.get_pointer(),
- tile_x_sc_q4_K_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
+ cgh);
+
+ const float eps_ct4 = eps;
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
+ block_dims),
+ [=](sycl::nd_item<3> item_ct1)
+ [[intel::reqd_sub_group_size(32)]] {
+ group_norm_f32(x, dst, group_size, ne_elements,
+ eps_ct4, item_ct1,
+ s_sum_acc_ct1.get_pointer(), work_group_size);
});
- });
- }
+ });
}
}
-catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
-}
-static void ggml_mul_mat_q5_K_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols_x,
- const int nrows_x, const int ncols_y,
- const int nrows_y, const int nrows_dst,
- queue_ptr stream) try {
+static void concat_f32_sycl(const float *x, const float *y, float *dst,
+ const int ne0, int ne1, int ne2, int ne02,
+ queue_ptr stream) {
+ int num_blocks = (ne0 + SYCL_CONCAT_BLOCK_SIZE - 1) / SYCL_CONCAT_BLOCK_SIZE;
+ sycl::range<3> gridDim(ne2, ne1, num_blocks);
+ stream->parallel_for(
+ sycl::nd_range<3>(gridDim *
+ sycl::range<3>(1, 1, SYCL_CONCAT_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_CONCAT_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ concat_f32(x, y, dst, ne0, ne02, item_ct1);
+ });
+}
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- const int compute_capability = ggml_sycl_info().devices[id].cc;
-
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= VER_GEN13) {
- mmq_x = MMQ_X_Q5_K_RDNA2;
- mmq_y = MMQ_Y_Q5_K_RDNA2;
- nwarps = NWARPS_Q5_K_RDNA2;
- } else if (compute_capability >= VER_GEN12) {
- mmq_x = MMQ_X_Q5_K_RDNA1;
- mmq_y = MMQ_Y_Q5_K_RDNA1;
- nwarps = NWARPS_Q5_K_RDNA1;
- } else if (compute_capability >= VER_GEN9) {
- mmq_x = MMQ_X_Q5_K_AMPERE;
- mmq_y = MMQ_Y_Q5_K_AMPERE;
- nwarps = NWARPS_Q5_K_AMPERE;
- } else if (compute_capability >= VER_4VEC) {
- mmq_x = MMQ_X_Q5_K_PASCAL;
- mmq_y = MMQ_Y_Q5_K_PASCAL;
- nwarps = NWARPS_Q5_K_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
+static void upscale_f32_sycl(const float *x, float *dst, const int nb00, const int nb01,
+ const int nb02, const int nb03, const int ne10, const int ne11,
+ const int ne12, const int ne13, const float sf0, const float sf1,
+ const float sf2, const float sf3, queue_ptr stream) {
+ int dst_size = ne10 * ne11 * ne12 * ne13;
+ int num_blocks = (dst_size + SYCL_UPSCALE_BLOCK_SIZE - 1) / SYCL_UPSCALE_BLOCK_SIZE;
+ sycl::range<1> gridDim(num_blocks * SYCL_UPSCALE_BLOCK_SIZE);
+ stream->parallel_for(
+ sycl::nd_range<1>(gridDim, sycl::range<1>(SYCL_UPSCALE_BLOCK_SIZE)),
+ [=](sycl::nd_item<1> item_ct1) {
+ upscale_f32(x, dst, nb00, nb01, nb02, nb03, ne10, ne11, ne12, ne13, sf0, sf1, sf2, sf3, item_ct1);
+ });
+}
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const sycl::range<3> block_nums(1, block_num_y, block_num_x);
- const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
+static void pad_f32_sycl(const float *x, float *dst, const int ne00,
+ const int ne01, const int ne02, const int ne0,
+ const int ne1, const int ne2, queue_ptr stream) {
+ int num_blocks = (ne0 + SYCL_PAD_BLOCK_SIZE - 1) / SYCL_PAD_BLOCK_SIZE;
+ sycl::range<3> gridDim(ne2, ne1, num_blocks);
+ stream->parallel_for(
+ sycl::nd_range<3>(gridDim * sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE),
+ sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE)),
+ [=](sycl::nd_item<3> item_ct1) {
+ pad_f32(x, dst, ne0, ne00, ne01, ne02, item_ct1);
+ });
+}
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- /*
- DPCT1049:36: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
+static void rms_norm_f32_sycl(const float *x, float *dst, const int ncols,
+ const int nrows, const float eps,
+ queue_ptr stream) {
+ GGML_ASSERT(ncols % WARP_SIZE == 0);
+ // printf("%s ncols=%d, nrows=%d, WARP_SIZE=%d\n", __func__, ncols, nrows, WARP_SIZE);
+ if (ncols < 1024) {
+ const sycl::range<3> block_dims(1, 1, WARP_SIZE);
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
+ cgh);
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q5_K_acc_ct1(
- sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI5_K) + mmq_y / QI5_K),
- cgh);
- sycl::local_accessor<int, 1> tile_x_sc_q5_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q5_K<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q5_K_acc_ct1.get_pointer(),
- tile_x_dm_q5_K_acc_ct1.get_pointer(),
- tile_x_sc_q5_K_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
+ cgh.parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
+ block_dims),
+ [=](sycl::nd_item<3> item_ct1)
+ [[intel::reqd_sub_group_size(32)]] {
+ rms_norm_f32(x, dst, ncols, eps, item_ct1,
+ s_sum_acc_ct1.get_pointer(), WARP_SIZE);
});
- });
- }
+ });
} else {
- const bool need_check = true;
+ const int work_group_size = get_work_group_size(stream->get_device());
+ const sycl::range<3> block_dims(1, 1, work_group_size);
/*
- DPCT1049:37: The work-group size passed to the SYCL kernel may exceed
+ DPCT1049:19: The work-group size passed to the SYCL kernel may exceed
the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if needed.
*/
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
+ cgh);
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q5_K_acc_ct1(
- sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI5_K) + mmq_y / QI5_K),
- cgh);
- sycl::local_accessor<int, 1> tile_x_sc_q5_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q5_K<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q5_K_acc_ct1.get_pointer(),
- tile_x_dm_q5_K_acc_ct1.get_pointer(),
- tile_x_sc_q5_K_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
+ cgh.parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
+ block_dims),
+ [=](sycl::nd_item<3> item_ct1)
+ [[intel::reqd_sub_group_size(32)]] {
+ rms_norm_f32(x, dst, ncols, eps, item_ct1,
+ s_sum_acc_ct1.get_pointer(), work_group_size);
});
- });
- }
+ });
}
}
-catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
-}
-
-static void ggml_mul_mat_q6_K_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols_x,
- const int nrows_x, const int ncols_y,
- const int nrows_y, const int nrows_dst,
- queue_ptr stream) try {
-
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- const int compute_capability = ggml_sycl_info().devices[id].cc;
-
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= VER_GEN13) {
- mmq_x = MMQ_X_Q6_K_RDNA2;
- mmq_y = MMQ_Y_Q6_K_RDNA2;
- nwarps = NWARPS_Q6_K_RDNA2;
- } else if (compute_capability >= VER_GEN12) {
- mmq_x = MMQ_X_Q6_K_RDNA1;
- mmq_y = MMQ_Y_Q6_K_RDNA1;
- nwarps = NWARPS_Q6_K_RDNA1;
- } else if (compute_capability >= VER_GEN9) {
- mmq_x = MMQ_X_Q6_K_AMPERE;
- mmq_y = MMQ_Y_Q6_K_AMPERE;
- nwarps = NWARPS_Q6_K_AMPERE;
- } else if (compute_capability >= VER_4VEC) {
- mmq_x = MMQ_X_Q6_K_PASCAL;
- mmq_y = MMQ_Y_Q6_K_PASCAL;
- nwarps = NWARPS_Q6_K_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
-
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const sycl::range<3> block_nums(1, block_num_y, block_num_x);
- const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
-
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- /*
- DPCT1049:38: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_acc_ct1(
- sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI6_K) + mmq_y / QI6_K),
- cgh);
- sycl::local_accessor<int, 1> tile_x_sc_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q6_K<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_acc_ct1.get_pointer(),
- tile_x_dm_acc_ct1.get_pointer(),
- tile_x_sc_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- } else {
- const bool need_check = true;
- /*
- DPCT1049:39: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
+static void quantize_row_q8_1_sycl(const float *x, void *vy, const int kx,
+ const int ky, const int kx_padded,
+ queue_ptr stream) {
+ const int block_num_x = (kx_padded + SYCL_QUANTIZE_BLOCK_SIZE - 1) / SYCL_QUANTIZE_BLOCK_SIZE;
+ const sycl::range<3> num_blocks(1, ky, block_num_x);
+ const sycl::range<3> block_size(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE);
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_acc_ct1(
- sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI6_K) + mmq_y / QI6_K),
- cgh);
- sycl::local_accessor<int, 1> tile_x_sc_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
-
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q6_K<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_acc_ct1.get_pointer(),
- tile_x_dm_acc_ct1.get_pointer(),
- tile_x_sc_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
+ stream->parallel_for(
+ sycl::nd_range<3>(num_blocks * block_size, block_size),
+ [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+ quantize_q8_1(x, vy, kx, kx_padded, item_ct1);
});
- }
}
}
-catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
-}
static void ggml_mul_mat_p021_f16_f32_sycl(const void *vx, const float *y,
float *dst, const int ncols_x,
const int nrows_y, const float scale, const float max_bias,
queue_ptr stream) {
int nth = WARP_SIZE;
- int max_block_size = GROUP_SIZE;
+ int max_block_size = get_work_group_size(stream->get_device());
while (nth < ncols_x && nth < max_block_size) nth *= 2;
if (nth>max_block_size) nth = max_block_size;
}
}
-int get_sycl_env(const char *env_name, int default_val) {
+static inline int get_sycl_env(const char *env_name, int default_val) {
char *user_device_string = getenv(env_name);
int user_number = default_val;
return user_number;
}
-int get_work_group_size(int user_device_id) {
+static inline int get_work_group_size(const sycl::device& device) {
dpct::device_info prop;
- dpct::get_device_info(prop,
- dpct::dev_mgr::instance().get_device(user_device_id));
+ dpct::get_device_info(prop, device);
return prop.get_max_work_group_size();
}
(void) src1_dd;
}
-inline void ggml_sycl_op_mul_mat_q(
- ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
- const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
- float *dst_dd_i, const int64_t row_low, const int64_t row_high,
- const int64_t src1_ncols, const int64_t src1_padded_row_size,
- const queue_ptr &stream) try {
-
- const int64_t ne00 = src0->ne[0];
-
- const int64_t ne10 = src1->ne[0];
- GGML_ASSERT(ne10 % QK8_1 == 0);
-
- const int64_t ne0 = dst->ne[0];
-
- const int64_t row_diff = row_high - row_low;
-
- int device_id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(device_id = get_current_device_id()));
-
- // the main device has a larger memory buffer to hold the results from all GPUs
- // nrows_dst == nrows of the matrix that the dequantize_mul_mat kernel writes into
- const int64_t nrows_dst = device_id == ctx.device ? ne0 : row_diff;
-
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- ggml_mul_mat_q4_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q4_1:
- ggml_mul_mat_q4_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q5_0:
- ggml_mul_mat_q5_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q5_1:
- ggml_mul_mat_q5_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q8_0:
- ggml_mul_mat_q8_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q2_K:
- ggml_mul_mat_q2_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q3_K:
- ggml_mul_mat_q3_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q4_K:
- ggml_mul_mat_q4_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q5_K:
- ggml_mul_mat_q5_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q6_K:
- ggml_mul_mat_q6_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
-
- (void) src1;
- (void) dst;
- (void) src1_ddf_i;
-}
-catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
-}
-
static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_SYCL_MAX_DEVICES> & tensor_split) {
int64_t min_compute_capability = INT_MAX;
int64_t max_compute_capability = INT_MIN;
}
-inline void ggml_sycl_op_mul_mat_vec_q(
- ggml_backend_sycl_context & ctx,
- const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
- const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
- float *dst_dd_i, const int64_t row_low, const int64_t row_high,
- const int64_t src1_ncols, const int64_t src1_padded_row_size,
- const queue_ptr &stream) {
-
- const int64_t ne10 = src1->ne[0];
- GGML_ASSERT(ne10 % QK8_1 == 0);
-
- const int64_t ne00 = src0->ne[0];
- const int64_t row_diff = row_high - row_low;
-
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
-
- // the main device has a larger memory buffer to hold the results from all GPUs
- // nrows_dst == nrows of the matrix that the kernel writes into
- const int64_t nrows_dst = id == ctx.device ? ne00 : row_diff;
-
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- mul_mat_vec_q4_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q4_1:
- mul_mat_vec_q4_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q5_0:
- mul_mat_vec_q5_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q5_1:
- mul_mat_vec_q5_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q8_0:
- mul_mat_vec_q8_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q2_K:
- mul_mat_vec_q2_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q3_K:
- mul_mat_vec_q3_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q4_K:
- mul_mat_vec_q4_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q5_K:
- mul_mat_vec_q5_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q6_K:
- mul_mat_vec_q6_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_IQ1_S:
- mul_mat_vec_iq1_s_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_IQ1_M:
- mul_mat_vec_iq1_m_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_IQ2_XXS:
- mul_mat_vec_iq2_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_IQ2_XS:
- mul_mat_vec_iq2_xs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_IQ2_S:
- mul_mat_vec_iq2_s_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_IQ3_XXS:
- mul_mat_vec_iq3_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_IQ3_S:
- mul_mat_vec_iq3_s_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_IQ4_NL:
- mul_mat_vec_iq4_nl_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_IQ4_XS:
- mul_mat_vec_iq4_xs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
-
- (void) src1;
- (void) dst;
- (void) src1_ddf_i;
- (void) src1_ncols;
- (void) src1_padded_row_size;
-}
-
-
-inline void ggml_sycl_op_dequantize_mul_mat_vec(
- ggml_backend_sycl_context & ctx,
- const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
- const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
- float *dst_dd_i, const int64_t row_low, const int64_t row_high,
- const int64_t src1_ncols, const int64_t src1_padded_row_size,
- const queue_ptr &stream) {
-
- const int64_t ne00 = src0->ne[0];
- const int64_t row_diff = row_high - row_low;
-
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
-
- // on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
-#ifdef GGML_SYCL_F16
- ggml_sycl_pool_alloc<sycl::half> src1_dfloat_a(ctx.pool());
- sycl::half *src1_dfloat = nullptr; // dfloat == half
-
- bool src1_convert_f16 =
- src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
- src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
- src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
-
- if (src1_convert_f16) {
- src1_dfloat = src1_dfloat_a.alloc(ne00);
- const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type);
- GGML_ASSERT(to_fp16_sycl != nullptr);
- to_fp16_sycl(src1_ddf_i, src1_dfloat, ne00, stream);
- }
-#else
- const dfloat * src1_dfloat = (const dfloat *) src1_ddf_i; // dfloat == float, no conversion
-#endif // GGML_SYCL_F16
-
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- dequantize_mul_mat_vec_q4_0_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q4_1:
- dequantize_mul_mat_vec_q4_1_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q5_0:
- dequantize_mul_mat_vec_q5_0_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q5_1:
- dequantize_mul_mat_vec_q5_1_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q8_0:
- dequantize_mul_mat_vec_q8_0_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q2_K:
- dequantize_mul_mat_vec_q2_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q3_K:
- dequantize_mul_mat_vec_q3_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q4_K:
- dequantize_mul_mat_vec_q4_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q5_K:
- dequantize_mul_mat_vec_q5_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q6_K:
- dequantize_mul_mat_vec_q6_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_F16:
- convert_mul_mat_vec_f16_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- default:
- printf("ggml_sycl_op_dequantize_mul_mat_vec unsupported GGML_TYPE %d\n", src0->type);
- GGML_ASSERT(false);
- break;
- }
-
- (void) src1;
- (void) dst;
- (void) src1_ddq_i;
- (void) src1_ncols;
- (void) src1_padded_row_size;
-}
-
inline void ggml_sycl_op_mul_mat_sycl(
ggml_backend_sycl_context & ctx,
const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
--- /dev/null
+//
+// MIT license
+// Copyright (C) 2024 Intel Corporation
+// SPDX-License-Identifier: MIT
+//
+
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+
+#include "mmq.hpp"
+#include "vecdotq.hpp"
+
+typedef void (*allocate_tiles_sycl_t)(
+ int** x_ql,
+ sycl::half2** x_dm,
+ int** x_qh,
+ int** x_sc);
+typedef void (*load_tiles_sycl_t)(
+ const void* __restrict__ vx,
+ int* __restrict__ x_ql,
+ sycl::half2* __restrict__ x_dm,
+ int* __restrict__ x_qh,
+ int* __restrict__ x_sc,
+ const int& i_offset,
+ const int& i_max,
+ const int& k,
+ const int& blocks_per_row);
+typedef float (*vec_dot_q_mul_mat_sycl_t)(
+ const int* __restrict__ x_ql,
+ const sycl::half2* __restrict__ x_dm,
+ const int* __restrict__ x_qh,
+ const int* __restrict__ x_sc,
+ const int* __restrict__ y_qs,
+ const sycl::half2* __restrict__ y_ms,
+ const int& i,
+ const int& j,
+ const int& k);
+
+
+template <int mmq_y>
+static __dpct_inline__ void
+allocate_tiles_q4_0(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
+ int *tile_x_qs_q4_0, float *tile_x_d_q4_0) {
+ (void)x_qh; (void)x_sc;
+
+ *x_ql = tile_x_qs_q4_0;
+ *x_dm = (sycl::half2 *)tile_x_d_q4_0;
+}
+
+template <int mmq_y, int nwarps, bool need_check>
+static __dpct_inline__ void
+load_tiles_q4_0(const void *__restrict__ vx, int *__restrict__ x_ql,
+ sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
+ int *__restrict__ x_sc, const int &i_offset, const int &i_max,
+ const int &k, const int &blocks_per_row) {
+ (void)x_qh; (void)x_sc;
+ GGML_SYCL_ASSUME(i_offset >= 0);
+ GGML_SYCL_ASSUME(i_offset < nwarps);
+ GGML_SYCL_ASSUME(k >= 0);
+ GGML_SYCL_ASSUME(k < WARP_SIZE);
+
+ const int kbx = k / QI4_0;
+ const int kqsx = k % QI4_0;
+
+ const block_q4_0 * bx0 = (const block_q4_0 *) vx;
+
+ float * x_dmf = (float *) x_dm;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
+
+ if (need_check) {
+ i = sycl::min(i, i_max);
+ }
+
+ const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbx;
+
+ x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
+ // x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbx] = bxi->d;
+ }
+
+ const int blocks_per_tile_x_row = WARP_SIZE / QI4_0;
+ const int kbxd = k % blocks_per_tile_x_row;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) {
+ int i = i0 + i_offset * QI4_0 + k / blocks_per_tile_x_row;
+
+ if (need_check) {
+ i = sycl::min(i, i_max);
+ }
+
+ const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbxd;
+
+ x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbxd] = bxi->d;
+ }
+}
+
+static __dpct_inline__ float vec_dot_q4_0_q8_1_mul_mat(
+ const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
+ const int *__restrict__ x_qh, const int *__restrict__ x_sc,
+ const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
+ const int &i, const int &j, const int &k) {
+ (void)x_qh; (void)x_sc;
+
+ const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
+ const float * x_dmf = (const float *) x_dm;
+
+ int u[2*VDR_Q4_0_Q8_1_MMQ];
+
+#pragma unroll
+ for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) {
+ u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
+ u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_0) % WARP_SIZE];
+ }
+
+ return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ>
+ (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dmf[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k/QI4_0],
+ y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
+}
+
+template <int mmq_y>
+static __dpct_inline__ void
+allocate_tiles_q4_1(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
+ int *tile_x_qs_q4_1, sycl::half2 *tile_x_dm_q4_1) {
+ (void)x_qh; (void)x_sc;
+
+ *x_ql = tile_x_qs_q4_1;
+ *x_dm = tile_x_dm_q4_1;
+}
+
+
+template <int mmq_y, int nwarps, bool need_check>
+static __dpct_inline__ void
+load_tiles_q4_1(const void *__restrict__ vx, int *__restrict__ x_ql,
+ sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
+ int *__restrict__ x_sc, const int &i_offset, const int &i_max,
+ const int &k, const int &blocks_per_row) {
+ (void)x_qh; (void)x_sc;
+
+ GGML_SYCL_ASSUME(i_offset >= 0);
+ GGML_SYCL_ASSUME(i_offset < nwarps);
+ GGML_SYCL_ASSUME(k >= 0);
+ GGML_SYCL_ASSUME(k < WARP_SIZE);
+
+ const int kbx = k / QI4_1;
+ const int kqsx = k % QI4_1;
+
+ const block_q4_1 * bx0 = (const block_q4_1 *) vx;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
+
+ if (need_check) {
+ i = sycl::min(i, i_max);
+ }
+
+ const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbx;
+
+ x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
+ }
+
+ const int blocks_per_tile_x_row = WARP_SIZE / QI4_1;
+ const int kbxd = k % blocks_per_tile_x_row;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) {
+ int i = i0 + i_offset * QI4_1 + k / blocks_per_tile_x_row;
+
+ if (need_check) {
+ i = sycl::min(i, i_max);
+ }
+
+ const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbxd;
+
+ x_dm[i * (WARP_SIZE/QI4_1) + i / QI4_1 + kbxd] = bxi->dm;
+ }
+}
+
+static __dpct_inline__ float vec_dot_q4_1_q8_1_mul_mat(
+ const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
+ const int *__restrict__ x_qh, const int *__restrict__ x_sc,
+ const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
+ const int &i, const int &j, const int &k) {
+ (void)x_qh; (void)x_sc;
+
+ const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
+
+ int u[2*VDR_Q4_1_Q8_1_MMQ];
+
+#pragma unroll
+ for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) {
+ u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
+ u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_1) % WARP_SIZE];
+ }
+
+ return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ>
+ (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k/QI4_1],
+ y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
+}
+
+template <int mmq_y>
+static __dpct_inline__ void
+allocate_tiles_q5_0(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
+ int *tile_x_ql_q5_0, float *tile_x_d_q5_0) {
+ (void)x_qh; (void)x_sc;
+
+ *x_ql = tile_x_ql_q5_0;
+ *x_dm = (sycl::half2 *)tile_x_d_q5_0;
+}
+
+template <int mmq_y, int nwarps, bool need_check>
+static __dpct_inline__ void
+load_tiles_q5_0(const void *__restrict__ vx, int *__restrict__ x_ql,
+ sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
+ int *__restrict__ x_sc, const int &i_offset, const int &i_max,
+ const int &k, const int &blocks_per_row) {
+ (void)x_qh; (void)x_sc;
+
+ GGML_SYCL_ASSUME(i_offset >= 0);
+ GGML_SYCL_ASSUME(i_offset < nwarps);
+ GGML_SYCL_ASSUME(k >= 0);
+ GGML_SYCL_ASSUME(k < WARP_SIZE);
+
+ const int kbx = k / QI5_0;
+ const int kqsx = k % QI5_0;
+
+ const block_q5_0 * bx0 = (const block_q5_0 *) vx;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
+
+ if (need_check) {
+ i = sycl::min(i, i_max);
+ }
+
+ const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbx;
+
+ const int ql = get_int_from_uint8(bxi->qs, kqsx);
+ const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (k % QI5_0));
+
+ int qs0 = (ql >> 0) & 0x0F0F0F0F;
+ qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
+ qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
+ qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
+ qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
+ qs0 = dpct::vectorized_binary<sycl::char4>(
+ qs0, 0x10101010, dpct::sub_sat()); // subtract 16
+
+ x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
+
+ int qs1 = (ql >> 4) & 0x0F0F0F0F;
+ qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
+ qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
+ qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
+ qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
+ qs1 = dpct::vectorized_binary<sycl::char4>(
+ qs1, 0x10101010, dpct::sub_sat()); // subtract 16
+
+ x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
+ }
+
+ const int blocks_per_tile_x_row = WARP_SIZE / QI5_0;
+ const int kbxd = k % blocks_per_tile_x_row;
+ float * x_dmf = (float *) x_dm;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) {
+ int i = i0 + i_offset * QI5_0 + k / blocks_per_tile_x_row;
+
+ if (need_check) {
+ i = sycl::min(i, i_max);
+ }
+
+ const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbxd;
+
+ x_dmf[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = bxi->d;
+ }
+}
+
+static __dpct_inline__ float vec_dot_q5_0_q8_1_mul_mat(
+ const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
+ const int *__restrict__ x_qh, const int *__restrict__ x_sc,
+ const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
+ const int &i, const int &j, const int &k) {
+ (void)x_qh; (void)x_sc;
+
+ const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
+ const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0;
+ const float * x_dmf = (const float *) x_dm;
+ const float * y_df = (const float *) y_ds;
+
+ int u[2*VDR_Q5_0_Q8_1_MMQ];
+
+#pragma unroll
+ for (int l = 0; l < VDR_Q5_0_Q8_1_MMQ; ++l) {
+ u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
+ u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE];
+ }
+
+ return vec_dot_q8_0_q8_1_impl<QR5_0*VDR_Q5_0_Q8_1_MMQ>
+ (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
+}
+
+template <int mmq_y>
+static __dpct_inline__ void
+allocate_tiles_q5_1(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
+ int *tile_x_ql_q5_1, sycl::half2 *tile_x_dm_q5_1) {
+ (void)x_qh; (void)x_sc;
+
+ *x_ql = tile_x_ql_q5_1;
+ *x_dm = tile_x_dm_q5_1;
+}
+
+template <int mmq_y, int nwarps, bool need_check>
+static __dpct_inline__ void
+load_tiles_q5_1(const void *__restrict__ vx, int *__restrict__ x_ql,
+ sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
+ int *__restrict__ x_sc, const int &i_offset, const int &i_max,
+ const int &k, const int &blocks_per_row) {
+ (void)x_qh; (void)x_sc;
+
+ GGML_SYCL_ASSUME(i_offset >= 0);
+ GGML_SYCL_ASSUME(i_offset < nwarps);
+ GGML_SYCL_ASSUME(k >= 0);
+ GGML_SYCL_ASSUME(k < WARP_SIZE);
+
+ const int kbx = k / QI5_1;
+ const int kqsx = k % QI5_1;
+
+ const block_q5_1 * bx0 = (const block_q5_1 *) vx;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
+
+ if (need_check) {
+ i = sycl::min(i, i_max);
+ }
+
+ const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbx;
+
+ const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
+ const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (k % QI5_1));
+
+ int qs0 = (ql >> 0) & 0x0F0F0F0F;
+ qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
+ qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
+ qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
+ qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
+
+ x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
+
+ int qs1 = (ql >> 4) & 0x0F0F0F0F;
+ qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
+ qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
+ qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
+ qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
+
+ x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
+ }
+
+ const int blocks_per_tile_x_row = WARP_SIZE / QI5_1;
+ const int kbxd = k % blocks_per_tile_x_row;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) {
+ int i = i0 + i_offset * QI5_1 + k / blocks_per_tile_x_row;
+
+ if (need_check) {
+ i = sycl::min(i, i_max);
+ }
+
+ const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbxd;
+
+ x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm;
+ }
+}
+
+static __dpct_inline__ float vec_dot_q5_1_q8_1_mul_mat(
+ const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
+ const int *__restrict__ x_qh, const int *__restrict__ x_sc,
+ const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
+ const int &i, const int &j, const int &k) {
+ (void)x_qh; (void)x_sc;
+
+ const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
+ const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1;
+
+ int u[2*VDR_Q5_1_Q8_1_MMQ];
+
+#pragma unroll
+ for (int l = 0; l < VDR_Q5_1_Q8_1_MMQ; ++l) {
+ u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
+ u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_1) % WARP_SIZE];
+ }
+
+ return vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ>
+ (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dm[index_bx], y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
+}
+
+template <int mmq_y>
+static __dpct_inline__ void
+allocate_tiles_q8_0(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
+ int *tile_x_qs_q8_0, float *tile_x_d_q8_0) {
+ (void)x_qh; (void)x_sc;
+
+ *x_ql = tile_x_qs_q8_0;
+ *x_dm = (sycl::half2 *)tile_x_d_q8_0;
+}
+
+template <int mmq_y, int nwarps, bool need_check>
+static __dpct_inline__ void
+load_tiles_q8_0(const void *__restrict__ vx, int *__restrict__ x_ql,
+ sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
+ int *__restrict__ x_sc, const int &i_offset, const int &i_max,
+ const int &k, const int &blocks_per_row) {
+ (void)x_qh; (void)x_sc;
+
+ GGML_SYCL_ASSUME(i_offset >= 0);
+ GGML_SYCL_ASSUME(i_offset < nwarps);
+ GGML_SYCL_ASSUME(k >= 0);
+ GGML_SYCL_ASSUME(k < WARP_SIZE);
+
+ const int kbx = k / QI8_0;
+ const int kqsx = k % QI8_0;
+ float * x_dmf = (float *) x_dm;
+
+ const block_q8_0 * bx0 = (const block_q8_0 *) vx;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
+
+ if (need_check) {
+ i = sycl::min(i, i_max);
+ }
+
+ const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbx;
+
+ x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_int8(bxi->qs, kqsx);
+ }
+
+ const int blocks_per_tile_x_row = WARP_SIZE / QI8_0;
+ const int kbxd = k % blocks_per_tile_x_row;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0) {
+ int i = i0 + i_offset * QI8_0 + k / blocks_per_tile_x_row;
+
+ if (need_check) {
+ i = sycl::min(i, i_max);
+ }
+
+ const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbxd;
+
+ x_dmf[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbxd] = bxi->d;
+ }
+}
+
+static __dpct_inline__ float vec_dot_q8_0_q8_1_mul_mat(
+ const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
+ const int *__restrict__ x_qh, const int *__restrict__ x_sc,
+ const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
+ const int &i, const int &j, const int &k) {
+ (void)x_qh; (void)x_sc;
+
+ const float * x_dmf = (const float *) x_dm;
+ const float * y_df = (const float *) y_ds;
+
+ return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMQ>
+ (&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0],
+ y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]);
+}
+
+template <int mmq_y>
+static __dpct_inline__ void
+allocate_tiles_q2_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
+ int *tile_x_ql_q2_K, sycl::half2 *tile_x_dm_q2_K,
+ int *tile_x_sc_q2_K) {
+ (void)x_qh;
+
+ *x_ql = tile_x_ql_q2_K;
+ *x_dm = tile_x_dm_q2_K;
+ *x_sc = tile_x_sc_q2_K;
+}
+
+template <int mmq_y, int nwarps, bool need_check>
+static __dpct_inline__ void
+load_tiles_q2_K(const void *__restrict__ vx, int *__restrict__ x_ql,
+ sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
+ int *__restrict__ x_sc, const int &i_offset, const int &i_max,
+ const int &k, const int &blocks_per_row) {
+ (void)x_qh;
+
+ GGML_SYCL_ASSUME(i_offset >= 0);
+ GGML_SYCL_ASSUME(i_offset < nwarps);
+ GGML_SYCL_ASSUME(k >= 0);
+ GGML_SYCL_ASSUME(k < WARP_SIZE);
+
+ const int kbx = k / QI2_K;
+ const int kqsx = k % QI2_K;
+
+ const block_q2_K * bx0 = (const block_q2_K *) vx;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
+
+ if (need_check) {
+ i = sycl::min(i, i_max);
+ }
+
+ const block_q2_K * bxi = bx0 + i*blocks_per_row + kbx;
+
+ x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
+ }
+
+ const int blocks_per_tile_x_row = WARP_SIZE / QI2_K;
+ const int kbxd = k % blocks_per_tile_x_row;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI2_K) {
+ int i = (i0 + i_offset * QI2_K + k / blocks_per_tile_x_row) % mmq_y;
+
+ if (need_check) {
+ i = sycl::min(i, i_max);
+ }
+
+ const block_q2_K * bxi = bx0 + i*blocks_per_row + kbxd;
+
+ x_dm[i * (WARP_SIZE/QI2_K) + i / QI2_K + kbxd] = bxi->dm;
+ }
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
+ int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
+
+ if (need_check) {
+ i = sycl::min(i, i_max);
+ }
+
+ const block_q2_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI2_K/4);
+
+ x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = get_int_from_uint8_aligned(bxi->scales, k % (QI2_K/4));
+ }
+}
+
+#define VDR_Q2_K_Q8_1_MMQ 2
+// contiguous u/y values
+static __dpct_inline__ float
+vec_dot_q2_K_q8_1_impl_mmq(const int *__restrict__ v, const int *__restrict__ u,
+ const uint8_t *__restrict__ scales,
+ const sycl::half2 &dm2, const float &d8) {
+
+ int sumi_d = 0;
+ int sumi_m = 0;
+
+#pragma unroll
+ for (int i0 = 0; i0 < QI8_1; i0 += QI8_1/2) {
+ int sumi_d_sc = 0;
+
+ const int sc = scales[i0 / (QI8_1/2)];
+
+ // fill int with 4x m
+ int m = sc >> 4;
+ m |= m << 8;
+ m |= m << 16;
+
+#pragma unroll
+ for (int i = i0; i < i0 + QI8_1/2; ++i) {
+ sumi_d_sc = dpct::dp4a(v[i], u[i], sumi_d_sc); // SIMD dot product
+ sumi_m = dpct::dp4a(m, u[i],
+ sumi_m); // multiply sum of q8_1 values with m
+ }
+
+ sumi_d += sumi_d_sc * (sc & 0xF);
+ }
+
+ const sycl::float2 dm2f =
+ dm2.convert<float, sycl::rounding_mode::automatic>();
+
+ return d8 * (dm2f.x() * sumi_d - dm2f.y() * sumi_m);
+}
+
+static __dpct_inline__ float vec_dot_q2_K_q8_1_mul_mat(
+ const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
+ const int *__restrict__ x_qh, const int *__restrict__ x_sc,
+ const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
+ const int &i, const int &j, const int &k) {
+ (void)x_qh;
+
+ const int kbx = k / QI2_K;
+ const int ky = (k % QI2_K) * QR2_K;
+ const float * y_df = (const float *) y_ds;
+
+ int v[QR2_K*VDR_Q2_K_Q8_1_MMQ];
+
+ const int kqsx = i * (WARP_SIZE + 1) + kbx*QI2_K + (QI2_K/2) * (ky/(2*QI2_K)) + ky % (QI2_K/2);
+ const int shift = 2 * ((ky % (2*QI2_K)) / (QI2_K/2));
+
+#pragma unroll
+ for (int l = 0; l < QR2_K*VDR_Q2_K_Q8_1_MMQ; ++l) {
+ v[l] = (x_ql[kqsx + l] >> shift) & 0x03030303;
+ }
+
+ const uint8_t * scales = ((const uint8_t *) &x_sc[i * (WARP_SIZE/4) + i/4 + kbx*4]) + ky/4;
+
+ const int index_y = j * WARP_SIZE + (QR2_K*k) % WARP_SIZE;
+ return vec_dot_q2_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dm[i * (WARP_SIZE/QI2_K) + i/QI2_K + kbx], y_df[index_y/QI8_1]);
+}
+
+template <int mmq_y>
+static __dpct_inline__ void
+allocate_tiles_q3_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
+ int *tile_x_ql_q3_K, sycl::half2 *tile_x_dm_q3_K,
+ int *tile_x_qh_q3_K, int *tile_x_sc_q3_K) {
+
+ *x_ql = tile_x_ql_q3_K;
+ *x_dm = tile_x_dm_q3_K;
+ *x_qh = tile_x_qh_q3_K;
+ *x_sc = tile_x_sc_q3_K;
+}
+
+template <int mmq_y, int nwarps, bool need_check>
+static __dpct_inline__ void
+load_tiles_q3_K(const void *__restrict__ vx, int *__restrict__ x_ql,
+ sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
+ int *__restrict__ x_sc, const int &i_offset, const int &i_max,
+ const int &k, const int &blocks_per_row) {
+
+ GGML_SYCL_ASSUME(i_offset >= 0);
+ GGML_SYCL_ASSUME(i_offset < nwarps);
+ GGML_SYCL_ASSUME(k >= 0);
+ GGML_SYCL_ASSUME(k < WARP_SIZE);
+
+ const int kbx = k / QI3_K;
+ const int kqsx = k % QI3_K;
+
+ const block_q3_K * bx0 = (const block_q3_K *) vx;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
+
+ if (need_check) {
+ i = sycl::min(i, i_max);
+ }
+
+ const block_q3_K * bxi = bx0 + i*blocks_per_row + kbx;
+
+ x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
+ }
+
+ const int blocks_per_tile_x_row = WARP_SIZE / QI3_K;
+ const int kbxd = k % blocks_per_tile_x_row;
+ float * x_dmf = (float *) x_dm;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI3_K) {
+ int i = (i0 + i_offset * QI3_K + k / blocks_per_tile_x_row) % mmq_y;
+
+ if (need_check) {
+ i = sycl::min(i, i_max);
+ }
+
+ const block_q3_K * bxi = bx0 + i*blocks_per_row + kbxd;
+
+ x_dmf[i * (WARP_SIZE/QI3_K) + i / QI3_K + kbxd] = bxi->d;
+ }
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 2) {
+ int i = i0 + i_offset * 2 + k / (WARP_SIZE/2);
+
+ if (need_check) {
+ i = sycl::min(i, i_max);
+ }
+
+ const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/2)) / (QI3_K/2);
+
+ // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
+ x_qh[i * (WARP_SIZE/2) + i / 2 + k % (WARP_SIZE/2)] = ~get_int_from_uint8(bxi->hmask, k % (QI3_K/2));
+ }
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
+ int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
+
+ if (need_check) {
+ i = sycl::min(i, i_max);
+ }
+
+ const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI3_K/4);
+
+ const int ksc = k % (QI3_K/4);
+
+ const int ksc_low = ksc % (QI3_K/8);
+ const int shift_low = 4 * (ksc / (QI3_K/8));
+ const int sc_low = (get_int_from_uint8(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F;
+
+ const int ksc_high = QI3_K/8;
+ const int shift_high = 2 * ksc;
+ const int sc_high = ((get_int_from_uint8(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030;
+
+ const int sc = dpct::vectorized_binary<sycl::char4>(
+ sc_low | sc_high, 0x20202020, dpct::sub_sat());
+
+ x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = sc;
+ }
+}
+
+#define VDR_Q3_K_Q8_1_MMQ 2
+// contiguous u/y values
+static __dpct_inline__ float
+vec_dot_q3_K_q8_1_impl_mmq(const int *__restrict__ v, const int *__restrict__ u,
+ const int8_t *__restrict__ scales, const float &d3,
+ const float &d8) {
+
+ int sumi = 0;
+
+#pragma unroll
+ for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) {
+ int sumi_sc = 0;
+
+ for (int i = i0; i < i0 + QI8_1/2; ++i) {
+ sumi_sc = dpct::dp4a(v[i], u[i], sumi_sc); // SIMD dot product
+ }
+
+ sumi += sumi_sc * scales[i0 / (QI8_1/2)];
+ }
+
+ return d3*d8 * sumi;
+}
+
+static __dpct_inline__ float vec_dot_q3_K_q8_1_mul_mat(
+ const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
+ const int *__restrict__ x_qh, const int *__restrict__ x_sc,
+ const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
+ const int &i, const int &j, const int &k) {
+
+ const int kbx = k / QI3_K;
+ const int ky = (k % QI3_K) * QR3_K;
+ const float * x_dmf = (const float *) x_dm;
+ const float * y_df = (const float *) y_ds;
+
+ const int8_t * scales = ((const int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4;
+
+ int v[QR3_K*VDR_Q3_K_Q8_1_MMQ];
+
+#pragma unroll
+ for (int l = 0; l < QR3_K*VDR_Q3_K_Q8_1_MMQ; ++l) {
+ const int kqsx = i * (WARP_SIZE + 1) + kbx*QI3_K + (QI3_K/2) * (ky/(2*QI3_K)) + ky % (QI3_K/2);
+ const int shift = 2 * ((ky % 32) / 8);
+ const int vll = (x_ql[kqsx + l] >> shift) & 0x03030303;
+
+ const int vh = x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI3_K/2) + (ky+l)%8] >> ((ky+l) / 8);
+ const int vlh = (vh << 2) & 0x04040404;
+
+ v[l] = dpct::vectorized_binary<sycl::char4>(vll, vlh, dpct::sub_sat());
+ }
+
+ const int index_y = j * WARP_SIZE + (k*QR3_K) % WARP_SIZE;
+ return vec_dot_q3_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dmf[i * (WARP_SIZE/QI3_K) + i/QI3_K + kbx], y_df[index_y/QI8_1]);
+}
+
+template <int mmq_y>
+static __dpct_inline__ void
+allocate_tiles_q4_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
+ int *tile_x_ql_q4_K, sycl::half2 *tile_x_dm_q4_K,
+ int *tile_x_sc_q4_K) {
+ (void)x_qh;
+
+ *x_ql = tile_x_ql_q4_K;
+ *x_dm = tile_x_dm_q4_K;
+ *x_sc = tile_x_sc_q4_K;
+}
+
+template <int mmq_y, int nwarps, bool need_check>
+static __dpct_inline__ void
+load_tiles_q4_K(const void *__restrict__ vx, int *__restrict__ x_ql,
+ sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
+ int *__restrict__ x_sc, const int &i_offset, const int &i_max,
+ const int &k, const int &blocks_per_row) {
+ (void)x_qh;
+
+ GGML_SYCL_ASSUME(i_offset >= 0);
+ GGML_SYCL_ASSUME(i_offset < nwarps);
+ GGML_SYCL_ASSUME(k >= 0);
+ GGML_SYCL_ASSUME(k < WARP_SIZE);
+
+ const int kbx = k / QI4_K; // == 0 if QK_K == 256
+ const int kqsx = k % QI4_K; // == k if QK_K == 256
+
+ const block_q4_K * bx0 = (const block_q4_K *) vx;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
+
+ if (need_check) {
+ i = sycl::min(i, i_max);
+ }
+
+ const block_q4_K * bxi = bx0 + i*blocks_per_row + kbx;
+
+ x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
+ }
+
+ const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256
+ const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_K) {
+ int i = (i0 + i_offset * QI4_K + k / blocks_per_tile_x_row) % mmq_y;
+
+ if (need_check) {
+ i = sycl::min(i, i_max);
+ }
+
+ const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
+
+#if QK_K == 256
+ x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
+#else
+ x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = {bxi->dm[0], bxi->dm[1]};
+#endif
+ }
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
+ int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
+
+ if (need_check) {
+ i = sycl::min(i, i_max);
+ }
+
+ const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8);
+
+ const int * scales = (const int *) bxi->scales;
+
+ const int ksc = k % (WARP_SIZE/8);
+
+ // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
+ int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
+ scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
+
+ x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
+ }
+}
+
+
+#define VDR_Q4_K_Q8_1_MMQ 8
+
+// contiguous u/y values
+static __dpct_inline__ float vec_dot_q4_K_q8_1_impl_mmq(
+ const int *__restrict__ v, const int *__restrict__ u,
+ const uint8_t *__restrict__ sc, const uint8_t *__restrict__ m,
+ const sycl::half2 &dm4, const sycl::half2 *__restrict__ ds8) {
+
+ float sumf_d = 0.0f;
+ float sumf_m = 0.0f;
+
+#pragma unroll
+ for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) {
+ int sumi_d = 0;
+
+#pragma unroll
+ for (int j = 0; j < QI8_1; ++j) {
+ sumi_d = dpct::dp4a((v[j] >> (4 * i)) & 0x0F0F0F0F,
+ u[i * QI8_1 + j], sumi_d); // SIMD dot product
+ }
+
+ const sycl::float2 ds8f =
+ ds8[i].convert<float, sycl::rounding_mode::automatic>();
+
+ sumf_d += ds8f.x() * (sc[i] * sumi_d);
+ sumf_m += ds8f.y() * m[i]; // sum of q8_1 block * q4_K min val
+ }
+
+ const sycl::float2 dm4f =
+ dm4.convert<float, sycl::rounding_mode::automatic>();
+
+ return dm4f.x() * sumf_d - dm4f.y() * sumf_m;
+}
+
+
+static __dpct_inline__ float vec_dot_q4_K_q8_1_mul_mat(
+ const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
+ const int *__restrict__ x_qh, const int *__restrict__ x_sc,
+ const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
+ const int &i, const int &j, const int &k) {
+ (void)x_qh;
+
+ const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8);
+
+ const int index_y = j * WARP_SIZE + (QR4_K*k) % WARP_SIZE;
+ return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[index_y], sc, sc+8,
+ x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]);
+}
+
+template <int mmq_y>
+static __dpct_inline__ void
+allocate_tiles_q5_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
+ int *tile_x_ql_q5_K, sycl::half2 *tile_x_dm_q5_K,
+ int *tile_x_sc_q5_K) {
+ (void)x_qh;
+
+ *x_ql = tile_x_ql_q5_K;
+ *x_dm = tile_x_dm_q5_K;
+ *x_sc = tile_x_sc_q5_K;
+}
+
+template <int mmq_y, int nwarps, bool need_check>
+static __dpct_inline__ void
+load_tiles_q5_K(const void *__restrict__ vx, int *__restrict__ x_ql,
+ sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
+ int *__restrict__ x_sc, const int &i_offset, const int &i_max,
+ const int &k, const int &blocks_per_row) {
+ (void)x_qh;
+
+ GGML_SYCL_ASSUME(i_offset >= 0);
+ GGML_SYCL_ASSUME(i_offset < nwarps);
+ GGML_SYCL_ASSUME(k >= 0);
+ GGML_SYCL_ASSUME(k < WARP_SIZE);
+
+ const int kbx = k / QI5_K; // == 0 if QK_K == 256
+ const int kqsx = k % QI5_K; // == k if QK_K == 256
+
+ const block_q5_K * bx0 = (const block_q5_K *) vx;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
+
+ if (need_check) {
+ i = sycl::min(i, i_max);
+ }
+
+ const block_q5_K * bxi = bx0 + i*blocks_per_row + kbx;
+ const int ky = QR5_K*kqsx;
+
+ const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
+ const int ql0 = (ql >> 0) & 0x0F0F0F0F;
+ const int ql1 = (ql >> 4) & 0x0F0F0F0F;
+
+ const int qh = get_int_from_uint8_aligned(bxi->qh, kqsx % (QI5_K/4));
+ const int qh0 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 0)) << 4) & 0x10101010;
+ const int qh1 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 1)) << 4) & 0x10101010;
+
+ const int kq0 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + 0;
+ const int kq1 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + (QI5_K/4);
+
+ x_ql[i * (2*WARP_SIZE + 1) + kq0] = ql0 | qh0;
+ x_ql[i * (2*WARP_SIZE + 1) + kq1] = ql1 | qh1;
+ }
+
+ const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256
+ const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_K) {
+ int i = (i0 + i_offset * QI5_K + k / blocks_per_tile_x_row) % mmq_y;
+
+ if (need_check) {
+ i = sycl::min(i, i_max);
+ }
+
+ const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
+
+#if QK_K == 256
+ x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
+#endif
+ }
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
+ int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
+
+ if (need_check) {
+ i = sycl::min(i, i_max);
+ }
+
+ const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8);
+
+ const int * scales = (const int *) bxi->scales;
+
+ const int ksc = k % (WARP_SIZE/8);
+
+ // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
+ int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
+ scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
+
+ x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
+ }
+}
+
+#define VDR_Q5_K_Q8_1_MMQ 8
+
+// contiguous u/y values
+static __dpct_inline__ float vec_dot_q5_K_q8_1_impl_mmq(
+ const int *__restrict__ v, const int *__restrict__ u,
+ const uint8_t *__restrict__ sc, const uint8_t *__restrict__ m,
+ const sycl::half2 &dm4, const sycl::half2 *__restrict__ ds8) {
+
+ float sumf_d = 0.0f;
+ float sumf_m = 0.0f;
+
+#pragma unroll
+ for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) {
+ int sumi_d = 0;
+
+#pragma unroll
+ for (int j = 0; j < QI8_1; ++j) {
+ sumi_d = dpct::dp4a(v[i * QI8_1 + j], u[i * QI8_1 + j],
+ sumi_d); // SIMD dot product
+ }
+
+ const sycl::float2 ds8f =
+ ds8[i].convert<float, sycl::rounding_mode::automatic>();
+
+ sumf_d += ds8f.x() * (sc[i] * sumi_d);
+ sumf_m += ds8f.y() * m[i]; // sum of q8_1 block * q4_K min val
+ }
+
+ const sycl::float2 dm4f =
+ dm4.convert<float, sycl::rounding_mode::automatic>();
+
+ return dm4f.x() * sumf_d - dm4f.y() * sumf_m;
+}
+
+static __dpct_inline__ float vec_dot_q5_K_q8_1_mul_mat(
+ const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
+ const int *__restrict__ x_qh, const int *__restrict__ x_sc,
+ const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
+ const int &i, const int &j, const int &k) {
+ (void)x_qh;
+
+ const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8);
+
+ const int index_x = i * (QR5_K*WARP_SIZE + 1) + QR5_K*k;
+ const int index_y = j * WARP_SIZE + (QR5_K*k) % WARP_SIZE;
+ return vec_dot_q5_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8,
+ x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]);
+}
+
+template <int mmq_y>
+static __dpct_inline__ void
+allocate_tiles_q6_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
+ int *tile_x_ql, sycl::half2 *tile_x_dm, int *tile_x_sc) {
+ (void)x_qh;
+
+ *x_ql = tile_x_ql;
+ *x_dm = tile_x_dm;
+ *x_sc = tile_x_sc;
+}
+
+template <int mmq_y, int nwarps, bool need_check>
+static __dpct_inline__ void
+load_tiles_q6_K(const void *__restrict__ vx, int *__restrict__ x_ql,
+ sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
+ int *__restrict__ x_sc, const int &i_offset, const int &i_max,
+ const int &k, const int &blocks_per_row) {
+ (void)x_qh;
+
+ GGML_SYCL_ASSUME(i_offset >= 0);
+ GGML_SYCL_ASSUME(i_offset < nwarps);
+ GGML_SYCL_ASSUME(k >= 0);
+ GGML_SYCL_ASSUME(k < WARP_SIZE);
+
+ const int kbx = k / QI6_K; // == 0 if QK_K == 256
+ const int kqsx = k % QI6_K; // == k if QK_K == 256
+
+ const block_q6_K * bx0 = (const block_q6_K *) vx;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
+
+ if (need_check) {
+ i = sycl::min(i, i_max);
+ }
+
+ const block_q6_K * bxi = bx0 + i*blocks_per_row + kbx;
+ const int ky = QR6_K*kqsx;
+
+ const int ql = get_int_from_uint8(bxi->ql, kqsx);
+ const int ql0 = (ql >> 0) & 0x0F0F0F0F;
+ const int ql1 = (ql >> 4) & 0x0F0F0F0F;
+
+ const int qh = get_int_from_uint8(bxi->qh, (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4));
+ const int qh0 = ((qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) << 4) & 0x30303030;
+ const int qh1 = (qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) & 0x30303030;
+
+ const int kq0 = ky - ky % QI6_K + k % (QI6_K/2) + 0;
+ const int kq1 = ky - ky % QI6_K + k % (QI6_K/2) + (QI6_K/2);
+
+ x_ql[i * (2 * WARP_SIZE + 1) + kq0] =
+ dpct::vectorized_binary<sycl::char4>(ql0 | qh0, 0x20202020,
+ dpct::sub_sat());
+ x_ql[i * (2 * WARP_SIZE + 1) + kq1] =
+ dpct::vectorized_binary<sycl::char4>(ql1 | qh1, 0x20202020,
+ dpct::sub_sat());
+ }
+
+ const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256
+ const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
+ float * x_dmf = (float *) x_dm;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) {
+ int i = (i0 + i_offset * QI6_K + k / blocks_per_tile_x_row) % mmq_y;
+
+ if (need_check) {
+ i = sycl::min(i, i_max);
+ }
+
+ const block_q6_K * bxi = bx0 + i*blocks_per_row + kbxd;
+
+ x_dmf[i * (WARP_SIZE/QI6_K) + i / QI6_K + kbxd] = bxi->d;
+ }
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
+ int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
+
+ if (need_check) {
+ i = sycl::min(i, i_max);
+ }
+
+ const block_q6_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / 4;
+
+ x_sc[i * (WARP_SIZE/8) + i / 8 + k % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, k % (QI6_K/8));
+ }
+}
+
+#define VDR_Q6_K_Q8_1_MMQ 8
+
+// contiguous u/y values
+static __dpct_inline__ float
+vec_dot_q6_K_q8_1_impl_mmq(const int *__restrict__ v, const int *__restrict__ u,
+ const int8_t *__restrict__ sc, const float &d6,
+ const float *__restrict__ d8) {
+
+ float sumf_d = 0.0f;
+
+#pragma unroll
+ for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) {
+ sycl::int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale
+
+#pragma unroll
+ for (int i = i0; i < i0 + 2; ++i) {
+ sumi_d.x() = dpct::dp4a(v[2 * i + 0], u[2 * i + 0],
+ sumi_d.x()); // SIMD dot product
+ sumi_d.x() = dpct::dp4a(v[2 * i + 1], u[2 * i + 1],
+ sumi_d.x()); // SIMD dot product
+
+ sumi_d.y() = dpct::dp4a(v[2 * i + 4], u[2 * i + 4],
+ sumi_d.y()); // SIMD dot product
+ sumi_d.y() = dpct::dp4a(v[2 * i + 5], u[2 * i + 5],
+ sumi_d.y()); // SIMD dot product
+ }
+
+ sumf_d += d8[i0 / 4] *
+ (sc[i0 / 2 + 0] * sumi_d.x() + sc[i0 / 2 + 1] * sumi_d.y());
+ }
+
+ return d6 * sumf_d;
+}
+
+static __dpct_inline__ float vec_dot_q6_K_q8_1_mul_mat(
+ const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
+ const int *__restrict__ x_qh, const int *__restrict__ x_sc,
+ const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
+ const int &i, const int &j, const int &k) {
+ (void)x_qh;
+
+ const float * x_dmf = (const float *) x_dm;
+ const float * y_df = (const float *) y_ds;
+
+ const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/8]);
+
+ const int index_x = i * (QR6_K*WARP_SIZE + 1) + QR6_K*k;
+ const int index_y = j * WARP_SIZE + (QR6_K*k) % WARP_SIZE;
+ return vec_dot_q6_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]);
+}
+
+template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x,
+ int mmq_y, int nwarps, load_tiles_sycl_t load_tiles, int vdr,
+ vec_dot_q_mul_mat_sycl_t vec_dot>
+/*
+DPCT1110:8: The total declared local variable size in device function mul_mat_q
+exceeds 128 bytes and may cause high register pressure. Consult with your
+hardware vendor to find the total register size available and adjust the code,
+or use smaller sub-group size to avoid high register pressure.
+*/
+static __dpct_inline__ void
+mul_mat_q(const void *__restrict__ vx, const void *__restrict__ vy,
+ float *__restrict__ dst, const int ncols_x, const int nrows_x,
+ const int ncols_y, const int nrows_y, const int nrows_dst,
+ int *tile_x_ql, sycl::half2 *tile_x_dm, int *tile_x_qh,
+ int *tile_x_sc, const sycl::nd_item<3> &item_ct1, int *tile_y_qs,
+ sycl::half2 *tile_y_ds) {
+
+ const block_q_t * x = (const block_q_t *) vx;
+ const block_q8_1 * y = (const block_q8_1 *) vy;
+
+ const int blocks_per_row_x = ncols_x / qk;
+ const int blocks_per_col_y = nrows_y / QK8_1;
+ const int blocks_per_warp = WARP_SIZE / qi;
+
+ const int & ncols_dst = ncols_y;
+
+ const int row_dst_0 = item_ct1.get_group(2) * mmq_y;
+ const int & row_x_0 = row_dst_0;
+
+ const int col_dst_0 = item_ct1.get_group(1) * mmq_x;
+ const int & col_y_0 = col_dst_0;
+
+ float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {{0.0f}};
+
+ for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) {
+
+ load_tiles(x + row_x_0 * blocks_per_row_x + ib0, tile_x_ql, tile_x_dm,
+ tile_x_qh, tile_x_sc, item_ct1.get_local_id(1),
+ nrows_x - row_x_0 - 1, item_ct1.get_local_id(2),
+ blocks_per_row_x);
+
+#pragma unroll
+ for (int ir = 0; ir < qr; ++ir) {
+ const int kqs = ir * WARP_SIZE + item_ct1.get_local_id(2);
+ const int kbxd = kqs / QI8_1;
+
+#pragma unroll
+ for (int i = 0; i < mmq_x; i += nwarps) {
+ const int col_y_eff = dpct::min(
+ (unsigned int)(col_y_0 + item_ct1.get_local_id(1) + i),
+ ncols_y - 1); // to prevent out-of-bounds memory accesses
+
+ const block_q8_1 * by0 = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + kbxd];
+
+ const int index_y = (item_ct1.get_local_id(1) + i) * WARP_SIZE +
+ kqs % WARP_SIZE;
+ tile_y_qs[index_y] = get_int_from_int8_aligned(
+ by0->qs, item_ct1.get_local_id(2) % QI8_1);
+ }
+
+#pragma unroll
+ for (int ids0 = 0; ids0 < mmq_x; ids0 += nwarps * QI8_1) {
+ const int ids =
+ (ids0 + item_ct1.get_local_id(1) * QI8_1 +
+ item_ct1.get_local_id(2) / (WARP_SIZE / QI8_1)) %
+ mmq_x;
+ const int kby = item_ct1.get_local_id(2) % (WARP_SIZE / QI8_1);
+ const int col_y_eff = sycl::min(col_y_0 + ids, ncols_y - 1);
+
+ // if the sum is not needed it's faster to transform the scale to f32 ahead of time
+ const sycl::half2 *dsi_src =
+ &y[col_y_eff * blocks_per_col_y + ib0 * (qk / QK8_1) +
+ ir * (WARP_SIZE / QI8_1) + kby]
+ .ds;
+ sycl::half2 *dsi_dst =
+ &tile_y_ds[ids * (WARP_SIZE / QI8_1) + kby];
+ if (need_sum) {
+ *dsi_dst = *dsi_src;
+ } else {
+ float * dfi_dst = (float *) dsi_dst;
+ *dfi_dst = (*dsi_src)[0];
+ }
+ }
+
+ /*
+ DPCT1118:9: SYCL group functions and algorithms must be encountered
+ in converged control flow. You may need to adjust the code.
+ */
+ /*
+ DPCT1065:56: Consider replacing sycl::nd_item::barrier() with
+ sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
+ better performance if there is no access to global memory.
+ */
+ item_ct1.barrier();
+
+// #pragma unroll // unrolling this loop causes too much register pressure
+ for (int k = ir*WARP_SIZE/qr; k < (ir+1)*WARP_SIZE/qr; k += vdr) {
+#pragma unroll
+ for (int j = 0; j < mmq_x; j += nwarps) {
+#pragma unroll
+ for (int i = 0; i < mmq_y; i += WARP_SIZE) {
+ sum[i / WARP_SIZE][j / nwarps] += vec_dot(
+ tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc,
+ tile_y_qs, tile_y_ds, item_ct1.get_local_id(2) + i,
+ item_ct1.get_local_id(1) + j, k);
+ }
+ }
+ }
+
+ /*
+ DPCT1118:10: SYCL group functions and algorithms must be encountered
+ in converged control flow. You may need to adjust the code.
+ */
+ /*
+ DPCT1065:57: Consider replacing sycl::nd_item::barrier() with
+ sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
+ better performance if there is no access to global memory.
+ */
+ item_ct1.barrier();
+ }
+ }
+
+#pragma unroll
+ for (int j = 0; j < mmq_x; j += nwarps) {
+ const int col_dst = col_dst_0 + j + item_ct1.get_local_id(1);
+
+ if (col_dst >= ncols_dst) {
+ return;
+ }
+
+#pragma unroll
+ for (int i = 0; i < mmq_y; i += WARP_SIZE) {
+ const int row_dst = row_dst_0 + item_ct1.get_local_id(2) + i;
+
+ if (row_dst >= nrows_dst) {
+ continue;
+ }
+
+ dst[col_dst*nrows_dst + row_dst] = sum[i/WARP_SIZE][j/nwarps];
+ }
+ }
+}
+
+#define MMQ_X_Q4_0_RDNA2 64
+#define MMQ_Y_Q4_0_RDNA2 128
+#define NWARPS_Q4_0_RDNA2 8
+#define MMQ_X_Q4_0_RDNA1 64
+#define MMQ_Y_Q4_0_RDNA1 64
+#define NWARPS_Q4_0_RDNA1 8
+#if defined(SYCL_USE_XMX)
+#define MMQ_X_Q4_0_AMPERE 4
+#define MMQ_Y_Q4_0_AMPERE 32
+#define NWARPS_Q4_0_AMPERE 4
+#else
+#define MMQ_X_Q4_0_AMPERE 64
+#define MMQ_Y_Q4_0_AMPERE 128
+#define NWARPS_Q4_0_AMPERE 4
+#endif
+#define MMQ_X_Q4_0_PASCAL 64
+#define MMQ_Y_Q4_0_PASCAL 64
+#define NWARPS_Q4_0_PASCAL 8
+
+template <bool need_check> static void
+ mul_mat_q4_0(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
+ const sycl::nd_item<3> &item_ct1, int *tile_x_qs_q4_0, float *tile_x_d_q4_0,
+ int *tile_y_qs, sycl::half2 *tile_y_ds) {
+ int * tile_x_ql = nullptr;
+ sycl::half2 *tile_x_dm = nullptr;
+ int * tile_x_qh = nullptr;
+ int * tile_x_sc = nullptr;
+
+//sycl_todo: change according to hardware
+
+ const int mmq_x = MMQ_X_Q4_0_AMPERE;
+ const int mmq_y = MMQ_Y_Q4_0_AMPERE;
+ const int nwarps = NWARPS_Q4_0_AMPERE;
+ allocate_tiles_q4_0<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
+ tile_x_qs_q4_0, tile_x_d_q4_0);
+ mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps,
+ load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ,
+ vec_dot_q4_0_q8_1_mul_mat>(
+ vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
+ tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
+}
+
+#define MMQ_X_Q4_1_RDNA2 64
+#define MMQ_Y_Q4_1_RDNA2 128
+#define NWARPS_Q4_1_RDNA2 8
+#define MMQ_X_Q4_1_RDNA1 64
+#define MMQ_Y_Q4_1_RDNA1 64
+#define NWARPS_Q4_1_RDNA1 8
+#if defined(SYCL_USE_XMX)
+#define MMQ_X_Q4_1_AMPERE 4
+#define MMQ_Y_Q4_1_AMPERE 32
+#define NWARPS_Q4_1_AMPERE 4
+#else
+#define MMQ_X_Q4_1_AMPERE 64
+#define MMQ_Y_Q4_1_AMPERE 128
+#define NWARPS_Q4_1_AMPERE 4
+#endif
+#define MMQ_X_Q4_1_PASCAL 64
+#define MMQ_Y_Q4_1_PASCAL 64
+#define NWARPS_Q4_1_PASCAL 8
+
+template <bool need_check> static void
+ mul_mat_q4_1(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
+ const sycl::nd_item<3> &item_ct1, int *tile_x_qs_q4_1,
+ sycl::half2 *tile_x_dm_q4_1, int *tile_y_qs, sycl::half2 *tile_y_ds) {
+ int * tile_x_ql = nullptr;
+ sycl::half2 *tile_x_dm = nullptr;
+ int * tile_x_qh = nullptr;
+ int * tile_x_sc = nullptr;
+
+//sycl_todo: change according to hardware
+ const int mmq_x = MMQ_X_Q4_1_AMPERE;
+ const int mmq_y = MMQ_Y_Q4_1_AMPERE;
+ const int nwarps = NWARPS_Q4_1_AMPERE;
+ allocate_tiles_q4_1<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
+ tile_x_qs_q4_1, tile_x_dm_q4_1);
+ mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps,
+ load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ,
+ vec_dot_q4_1_q8_1_mul_mat>(
+ vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
+ tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
+}
+
+#define MMQ_X_Q5_0_RDNA2 64
+#define MMQ_Y_Q5_0_RDNA2 128
+#define NWARPS_Q5_0_RDNA2 8
+#define MMQ_X_Q5_0_RDNA1 64
+#define MMQ_Y_Q5_0_RDNA1 64
+#define NWARPS_Q5_0_RDNA1 8
+#if defined(SYCL_USE_XMX)
+#define MMQ_X_Q5_0_AMPERE 4
+#define MMQ_Y_Q5_0_AMPERE 32
+#define NWARPS_Q5_0_AMPERE 4
+#else
+#define MMQ_X_Q5_0_AMPERE 128
+#define MMQ_Y_Q5_0_AMPERE 64
+#define NWARPS_Q5_0_AMPERE 4
+#endif
+#define MMQ_X_Q5_0_PASCAL 64
+#define MMQ_Y_Q5_0_PASCAL 64
+#define NWARPS_Q5_0_PASCAL 8
+
+template <bool need_check> static void
+ mul_mat_q5_0(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
+ const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q5_0, float *tile_x_d_q5_0,
+ int *tile_y_qs, sycl::half2 *tile_y_ds) {
+ int * tile_x_ql = nullptr;
+ sycl::half2 *tile_x_dm = nullptr;
+ int * tile_x_qh = nullptr;
+ int * tile_x_sc = nullptr;
+
+//sycl_todo: change according to hardware
+ const int mmq_x = MMQ_X_Q5_0_AMPERE;
+ const int mmq_y = MMQ_Y_Q5_0_AMPERE;
+ const int nwarps = NWARPS_Q5_0_AMPERE;
+ allocate_tiles_q5_0<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
+ tile_x_ql_q5_0, tile_x_d_q5_0);
+ mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps,
+ load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ,
+ vec_dot_q5_0_q8_1_mul_mat>(
+ vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
+ tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
+}
+
+#define MMQ_X_Q5_1_RDNA2 64
+#define MMQ_Y_Q5_1_RDNA2 128
+#define NWARPS_Q5_1_RDNA2 8
+#define MMQ_X_Q5_1_RDNA1 64
+#define MMQ_Y_Q5_1_RDNA1 64
+#define NWARPS_Q5_1_RDNA1 8
+#if defined(SYCL_USE_XMX)
+#define MMQ_X_Q5_1_AMPERE 4
+#define MMQ_Y_Q5_1_AMPERE 32
+#define NWARPS_Q5_1_AMPERE 4
+#else
+#define MMQ_X_Q5_1_AMPERE 128
+#define MMQ_Y_Q5_1_AMPERE 64
+#define NWARPS_Q5_1_AMPERE 4
+#endif
+#define MMQ_X_Q5_1_PASCAL 64
+#define MMQ_Y_Q5_1_PASCAL 64
+#define NWARPS_Q5_1_PASCAL 8
+
+template <bool need_check> static void
+mul_mat_q5_1(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
+ const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q5_1,
+ sycl::half2 *tile_x_dm_q5_1, int *tile_y_qs, sycl::half2 *tile_y_ds) {
+ int * tile_x_ql = nullptr;
+ sycl::half2 *tile_x_dm = nullptr;
+ int * tile_x_qh = nullptr;
+ int * tile_x_sc = nullptr;
+
+//sycl_todo: change according to hardware
+ const int mmq_x = MMQ_X_Q5_1_AMPERE;
+ const int mmq_y = MMQ_Y_Q5_1_AMPERE;
+ const int nwarps = NWARPS_Q5_1_AMPERE;
+ allocate_tiles_q5_1<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
+ tile_x_ql_q5_1, tile_x_dm_q5_1);
+ mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps,
+ load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ,
+ vec_dot_q5_1_q8_1_mul_mat>(
+ vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
+ tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
+}
+
+#define MMQ_X_Q8_0_RDNA2 64
+#define MMQ_Y_Q8_0_RDNA2 128
+#define NWARPS_Q8_0_RDNA2 8
+#define MMQ_X_Q8_0_RDNA1 64
+#define MMQ_Y_Q8_0_RDNA1 64
+#define NWARPS_Q8_0_RDNA1 8
+#if defined(SYCL_USE_XMX)
+#define MMQ_X_Q8_0_AMPERE 4
+#define MMQ_Y_Q8_0_AMPERE 32
+#define NWARPS_Q8_0_AMPERE 4
+#else
+#define MMQ_X_Q8_0_AMPERE 128
+#define MMQ_Y_Q8_0_AMPERE 64
+#define NWARPS_Q8_0_AMPERE 4
+#endif
+#define MMQ_X_Q8_0_PASCAL 64
+#define MMQ_Y_Q8_0_PASCAL 64
+#define NWARPS_Q8_0_PASCAL 8
+
+template <bool need_check> static void
+ mul_mat_q8_0(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
+ const sycl::nd_item<3> &item_ct1, int *tile_x_qs_q8_0, float *tile_x_d_q8_0,
+ int *tile_y_qs, sycl::half2 *tile_y_ds) {
+ int * tile_x_ql = nullptr;
+ sycl::half2 *tile_x_dm = nullptr;
+ int * tile_x_qh = nullptr;
+ int * tile_x_sc = nullptr;
+
+//sycl_todo: change according to hardware
+ const int mmq_x = MMQ_X_Q8_0_AMPERE;
+ const int mmq_y = MMQ_Y_Q8_0_AMPERE;
+ const int nwarps = NWARPS_Q8_0_AMPERE;
+ allocate_tiles_q8_0<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
+ tile_x_qs_q8_0, tile_x_d_q8_0);
+ mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps,
+ load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ,
+ vec_dot_q8_0_q8_1_mul_mat>(
+ vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
+ tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
+}
+
+#define MMQ_X_Q2_K_RDNA2 64
+#define MMQ_Y_Q2_K_RDNA2 128
+#define NWARPS_Q2_K_RDNA2 8
+#define MMQ_X_Q2_K_RDNA1 128
+#define MMQ_Y_Q2_K_RDNA1 32
+#define NWARPS_Q2_K_RDNA1 8
+#if defined(SYCL_USE_XMX)
+#define MMQ_X_Q2_K_AMPERE 4
+#define MMQ_Y_Q2_K_AMPERE 32
+#define NWARPS_Q2_K_AMPERE 4
+#else
+#define MMQ_X_Q2_K_AMPERE 64
+#define MMQ_Y_Q2_K_AMPERE 128
+#define NWARPS_Q2_K_AMPERE 4
+#endif
+#define MMQ_X_Q2_K_PASCAL 64
+#define MMQ_Y_Q2_K_PASCAL 64
+#define NWARPS_Q2_K_PASCAL 8
+
+template <bool need_check> static void
+mul_mat_q2_K(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
+ const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q2_K,
+ sycl::half2 *tile_x_dm_q2_K, int *tile_x_sc_q2_K, int *tile_y_qs,
+ sycl::half2 *tile_y_ds) {
+ int * tile_x_ql = nullptr;
+ sycl::half2 *tile_x_dm = nullptr;
+ int * tile_x_qh = nullptr;
+ int * tile_x_sc = nullptr;
+
+//sycl_todo: change according to hardware
+ const int mmq_x = MMQ_X_Q2_K_AMPERE;
+ const int mmq_y = MMQ_Y_Q2_K_AMPERE;
+ const int nwarps = NWARPS_Q2_K_AMPERE;
+ allocate_tiles_q2_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
+ tile_x_ql_q2_K, tile_x_dm_q2_K, tile_x_sc_q2_K);
+ mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps,
+ load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ,
+ vec_dot_q2_K_q8_1_mul_mat>(
+ vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
+ tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
+}
+
+#define MMQ_X_Q3_K_RDNA2 128
+#define MMQ_Y_Q3_K_RDNA2 64
+#define NWARPS_Q3_K_RDNA2 8
+#define MMQ_X_Q3_K_RDNA1 32
+#define MMQ_Y_Q3_K_RDNA1 128
+#define NWARPS_Q3_K_RDNA1 8
+#if defined(SYCL_USE_XMX)
+#define MMQ_X_Q3_K_AMPERE 4
+#define MMQ_Y_Q3_K_AMPERE 32
+#define NWARPS_Q3_K_AMPERE 4
+#else
+#define MMQ_X_Q3_K_AMPERE 128
+#define MMQ_Y_Q3_K_AMPERE 128
+#define NWARPS_Q3_K_AMPERE 4
+#endif
+#define MMQ_X_Q3_K_PASCAL 64
+#define MMQ_Y_Q3_K_PASCAL 64
+#define NWARPS_Q3_K_PASCAL 8
+
+template <bool need_check> static void
+mul_mat_q3_K(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
+ const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q3_K,
+ sycl::half2 *tile_x_dm_q3_K, int *tile_x_qh_q3_K, int *tile_x_sc_q3_K,
+ int *tile_y_qs, sycl::half2 *tile_y_ds) {
+ int * tile_x_ql = nullptr;
+ sycl::half2 *tile_x_dm = nullptr;
+ int * tile_x_qh = nullptr;
+ int * tile_x_sc = nullptr;
+
+//sycl_todo: change according to hardware
+ const int mmq_x = MMQ_X_Q3_K_AMPERE;
+ const int mmq_y = MMQ_Y_Q3_K_AMPERE;
+ const int nwarps = NWARPS_Q3_K_AMPERE;
+ allocate_tiles_q3_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
+ tile_x_ql_q3_K, tile_x_dm_q3_K, tile_x_qh_q3_K,
+ tile_x_sc_q3_K);
+ mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps,
+ load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ,
+ vec_dot_q3_K_q8_1_mul_mat>(
+ vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
+ tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
+}
+
+#define MMQ_X_Q4_K_RDNA2 64
+#define MMQ_Y_Q4_K_RDNA2 128
+#define NWARPS_Q4_K_RDNA2 8
+#define MMQ_X_Q4_K_RDNA1 32
+#define MMQ_Y_Q4_K_RDNA1 64
+#define NWARPS_Q4_K_RDNA1 8
+#if defined(SYCL_USE_XMX)
+#define MMQ_X_Q4_K_AMPERE 4
+#define MMQ_Y_Q4_K_AMPERE 32
+#define NWARPS_Q4_K_AMPERE 4
+#else
+#define MMQ_X_Q4_K_AMPERE 64
+#define MMQ_Y_Q4_K_AMPERE 128
+#define NWARPS_Q4_K_AMPERE 4
+#endif
+#define MMQ_X_Q4_K_PASCAL 64
+#define MMQ_Y_Q4_K_PASCAL 64
+#define NWARPS_Q4_K_PASCAL 8
+
+template <bool need_check> static void
+ mul_mat_q4_K(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
+ const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q4_K,
+ sycl::half2 *tile_x_dm_q4_K, int *tile_x_sc_q4_K, int *tile_y_qs,
+ sycl::half2 *tile_y_ds) {
+ int * tile_x_ql = nullptr;
+ sycl::half2 *tile_x_dm = nullptr;
+ int * tile_x_qh = nullptr;
+ int * tile_x_sc = nullptr;
+
+//sycl_todo: change according to hardware
+ const int mmq_x = MMQ_X_Q4_K_AMPERE;
+ const int mmq_y = MMQ_Y_Q4_K_AMPERE;
+ const int nwarps = NWARPS_Q4_K_AMPERE;
+ allocate_tiles_q4_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
+ tile_x_ql_q4_K, tile_x_dm_q4_K, tile_x_sc_q4_K);
+ mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps,
+ load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ,
+ vec_dot_q4_K_q8_1_mul_mat>(
+ vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
+ tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
+}
+
+#define MMQ_X_Q5_K_RDNA2 64
+#define MMQ_Y_Q5_K_RDNA2 128
+#define NWARPS_Q5_K_RDNA2 8
+#define MMQ_X_Q5_K_RDNA1 32
+#define MMQ_Y_Q5_K_RDNA1 64
+#define NWARPS_Q5_K_RDNA1 8
+#if defined(SYCL_USE_XMX)
+#define MMQ_X_Q5_K_AMPERE 4
+#define MMQ_Y_Q5_K_AMPERE 32
+#define NWARPS_Q5_K_AMPERE 4
+#else
+#define MMQ_X_Q5_K_AMPERE 64
+#define MMQ_Y_Q5_K_AMPERE 128
+#define NWARPS_Q5_K_AMPERE 4
+#endif
+#define MMQ_X_Q5_K_PASCAL 64
+#define MMQ_Y_Q5_K_PASCAL 64
+#define NWARPS_Q5_K_PASCAL 8
+
+template <bool need_check> static void
+mul_mat_q5_K(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
+ const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q5_K,
+ sycl::half2 *tile_x_dm_q5_K, int *tile_x_sc_q5_K, int *tile_y_qs,
+ sycl::half2 *tile_y_ds) {
+ int * tile_x_ql = nullptr;
+ sycl::half2 *tile_x_dm = nullptr;
+ int * tile_x_qh = nullptr;
+ int * tile_x_sc = nullptr;
+
+//sycl_todo: change according to hardware
+ const int mmq_x = MMQ_X_Q5_K_AMPERE;
+ const int mmq_y = MMQ_Y_Q5_K_AMPERE;
+ const int nwarps = NWARPS_Q5_K_AMPERE;
+ allocate_tiles_q5_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
+ tile_x_ql_q5_K, tile_x_dm_q5_K, tile_x_sc_q5_K);
+ mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps,
+ load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ,
+ vec_dot_q5_K_q8_1_mul_mat>(
+ vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
+ tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
+}
+
+#define MMQ_X_Q6_K_RDNA2 64
+#define MMQ_Y_Q6_K_RDNA2 128
+#define NWARPS_Q6_K_RDNA2 8
+#define MMQ_X_Q6_K_RDNA1 32
+#define MMQ_Y_Q6_K_RDNA1 64
+#define NWARPS_Q6_K_RDNA1 8
+#if defined(SYCL_USE_XMX)
+#define MMQ_X_Q6_K_AMPERE 4
+#define MMQ_Y_Q6_K_AMPERE 32
+#define NWARPS_Q6_K_AMPERE 4
+#else
+#define MMQ_X_Q6_K_AMPERE 64
+#define MMQ_Y_Q6_K_AMPERE 64
+#define NWARPS_Q6_K_AMPERE 4
+#endif
+#define MMQ_X_Q6_K_PASCAL 64
+#define MMQ_Y_Q6_K_PASCAL 64
+#define NWARPS_Q6_K_PASCAL 8
+
+template <bool need_check> static void
+ mul_mat_q6_K(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
+ const sycl::nd_item<3> &item_ct1, int *tile_x_ql, sycl::half2 *tile_x_dm,
+ int *tile_x_sc, int *tile_y_qs, sycl::half2 *tile_y_ds) {
+ // int * tile_x_ql = nullptr;
+ // sycl::half2 *tile_x_dm = nullptr;
+ int * tile_x_qh = nullptr;
+ // int * tile_x_sc = nullptr;
+
+//sycl_todo: change according to hardware
+ const int mmq_x = MMQ_X_Q6_K_AMPERE;
+ const int mmq_y = MMQ_Y_Q6_K_AMPERE;
+ const int nwarps = NWARPS_Q6_K_AMPERE;
+ allocate_tiles_q6_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
+ tile_x_ql, tile_x_dm, tile_x_sc);
+ mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps,
+ load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ,
+ vec_dot_q6_K_q8_1_mul_mat>(
+ vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
+ tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
+}
+
+static void ggml_mul_mat_q4_0_q8_1_sycl(const void *vx, const void *vy,
+ float *dst, const int ncols_x,
+ const int nrows_x, const int ncols_y,
+ const int nrows_y, const int nrows_dst,
+ dpct::queue_ptr stream) try {
+
+ int id;
+ SYCL_CHECK(
+ CHECK_TRY_ERROR(id = get_current_device_id()));
+ const int compute_capability = ggml_sycl_info().devices[id].cc;
+
+ int mmq_x, mmq_y, nwarps;
+ if (compute_capability >= VER_GEN13) {
+ mmq_x = MMQ_X_Q4_0_RDNA2;
+ mmq_y = MMQ_Y_Q4_0_RDNA2;
+ nwarps = NWARPS_Q4_0_RDNA2;
+ } else if (compute_capability >= VER_GEN12) {
+ mmq_x = MMQ_X_Q4_0_RDNA1;
+ mmq_y = MMQ_Y_Q4_0_RDNA1;
+ nwarps = NWARPS_Q4_0_RDNA1;
+ } else if (compute_capability >= VER_GEN9) {
+ mmq_x = MMQ_X_Q4_0_AMPERE;
+ mmq_y = MMQ_Y_Q4_0_AMPERE;
+ nwarps = NWARPS_Q4_0_AMPERE;
+ } else if (compute_capability >= VER_4VEC) {
+ mmq_x = MMQ_X_Q4_0_PASCAL;
+ mmq_y = MMQ_Y_Q4_0_PASCAL;
+ nwarps = NWARPS_Q4_0_PASCAL;
+ } else {
+ GGML_ASSERT(false);
+ }
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const sycl::range<3> block_nums(1, block_num_y, block_num_x);
+ const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ /*
+ DPCT1049:20: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<int, 1> tile_x_qs_q4_0_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
+ sycl::local_accessor<float, 1> tile_x_d_q4_0_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / QI4_0) + mmq_y / QI4_0),
+ cgh);
+ sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ mul_mat_q4_0<need_check>(
+ vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+ nrows_dst, item_ct1,
+ tile_x_qs_q4_0_acc_ct1.get_pointer(),
+ tile_x_d_q4_0_acc_ct1.get_pointer(),
+ tile_y_qs_acc_ct1.get_pointer(),
+ tile_y_ds_acc_ct1.get_pointer());
+ });
+ });
+ }
+ } else {
+ const bool need_check = true;
+ /*
+ DPCT1049:21: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<int, 1> tile_x_qs_q4_0_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
+ sycl::local_accessor<float, 1> tile_x_d_q4_0_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / QI4_0) + mmq_y / QI4_0),
+ cgh);
+ sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ mul_mat_q4_0<need_check>(
+ vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+ nrows_dst, item_ct1,
+ tile_x_qs_q4_0_acc_ct1.get_pointer(),
+ tile_x_d_q4_0_acc_ct1.get_pointer(),
+ tile_y_qs_acc_ct1.get_pointer(),
+ tile_y_ds_acc_ct1.get_pointer());
+ });
+ });
+ }
+ }
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+static void ggml_mul_mat_q4_1_q8_1_sycl(const void *vx, const void *vy,
+ float *dst, const int ncols_x,
+ const int nrows_x, const int ncols_y,
+ const int nrows_y, const int nrows_dst,
+ dpct::queue_ptr stream) try {
+
+ int id;
+ SYCL_CHECK(
+ CHECK_TRY_ERROR(id = get_current_device_id()));
+ const int compute_capability = ggml_sycl_info().devices[id].cc;
+
+ int mmq_x, mmq_y, nwarps;
+ if (compute_capability >= VER_GEN13) {
+ mmq_x = MMQ_X_Q4_1_RDNA2;
+ mmq_y = MMQ_Y_Q4_1_RDNA2;
+ nwarps = NWARPS_Q4_1_RDNA2;
+ } else if (compute_capability >= VER_GEN12) {
+ mmq_x = MMQ_X_Q4_1_RDNA1;
+ mmq_y = MMQ_Y_Q4_1_RDNA1;
+ nwarps = NWARPS_Q4_1_RDNA1;
+ } else if (compute_capability >= VER_GEN9) {
+ mmq_x = MMQ_X_Q4_1_AMPERE;
+ mmq_y = MMQ_Y_Q4_1_AMPERE;
+ nwarps = NWARPS_Q4_1_AMPERE;
+ } else if (compute_capability >= VER_4VEC) {
+ mmq_x = MMQ_X_Q4_1_PASCAL;
+ mmq_y = MMQ_Y_Q4_1_PASCAL;
+ nwarps = NWARPS_Q4_1_PASCAL;
+ } else {
+ GGML_ASSERT(false);
+ }
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const sycl::range<3> block_nums(1, block_num_y, block_num_x);
+ const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ /*
+ DPCT1049:22: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<int, 1> tile_x_qs_q4_1_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE) + +mmq_y), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_1_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / QI4_1) + mmq_y / QI4_1),
+ cgh);
+ sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ mul_mat_q4_1<need_check>(
+ vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+ nrows_dst, item_ct1,
+ tile_x_qs_q4_1_acc_ct1.get_pointer(),
+ tile_x_dm_q4_1_acc_ct1.get_pointer(),
+ tile_y_qs_acc_ct1.get_pointer(),
+ tile_y_ds_acc_ct1.get_pointer());
+ });
+ });
+ }
+ } else {
+ const bool need_check = true;
+ /*
+ DPCT1049:23: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<int, 1> tile_x_qs_q4_1_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE) + +mmq_y), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_1_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / QI4_1) + mmq_y / QI4_1),
+ cgh);
+ sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ mul_mat_q4_1<need_check>(
+ vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+ nrows_dst, item_ct1,
+ tile_x_qs_q4_1_acc_ct1.get_pointer(),
+ tile_x_dm_q4_1_acc_ct1.get_pointer(),
+ tile_y_qs_acc_ct1.get_pointer(),
+ tile_y_ds_acc_ct1.get_pointer());
+ });
+ });
+ }
+ }
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+static void ggml_mul_mat_q5_0_q8_1_sycl(const void *vx, const void *vy,
+ float *dst, const int ncols_x,
+ const int nrows_x, const int ncols_y,
+ const int nrows_y, const int nrows_dst,
+ dpct::queue_ptr stream) try {
+
+ int id;
+ SYCL_CHECK(
+ CHECK_TRY_ERROR(id = get_current_device_id()));
+ const int compute_capability = ggml_sycl_info().devices[id].cc;
+
+ int mmq_x, mmq_y, nwarps;
+ if (compute_capability >= VER_GEN13) {
+ mmq_x = MMQ_X_Q5_0_RDNA2;
+ mmq_y = MMQ_Y_Q5_0_RDNA2;
+ nwarps = NWARPS_Q5_0_RDNA2;
+ } else if (compute_capability >= VER_GEN12) {
+ mmq_x = MMQ_X_Q5_0_RDNA1;
+ mmq_y = MMQ_Y_Q5_0_RDNA1;
+ nwarps = NWARPS_Q5_0_RDNA1;
+ } else if (compute_capability >= VER_GEN9) {
+ mmq_x = MMQ_X_Q5_0_AMPERE;
+ mmq_y = MMQ_Y_Q5_0_AMPERE;
+ nwarps = NWARPS_Q5_0_AMPERE;
+ } else if (compute_capability >= VER_4VEC) {
+ mmq_x = MMQ_X_Q5_0_PASCAL;
+ mmq_y = MMQ_Y_Q5_0_PASCAL;
+ nwarps = NWARPS_Q5_0_PASCAL;
+ } else {
+ GGML_ASSERT(false);
+ }
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const sycl::range<3> block_nums(1, block_num_y, block_num_x);
+ const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ /*
+ DPCT1049:24: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<int, 1> tile_x_ql_q5_0_acc_ct1(
+ sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
+ sycl::local_accessor<float, 1> tile_x_d_q5_0_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / QI5_0) + mmq_y / QI5_0),
+ cgh);
+ sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ mul_mat_q5_0<need_check>(
+ vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+ nrows_dst, item_ct1,
+ tile_x_ql_q5_0_acc_ct1.get_pointer(),
+ tile_x_d_q5_0_acc_ct1.get_pointer(),
+ tile_y_qs_acc_ct1.get_pointer(),
+ tile_y_ds_acc_ct1.get_pointer());
+ });
+ });
+ }
+ } else {
+ const bool need_check = true;
+ /*
+ DPCT1049:25: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<int, 1> tile_x_ql_q5_0_acc_ct1(
+ sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
+ sycl::local_accessor<float, 1> tile_x_d_q5_0_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / QI5_0) + mmq_y / QI5_0),
+ cgh);
+ sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ mul_mat_q5_0<need_check>(
+ vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+ nrows_dst, item_ct1,
+ tile_x_ql_q5_0_acc_ct1.get_pointer(),
+ tile_x_d_q5_0_acc_ct1.get_pointer(),
+ tile_y_qs_acc_ct1.get_pointer(),
+ tile_y_ds_acc_ct1.get_pointer());
+ });
+ });
+ }
+ }
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+static void ggml_mul_mat_q5_1_q8_1_sycl(const void *vx, const void *vy,
+ float *dst, const int ncols_x,
+ const int nrows_x, const int ncols_y,
+ const int nrows_y, const int nrows_dst,
+ dpct::queue_ptr stream) try {
+
+ int id;
+ SYCL_CHECK(
+ CHECK_TRY_ERROR(id = get_current_device_id()));
+ const int compute_capability = ggml_sycl_info().devices[id].cc;
+
+ int mmq_x, mmq_y, nwarps;
+ if (compute_capability >= VER_GEN13) {
+ mmq_x = MMQ_X_Q5_1_RDNA2;
+ mmq_y = MMQ_Y_Q5_1_RDNA2;
+ nwarps = NWARPS_Q5_1_RDNA2;
+ } else if (compute_capability >= VER_GEN12) {
+ mmq_x = MMQ_X_Q5_1_RDNA1;
+ mmq_y = MMQ_Y_Q5_1_RDNA1;
+ nwarps = NWARPS_Q5_1_RDNA1;
+ } else if (compute_capability >= VER_GEN9) {
+ mmq_x = MMQ_X_Q5_1_AMPERE;
+ mmq_y = MMQ_Y_Q5_1_AMPERE;
+ nwarps = NWARPS_Q5_1_AMPERE;
+ } else if (compute_capability >= VER_4VEC) {
+ mmq_x = MMQ_X_Q5_1_PASCAL;
+ mmq_y = MMQ_Y_Q5_1_PASCAL;
+ nwarps = NWARPS_Q5_1_PASCAL;
+ } else {
+ GGML_ASSERT(false);
+ }
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const sycl::range<3> block_nums(1, block_num_y, block_num_x);
+ const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ /*
+ DPCT1049:26: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<int, 1> tile_x_ql_q5_1_acc_ct1(
+ sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_1_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / QI5_1) + mmq_y / QI5_1),
+ cgh);
+ sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ mul_mat_q5_1<need_check>(
+ vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+ nrows_dst, item_ct1,
+ tile_x_ql_q5_1_acc_ct1.get_pointer(),
+ tile_x_dm_q5_1_acc_ct1.get_pointer(),
+ tile_y_qs_acc_ct1.get_pointer(),
+ tile_y_ds_acc_ct1.get_pointer());
+ });
+ });
+ }
+ } else {
+ const bool need_check = true;
+ /*
+ DPCT1049:27: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<int, 1> tile_x_ql_q5_1_acc_ct1(
+ sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_1_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / QI5_1) + mmq_y / QI5_1),
+ cgh);
+ sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ mul_mat_q5_1<need_check>(
+ vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+ nrows_dst, item_ct1,
+ tile_x_ql_q5_1_acc_ct1.get_pointer(),
+ tile_x_dm_q5_1_acc_ct1.get_pointer(),
+ tile_y_qs_acc_ct1.get_pointer(),
+ tile_y_ds_acc_ct1.get_pointer());
+ });
+ });
+ }
+ }
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+static void ggml_mul_mat_q8_0_q8_1_sycl(const void *vx, const void *vy,
+ float *dst, const int ncols_x,
+ const int nrows_x, const int ncols_y,
+ const int nrows_y, const int nrows_dst,
+ dpct::queue_ptr stream) try {
+
+ int id;
+ SYCL_CHECK(
+ CHECK_TRY_ERROR(id = get_current_device_id()));
+ const int compute_capability = ggml_sycl_info().devices[id].cc;
+
+ int mmq_x, mmq_y, nwarps;
+ if (compute_capability >= VER_GEN13) {
+ mmq_x = MMQ_X_Q8_0_RDNA2;
+ mmq_y = MMQ_Y_Q8_0_RDNA2;
+ nwarps = NWARPS_Q8_0_RDNA2;
+ } else if (compute_capability >= VER_GEN12) {
+ mmq_x = MMQ_X_Q8_0_RDNA1;
+ mmq_y = MMQ_Y_Q8_0_RDNA1;
+ nwarps = NWARPS_Q8_0_RDNA1;
+ } else if (compute_capability >= VER_GEN9) {
+ mmq_x = MMQ_X_Q8_0_AMPERE;
+ mmq_y = MMQ_Y_Q8_0_AMPERE;
+ nwarps = NWARPS_Q8_0_AMPERE;
+ } else if (compute_capability >= VER_4VEC) {
+ mmq_x = MMQ_X_Q8_0_PASCAL;
+ mmq_y = MMQ_Y_Q8_0_PASCAL;
+ nwarps = NWARPS_Q8_0_PASCAL;
+ } else {
+ GGML_ASSERT(false);
+ }
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const sycl::range<3> block_nums(1, block_num_y, block_num_x);
+ const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ /*
+ DPCT1049:28: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<int, 1> tile_x_qs_q8_0_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
+ sycl::local_accessor<float, 1> tile_x_d_q8_0_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / QI8_0) + mmq_y / QI8_0),
+ cgh);
+ sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ mul_mat_q8_0<need_check>(
+ vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+ nrows_dst, item_ct1,
+ tile_x_qs_q8_0_acc_ct1.get_pointer(),
+ tile_x_d_q8_0_acc_ct1.get_pointer(),
+ tile_y_qs_acc_ct1.get_pointer(),
+ tile_y_ds_acc_ct1.get_pointer());
+ });
+ });
+ }
+ } else {
+ const bool need_check = true;
+ /*
+ DPCT1049:29: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<int, 1> tile_x_qs_q8_0_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
+ sycl::local_accessor<float, 1> tile_x_d_q8_0_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / QI8_0) + mmq_y / QI8_0),
+ cgh);
+ sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ mul_mat_q8_0<need_check>(
+ vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+ nrows_dst, item_ct1,
+ tile_x_qs_q8_0_acc_ct1.get_pointer(),
+ tile_x_d_q8_0_acc_ct1.get_pointer(),
+ tile_y_qs_acc_ct1.get_pointer(),
+ tile_y_ds_acc_ct1.get_pointer());
+ });
+ });
+ }
+ }
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+static void ggml_mul_mat_q2_K_q8_1_sycl(const void *vx, const void *vy,
+ float *dst, const int ncols_x,
+ const int nrows_x, const int ncols_y,
+ const int nrows_y, const int nrows_dst,
+ dpct::queue_ptr stream) try {
+
+ int id;
+ SYCL_CHECK(
+ CHECK_TRY_ERROR(id = get_current_device_id()));
+ const int compute_capability = ggml_sycl_info().devices[id].cc;
+
+ int mmq_x, mmq_y, nwarps;
+ if (compute_capability >= VER_GEN13) {
+ mmq_x = MMQ_X_Q2_K_RDNA2;
+ mmq_y = MMQ_Y_Q2_K_RDNA2;
+ nwarps = NWARPS_Q2_K_RDNA2;
+ } else if (compute_capability >= VER_GEN12) {
+ mmq_x = MMQ_X_Q2_K_RDNA1;
+ mmq_y = MMQ_Y_Q2_K_RDNA1;
+ nwarps = NWARPS_Q2_K_RDNA1;
+ } else if (compute_capability >= VER_GEN9) {
+ mmq_x = MMQ_X_Q2_K_AMPERE;
+ mmq_y = MMQ_Y_Q2_K_AMPERE;
+ nwarps = NWARPS_Q2_K_AMPERE;
+ } else if (compute_capability >= VER_4VEC) {
+ mmq_x = MMQ_X_Q2_K_PASCAL;
+ mmq_y = MMQ_Y_Q2_K_PASCAL;
+ nwarps = NWARPS_Q2_K_PASCAL;
+ } else {
+ GGML_ASSERT(false);
+ }
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const sycl::range<3> block_nums(1, block_num_y, block_num_x);
+ const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ /*
+ DPCT1049:30: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<int, 1> tile_x_ql_q2_K_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_x_dm_q2_K_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / QI2_K) + mmq_y / QI2_K),
+ cgh);
+ sycl::local_accessor<int, 1> tile_x_sc_q2_K_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh);
+ sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ mul_mat_q2_K<need_check>(
+ vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+ nrows_dst, item_ct1,
+ tile_x_ql_q2_K_acc_ct1.get_pointer(),
+ tile_x_dm_q2_K_acc_ct1.get_pointer(),
+ tile_x_sc_q2_K_acc_ct1.get_pointer(),
+ tile_y_qs_acc_ct1.get_pointer(),
+ tile_y_ds_acc_ct1.get_pointer());
+ });
+ });
+ }
+ } else {
+ const bool need_check = true;
+ /*
+ DPCT1049:31: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<int, 1> tile_x_ql_q2_K_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_x_dm_q2_K_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / QI2_K) + mmq_y / QI2_K),
+ cgh);
+ sycl::local_accessor<int, 1> tile_x_sc_q2_K_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh);
+ sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ mul_mat_q2_K<need_check>(
+ vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+ nrows_dst, item_ct1,
+ tile_x_ql_q2_K_acc_ct1.get_pointer(),
+ tile_x_dm_q2_K_acc_ct1.get_pointer(),
+ tile_x_sc_q2_K_acc_ct1.get_pointer(),
+ tile_y_qs_acc_ct1.get_pointer(),
+ tile_y_ds_acc_ct1.get_pointer());
+ });
+ });
+ }
+ }
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+static void ggml_mul_mat_q3_K_q8_1_sycl(const void *vx, const void *vy,
+ float *dst, const int ncols_x,
+ const int nrows_x, const int ncols_y,
+ const int nrows_y, const int nrows_dst,
+ dpct::queue_ptr stream) try {
+
+#if QK_K == 256
+
+ int id;
+ SYCL_CHECK(
+ CHECK_TRY_ERROR(id = get_current_device_id()));
+ const int compute_capability = ggml_sycl_info().devices[id].cc;
+
+ int mmq_x, mmq_y, nwarps;
+ if (compute_capability >= VER_GEN13) {
+ mmq_x = MMQ_X_Q3_K_RDNA2;
+ mmq_y = MMQ_Y_Q3_K_RDNA2;
+ nwarps = NWARPS_Q3_K_RDNA2;
+ } else if (compute_capability >= VER_GEN12) {
+ mmq_x = MMQ_X_Q3_K_RDNA1;
+ mmq_y = MMQ_Y_Q3_K_RDNA1;
+ nwarps = NWARPS_Q3_K_RDNA1;
+ } else if (compute_capability >= VER_GEN9) {
+ mmq_x = MMQ_X_Q3_K_AMPERE;
+ mmq_y = MMQ_Y_Q3_K_AMPERE;
+ nwarps = NWARPS_Q3_K_AMPERE;
+ } else if (compute_capability >= VER_4VEC) {
+ mmq_x = MMQ_X_Q3_K_PASCAL;
+ mmq_y = MMQ_Y_Q3_K_PASCAL;
+ nwarps = NWARPS_Q3_K_PASCAL;
+ } else {
+ GGML_ASSERT(false);
+ }
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const sycl::range<3> block_nums(1, block_num_y, block_num_x);
+ const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ /*
+ DPCT1049:32: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<int, 1> tile_x_ql_q3_K_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_x_dm_q3_K_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / QI3_K) + mmq_y / QI3_K),
+ cgh);
+ sycl::local_accessor<int, 1> tile_x_qh_q3_K_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / 2) + mmq_y / 2), cgh);
+ sycl::local_accessor<int, 1> tile_x_sc_q3_K_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh);
+ sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ mul_mat_q3_K<need_check>(
+ vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+ nrows_dst, item_ct1,
+ tile_x_ql_q3_K_acc_ct1.get_pointer(),
+ tile_x_dm_q3_K_acc_ct1.get_pointer(),
+ tile_x_qh_q3_K_acc_ct1.get_pointer(),
+ tile_x_sc_q3_K_acc_ct1.get_pointer(),
+ tile_y_qs_acc_ct1.get_pointer(),
+ tile_y_ds_acc_ct1.get_pointer());
+ });
+ });
+ }
+ } else {
+ const bool need_check = true;
+ /*
+ DPCT1049:33: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<int, 1> tile_x_ql_q3_K_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_x_dm_q3_K_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / QI3_K) + mmq_y / QI3_K),
+ cgh);
+ sycl::local_accessor<int, 1> tile_x_qh_q3_K_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / 2) + mmq_y / 2), cgh);
+ sycl::local_accessor<int, 1> tile_x_sc_q3_K_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh);
+ sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ mul_mat_q3_K<need_check>(
+ vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+ nrows_dst, item_ct1,
+ tile_x_ql_q3_K_acc_ct1.get_pointer(),
+ tile_x_dm_q3_K_acc_ct1.get_pointer(),
+ tile_x_qh_q3_K_acc_ct1.get_pointer(),
+ tile_x_sc_q3_K_acc_ct1.get_pointer(),
+ tile_y_qs_acc_ct1.get_pointer(),
+ tile_y_ds_acc_ct1.get_pointer());
+ });
+ });
+ }
+ }
+#endif
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+static void ggml_mul_mat_q4_K_q8_1_sycl(const void *vx, const void *vy,
+ float *dst, const int ncols_x,
+ const int nrows_x, const int ncols_y,
+ const int nrows_y, const int nrows_dst,
+ dpct::queue_ptr stream) try {
+
+ int id;
+ SYCL_CHECK(
+ CHECK_TRY_ERROR(id = get_current_device_id()));
+ const int compute_capability = ggml_sycl_info().devices[id].cc;
+
+ int mmq_x, mmq_y, nwarps;
+ if (compute_capability >= VER_GEN13) {
+ mmq_x = MMQ_X_Q4_K_RDNA2;
+ mmq_y = MMQ_Y_Q4_K_RDNA2;
+ nwarps = NWARPS_Q4_K_RDNA2;
+ } else if (compute_capability >= VER_GEN12) {
+ mmq_x = MMQ_X_Q4_K_RDNA1;
+ mmq_y = MMQ_Y_Q4_K_RDNA1;
+ nwarps = NWARPS_Q4_K_RDNA1;
+ } else if (compute_capability >= VER_GEN9) {
+ mmq_x = MMQ_X_Q4_K_AMPERE;
+ mmq_y = MMQ_Y_Q4_K_AMPERE;
+ nwarps = NWARPS_Q4_K_AMPERE;
+ } else if (compute_capability >= VER_4VEC) {
+ mmq_x = MMQ_X_Q4_K_PASCAL;
+ mmq_y = MMQ_Y_Q4_K_PASCAL;
+ nwarps = NWARPS_Q4_K_PASCAL;
+ } else {
+ GGML_ASSERT(false);
+ }
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const sycl::range<3> block_nums(1, block_num_y, block_num_x);
+ const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ /*
+ DPCT1049:34: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<int, 1> tile_x_ql_q4_K_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_K_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / QI4_K) + mmq_y / QI4_K),
+ cgh);
+ sycl::local_accessor<int, 1> tile_x_sc_q4_K_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
+ sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ mul_mat_q4_K<need_check>(
+ vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+ nrows_dst, item_ct1,
+ tile_x_ql_q4_K_acc_ct1.get_pointer(),
+ tile_x_dm_q4_K_acc_ct1.get_pointer(),
+ tile_x_sc_q4_K_acc_ct1.get_pointer(),
+ tile_y_qs_acc_ct1.get_pointer(),
+ tile_y_ds_acc_ct1.get_pointer());
+ });
+ });
+ }
+ } else {
+ const bool need_check = true;
+ /*
+ DPCT1049:35: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<int, 1> tile_x_ql_q4_K_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_K_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / QI4_K) + mmq_y / QI4_K),
+ cgh);
+ sycl::local_accessor<int, 1> tile_x_sc_q4_K_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
+ sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ mul_mat_q4_K<need_check>(
+ vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+ nrows_dst, item_ct1,
+ tile_x_ql_q4_K_acc_ct1.get_pointer(),
+ tile_x_dm_q4_K_acc_ct1.get_pointer(),
+ tile_x_sc_q4_K_acc_ct1.get_pointer(),
+ tile_y_qs_acc_ct1.get_pointer(),
+ tile_y_ds_acc_ct1.get_pointer());
+ });
+ });
+ }
+ }
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+static void ggml_mul_mat_q5_K_q8_1_sycl(const void *vx, const void *vy,
+ float *dst, const int ncols_x,
+ const int nrows_x, const int ncols_y,
+ const int nrows_y, const int nrows_dst,
+ dpct::queue_ptr stream) try {
+
+ int id;
+ SYCL_CHECK(
+ CHECK_TRY_ERROR(id = get_current_device_id()));
+ const int compute_capability = ggml_sycl_info().devices[id].cc;
+
+ int mmq_x, mmq_y, nwarps;
+ if (compute_capability >= VER_GEN13) {
+ mmq_x = MMQ_X_Q5_K_RDNA2;
+ mmq_y = MMQ_Y_Q5_K_RDNA2;
+ nwarps = NWARPS_Q5_K_RDNA2;
+ } else if (compute_capability >= VER_GEN12) {
+ mmq_x = MMQ_X_Q5_K_RDNA1;
+ mmq_y = MMQ_Y_Q5_K_RDNA1;
+ nwarps = NWARPS_Q5_K_RDNA1;
+ } else if (compute_capability >= VER_GEN9) {
+ mmq_x = MMQ_X_Q5_K_AMPERE;
+ mmq_y = MMQ_Y_Q5_K_AMPERE;
+ nwarps = NWARPS_Q5_K_AMPERE;
+ } else if (compute_capability >= VER_4VEC) {
+ mmq_x = MMQ_X_Q5_K_PASCAL;
+ mmq_y = MMQ_Y_Q5_K_PASCAL;
+ nwarps = NWARPS_Q5_K_PASCAL;
+ } else {
+ GGML_ASSERT(false);
+ }
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const sycl::range<3> block_nums(1, block_num_y, block_num_x);
+ const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ /*
+ DPCT1049:36: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<int, 1> tile_x_ql_q5_K_acc_ct1(
+ sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_K_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / QI5_K) + mmq_y / QI5_K),
+ cgh);
+ sycl::local_accessor<int, 1> tile_x_sc_q5_K_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
+ sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ mul_mat_q5_K<need_check>(
+ vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+ nrows_dst, item_ct1,
+ tile_x_ql_q5_K_acc_ct1.get_pointer(),
+ tile_x_dm_q5_K_acc_ct1.get_pointer(),
+ tile_x_sc_q5_K_acc_ct1.get_pointer(),
+ tile_y_qs_acc_ct1.get_pointer(),
+ tile_y_ds_acc_ct1.get_pointer());
+ });
+ });
+ }
+ } else {
+ const bool need_check = true;
+ /*
+ DPCT1049:37: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<int, 1> tile_x_ql_q5_K_acc_ct1(
+ sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_K_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / QI5_K) + mmq_y / QI5_K),
+ cgh);
+ sycl::local_accessor<int, 1> tile_x_sc_q5_K_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
+ sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ mul_mat_q5_K<need_check>(
+ vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+ nrows_dst, item_ct1,
+ tile_x_ql_q5_K_acc_ct1.get_pointer(),
+ tile_x_dm_q5_K_acc_ct1.get_pointer(),
+ tile_x_sc_q5_K_acc_ct1.get_pointer(),
+ tile_y_qs_acc_ct1.get_pointer(),
+ tile_y_ds_acc_ct1.get_pointer());
+ });
+ });
+ }
+ }
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+static void ggml_mul_mat_q6_K_q8_1_sycl(const void *vx, const void *vy,
+ float *dst, const int ncols_x,
+ const int nrows_x, const int ncols_y,
+ const int nrows_y, const int nrows_dst,
+ dpct::queue_ptr stream) try {
+
+ int id;
+ SYCL_CHECK(
+ CHECK_TRY_ERROR(id = get_current_device_id()));
+ const int compute_capability = ggml_sycl_info().devices[id].cc;
+
+ int mmq_x, mmq_y, nwarps;
+ if (compute_capability >= VER_GEN13) {
+ mmq_x = MMQ_X_Q6_K_RDNA2;
+ mmq_y = MMQ_Y_Q6_K_RDNA2;
+ nwarps = NWARPS_Q6_K_RDNA2;
+ } else if (compute_capability >= VER_GEN12) {
+ mmq_x = MMQ_X_Q6_K_RDNA1;
+ mmq_y = MMQ_Y_Q6_K_RDNA1;
+ nwarps = NWARPS_Q6_K_RDNA1;
+ } else if (compute_capability >= VER_GEN9) {
+ mmq_x = MMQ_X_Q6_K_AMPERE;
+ mmq_y = MMQ_Y_Q6_K_AMPERE;
+ nwarps = NWARPS_Q6_K_AMPERE;
+ } else if (compute_capability >= VER_4VEC) {
+ mmq_x = MMQ_X_Q6_K_PASCAL;
+ mmq_y = MMQ_Y_Q6_K_PASCAL;
+ nwarps = NWARPS_Q6_K_PASCAL;
+ } else {
+ GGML_ASSERT(false);
+ }
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const sycl::range<3> block_nums(1, block_num_y, block_num_x);
+ const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ /*
+ DPCT1049:38: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<int, 1> tile_x_ql_acc_ct1(
+ sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_x_dm_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / QI6_K) + mmq_y / QI6_K),
+ cgh);
+ sycl::local_accessor<int, 1> tile_x_sc_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
+ sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ mul_mat_q6_K<need_check>(
+ vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+ nrows_dst, item_ct1,
+ tile_x_ql_acc_ct1.get_pointer(),
+ tile_x_dm_acc_ct1.get_pointer(),
+ tile_x_sc_acc_ct1.get_pointer(),
+ tile_y_qs_acc_ct1.get_pointer(),
+ tile_y_ds_acc_ct1.get_pointer());
+ });
+ });
+ }
+ } else {
+ const bool need_check = true;
+ /*
+ DPCT1049:39: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<int, 1> tile_x_ql_acc_ct1(
+ sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_x_dm_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / QI6_K) + mmq_y / QI6_K),
+ cgh);
+ sycl::local_accessor<int, 1> tile_x_sc_acc_ct1(
+ sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
+ sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE), cgh);
+ sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
+ sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ mul_mat_q6_K<need_check>(
+ vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
+ nrows_dst, item_ct1,
+ tile_x_ql_acc_ct1.get_pointer(),
+ tile_x_dm_acc_ct1.get_pointer(),
+ tile_x_sc_acc_ct1.get_pointer(),
+ tile_y_qs_acc_ct1.get_pointer(),
+ tile_y_ds_acc_ct1.get_pointer());
+ });
+ });
+ }
+ }
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}
+
+void ggml_sycl_op_mul_mat_q(
+ ggml_backend_sycl_context & ctx,
+ const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
+ const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
+ float *dst_dd_i, const int64_t row_low, const int64_t row_high,
+ const int64_t src1_ncols, const int64_t src1_padded_row_size,
+ const dpct::queue_ptr &stream) try {
+
+ const int64_t ne00 = src0->ne[0];
+
+ const int64_t ne10 = src1->ne[0];
+ GGML_ASSERT(ne10 % QK8_1 == 0);
+
+ const int64_t ne0 = dst->ne[0];
+
+ const int64_t row_diff = row_high - row_low;
+
+ int device_id;
+ SYCL_CHECK(
+ CHECK_TRY_ERROR(device_id = get_current_device_id()));
+
+ // the main device has a larger memory buffer to hold the results from all GPUs
+ // nrows_dst == nrows of the matrix that the dequantize_mul_mat kernel writes into
+ const int64_t nrows_dst = device_id == ctx.device ? ne0 : row_diff;
+
+ switch (src0->type) {
+ case GGML_TYPE_Q4_0:
+ ggml_mul_mat_q4_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q4_1:
+ ggml_mul_mat_q4_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q5_0:
+ ggml_mul_mat_q5_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q5_1:
+ ggml_mul_mat_q5_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q8_0:
+ ggml_mul_mat_q8_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q2_K:
+ ggml_mul_mat_q2_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q3_K:
+ ggml_mul_mat_q3_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q4_K:
+ ggml_mul_mat_q4_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q5_K:
+ ggml_mul_mat_q5_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q6_K:
+ ggml_mul_mat_q6_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+ break;
+ default:
+ GGML_ASSERT(false);
+ break;
+ }
+
+ (void) src1;
+ (void) dst;
+ (void) src1_ddf_i;
+}
+catch (sycl::exception const &exc) {
+ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+}