LLM_ARCH_QWEN,
LLM_ARCH_QWEN2,
LLM_ARCH_QWEN2MOE,
+ LLM_ARCH_QWEN2VL,
LLM_ARCH_PHI2,
LLM_ARCH_PHI3,
LLM_ARCH_PLAMO,
LLM_ARCH_OLMOE,
LLM_ARCH_OPENELM,
LLM_ARCH_ARCTIC,
+ LLM_ARCH_DEEPSEEK,
LLM_ARCH_DEEPSEEK2,
LLM_ARCH_CHATGLM,
LLM_ARCH_BITNET,
{ LLM_ARCH_QWEN, "qwen" },
{ LLM_ARCH_QWEN2, "qwen2" },
{ LLM_ARCH_QWEN2MOE, "qwen2moe" },
+ { LLM_ARCH_QWEN2VL, "qwen2vl" },
{ LLM_ARCH_PHI2, "phi2" },
{ LLM_ARCH_PHI3, "phi3" },
{ LLM_ARCH_PLAMO, "plamo" },
{ LLM_ARCH_OLMOE, "olmoe" },
{ LLM_ARCH_OPENELM, "openelm" },
{ LLM_ARCH_ARCTIC, "arctic" },
+ { LLM_ARCH_DEEPSEEK, "deepseek" },
{ LLM_ARCH_DEEPSEEK2, "deepseek2" },
{ LLM_ARCH_CHATGLM, "chatglm" },
{ LLM_ARCH_BITNET, "bitnet" },
LLM_KV_ATTENTION_SCALE,
LLM_KV_ROPE_DIMENSION_COUNT,
+ LLM_KV_ROPE_DIMENSION_SECTIONS,
LLM_KV_ROPE_FREQ_BASE,
LLM_KV_ROPE_SCALE_LINEAR,
LLM_KV_ROPE_SCALING_TYPE,
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
+ { LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" },
{ LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
{ LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
{ LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
+ {
+ LLM_ARCH_QWEN2VL,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ },
+ },
{
LLM_ARCH_QWEN2MOE,
{
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
},
},
+ {
+ LLM_ARCH_DEEPSEEK,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
+ { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
+ { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
+ { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
+ { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
+ { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
+ { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
+ { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
+ },
+ },
{
LLM_ARCH_DEEPSEEK2,
{
LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN,
LLM_CHAT_TEMPLATE_MISTRAL_V7,
LLM_CHAT_TEMPLATE_PHI_3,
+ LLM_CHAT_TEMPLATE_FALCON_3,
LLM_CHAT_TEMPLATE_ZEPHYR,
LLM_CHAT_TEMPLATE_MONARCH,
LLM_CHAT_TEMPLATE_GEMMA,
LLM_CHAT_TEMPLATE_EXAONE_3,
LLM_CHAT_TEMPLATE_RWKV_WORLD,
LLM_CHAT_TEMPLATE_GRANITE,
+ LLM_CHAT_TEMPLATE_GIGACHAT,
LLM_CHAT_TEMPLATE_UNKNOWN,
};
{ "mistral-v3-tekken", LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN },
{ "mistral-v7", LLM_CHAT_TEMPLATE_MISTRAL_V7 },
{ "phi3", LLM_CHAT_TEMPLATE_PHI_3 },
+ { "falcon3", LLM_CHAT_TEMPLATE_FALCON_3 },
{ "zephyr", LLM_CHAT_TEMPLATE_ZEPHYR },
{ "monarch", LLM_CHAT_TEMPLATE_MONARCH },
{ "gemma", LLM_CHAT_TEMPLATE_GEMMA },
{ "exaone3", LLM_CHAT_TEMPLATE_EXAONE_3 },
{ "rwkv-world", LLM_CHAT_TEMPLATE_RWKV_WORLD },
{ "granite", LLM_CHAT_TEMPLATE_GRANITE },
+ { "gigachat", LLM_CHAT_TEMPLATE_GIGACHAT },
};
static llm_arch llm_arch_from_string(const std::string & name) {
DWORD bufLen = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&lpMsgBuf, 0, NULL);
if (!bufLen) {
- ret = format("Win32 error code: %s", error_code);
+ ret = format("Win32 error code: %lx", error_code);
} else {
ret = lpMsgBuf;
LocalFree(lpMsgBuf);
HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
// may fail on pre-Windows 8 systems
- pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
+ pPrefetchVirtualMemory = (decltype(pPrefetchVirtualMemory))(void *) GetProcAddress(hKernel32, "PrefetchVirtualMemory");
if (pPrefetchVirtualMemory) {
// advise the kernel to preload the mapped memory
uint32_t time_decay_extra_dim = 0;
uint32_t wkv_head_size = 0;
- float rope_attn_factor = 1.0f;
- float rope_freq_base_train;
- float rope_freq_scale_train;
- uint32_t n_ctx_orig_yarn;
- float rope_yarn_log_mul;
+ float rope_attn_factor = 1.0f;
+ float rope_freq_base_train;
+ float rope_freq_scale_train;
+ uint32_t n_ctx_orig_yarn;
+ float rope_yarn_log_mul;
+ int rope_sections[4];
// for State Space Models
uint32_t ssm_d_conv = 0;
if (this->rope_finetuned != other.rope_finetuned) return true;
if (this->n_ctx_orig_yarn != other.n_ctx_orig_yarn) return true;
+ if (std::equal(std::begin(this->rope_sections),
+ std::end(this->rope_sections),
+ std::begin(other.rope_sections))) return true;
if (this->ssm_d_conv != other.ssm_d_conv) return true;
if (this->ssm_d_inner != other.ssm_d_inner) return true;
// whether we are computing encoder output or decoder output
bool is_encoding = false;
+ // TODO: find a better way to accommodate mutli-dimension position encoding methods
+ // number of position id each token get, 1 for each token in most cases.
+ // when using m-rope, it will be 3 position ids per token to representing 3 dimension coordinate.
+ int n_pos_per_token = 1;
+
// output of the encoder part of the encoder-decoder models
std::vector<float> embd_enc;
std::vector<std::set<llama_seq_id>> seq_ids_enc;
case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
- case GGML_TYPE_Q4_0_4_4: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_4_4; break;
- case GGML_TYPE_Q4_0_4_8: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_4_8; break;
- case GGML_TYPE_Q4_0_8_8: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_8_8; break;
default:
{
LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
- case LLAMA_FTYPE_MOSTLY_Q4_0_4_4: return "Q4_0_4_4";
- case LLAMA_FTYPE_MOSTLY_Q4_0_4_8: return "Q4_0_4_8";
- case LLAMA_FTYPE_MOSTLY_Q4_0_8_8: return "Q4_0_8_8";
default: return "unknown, may not work";
}
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
+ case LLM_ARCH_QWEN2VL:
+ {
+ std::array<int, 4> section_dims;
+ ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, section_dims, 4, true);
+ std::copy(section_dims.begin(), section_dims.begin() + 4, std::begin(hparams.rope_sections));
+ }
+ // fall through
case LLM_ARCH_QWEN2:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
model.type = e_model::MODEL_UNKNOWN;
}
} break;
+ case LLM_ARCH_DEEPSEEK:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+ ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
+ ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
+ ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
+ ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
+
+ switch (hparams.n_layer) {
+ case 28: model.type = e_model::MODEL_20B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
case LLM_ARCH_DEEPSEEK2:
{
bool is_lite = (hparams.n_layer == 27);
} else if (
tokenizer_pre == "falcon") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON;
+ } else if (
+ tokenizer_pre == "falcon3") {
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
+ vocab.tokenizer_ignore_merges = true;
+ vocab.tokenizer_add_bos = true;
} else if (
tokenizer_pre == "mpt") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MPT;
tokenizer_pre == "phi-2" ||
tokenizer_pre == "jina-es" ||
tokenizer_pre == "jina-de" ||
+ tokenizer_pre == "gigachat" ||
tokenizer_pre == "jina-v1-en" ||
tokenizer_pre == "jina-v2-es" ||
tokenizer_pre == "jina-v2-de" ||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_CHAMELEON;
vocab.tokenizer_add_bos = true;
vocab.tokenizer_clean_spaces = false;
+ } else if (
+ tokenizer_pre == "minerva-7b") {
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MINERVA;
} else {
throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
}
LLAMA_LOG_INFO("%s: max token length = %d\n", __func__, vocab.max_token_len);
+ if (model.arch == LLM_ARCH_DEEPSEEK) {
+ LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
+ LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
+ LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
+ LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
+ }
+
if (model.arch == LLM_ARCH_DEEPSEEK2) {
LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
}
} break;
case LLM_ARCH_QWEN2:
+ case LLM_ARCH_QWEN2VL:
{
model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
}
} break;
+ case LLM_ARCH_DEEPSEEK:
+ {
+
+ const int64_t n_ff_exp = hparams.n_ff_exp;
+ const int64_t n_expert_shared = hparams.n_expert_shared;
+
+ model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
+
+ // output
+ model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
+ model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
+
+ for (int i = 0; i < n_layer; ++i) {
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
+
+ layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
+ layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
+ layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
+ layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
+ layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
+
+ if (i < (int) hparams.n_layer_dense_lead) {
+ layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
+ } else {
+ layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
+
+ if (n_expert == 0) {
+ throw std::runtime_error("n_expert must be > 0");
+ }
+ if (n_expert_used == 0) {
+ throw std::runtime_error("n_expert_used must be > 0");
+ }
+
+ // MoE branch
+ layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
+ layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
+ layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
+
+ // Shared expert branch
+ layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
+ layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
+ layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
+ }
+ }
+ } break;
case LLM_ARCH_DEEPSEEK2:
{
const bool is_lite = (hparams.n_layer == 27);
return gf;
}
+ struct ggml_cgraph * build_qwen2vl() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens * 4);
+ cb(lctx.inp_pos, "inp_pos", -1);
+ ggml_set_input(lctx.inp_pos);
+ struct ggml_tensor * inp_pos = lctx.inp_pos;
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+ int sections[4];
+ std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+ cb(Qcur, "Qcur", il);
+
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+ cb(Kcur, "Kcur", il);
+
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_rope_multi(
+ ctx0,
+ ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+ n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_multi(
+ ctx0,
+ ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+ n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed-forward network
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, NULL, NULL,
+ model.layers[il].ffn_gate, NULL, NULL,
+ model.layers[il].ffn_down, NULL, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
struct ggml_cgraph * build_qwen2moe() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
return gf;
}
+ struct ggml_cgraph * build_deepseek() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
+
+ // mutable variable, needed during the last layer of the computation to skip unused tokens
+ int32_t n_tokens = this->n_tokens;
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+ const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ // rope freq factors for llama3; may return nullptr for llama2 and other models
+ struct ggml_tensor * rope_factors = build_rope_factors(il);
+
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+ if (model.layers[il].bq) {
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+ cb(Qcur, "Qcur", il);
+ }
+
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+ if (model.layers[il].bk) {
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+ cb(Kcur, "Kcur", il);
+ }
+
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+ if (model.layers[il].bv) {
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+ cb(Vcur, "Vcur", il);
+ }
+
+ Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ n_tokens = n_outputs;
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ if ((uint32_t) il < hparams.n_layer_dense_lead) {
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, NULL, NULL,
+ model.layers[il].ffn_gate, NULL, NULL,
+ model.layers[il].ffn_down, NULL, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+ } else {
+ // MoE branch
+ ggml_tensor * moe_out =
+ llm_build_moe_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_gate_inp,
+ model.layers[il].ffn_up_exps,
+ model.layers[il].ffn_gate_exps,
+ model.layers[il].ffn_down_exps,
+ n_expert, n_expert_used,
+ LLM_FFN_SILU, false,
+ false, hparams.expert_weights_scale,
+ cb, il);
+ cb(moe_out, "ffn_moe_out", il);
+
+ // FFN shared expert
+ {
+ ggml_tensor * ffn_shexp = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up_shexp, NULL, NULL,
+ model.layers[il].ffn_gate_shexp, NULL, NULL,
+ model.layers[il].ffn_down_shexp, NULL, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(ffn_shexp, "ffn_shexp", il);
+
+ cur = ggml_add(ctx0, moe_out, ffn_shexp);
+ cb(cur, "ffn_out", il);
+ }
+ }
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
struct ggml_cgraph * build_deepseek2() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
{
result = llm.build_qwen2();
} break;
+ case LLM_ARCH_QWEN2VL:
+ {
+ lctx.n_pos_per_token = 4;
+ result = llm.build_qwen2vl();
+ } break;
case LLM_ARCH_QWEN2MOE:
{
result = llm.build_qwen2moe();
{
result = llm.build_arctic();
} break;
+ case LLM_ARCH_DEEPSEEK:
+ {
+ result = llm.build_deepseek();
+ } break;
case LLM_ARCH_DEEPSEEK2:
{
result = llm.build_deepseek2();
if (ubatch.pos && lctx.inp_pos) {
const int64_t n_tokens = ubatch.n_tokens;
-
- ggml_backend_tensor_set(lctx.inp_pos, ubatch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
+ auto n_pos = lctx.n_pos_per_token;
+ ggml_backend_tensor_set(lctx.inp_pos, ubatch.pos, 0, n_tokens*n_pos*ggml_element_size(lctx.inp_pos));
}
if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
new_type = GGML_TYPE_IQ3_S;
}
- else if (new_type == GGML_TYPE_Q4_0_4_4 || new_type == GGML_TYPE_Q4_0_4_8 ||
- new_type == GGML_TYPE_Q4_0_8_8) {
- new_type = GGML_TYPE_Q4_0;
- }
else if (ftype == LLAMA_FTYPE_MOSTLY_TQ1_0 || ftype == LLAMA_FTYPE_MOSTLY_TQ2_0) {
new_type = GGML_TYPE_Q4_K;
}
case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
- case LLAMA_FTYPE_MOSTLY_Q4_0_4_4: default_type = GGML_TYPE_Q4_0_4_4; break;
- case LLAMA_FTYPE_MOSTLY_Q4_0_4_8: default_type = GGML_TYPE_Q4_0_4_8; break;
- case LLAMA_FTYPE_MOSTLY_Q4_0_8_8: default_type = GGML_TYPE_Q4_0_8_8; break;
default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
}
f32_data = (float *) f32_conv_buf.data();
}
- int chunk_size_multiplier = 1;
- if (new_type == GGML_TYPE_Q4_0_4_4 || new_type == GGML_TYPE_Q4_0_4_8 || new_type == GGML_TYPE_Q4_0_8_8) {
- if ((new_type == GGML_TYPE_Q4_0_8_8) && (tensor->ne[1] % 8 != 0)) new_type = GGML_TYPE_Q4_0;
- else if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_Q4_0;
- if (new_type == GGML_TYPE_Q4_0_8_8) chunk_size_multiplier = 8;
- else if (new_type == GGML_TYPE_Q4_0_4_4 || new_type == GGML_TYPE_Q4_0_4_8) chunk_size_multiplier = 4;
- }
-
LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
fflush(stdout);
const int64_t nrows = tensor->ne[1];
static const int64_t min_chunk_size = 32 * 512;
- const int64_t chunk_size = (n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row)) *
- chunk_size_multiplier;
+ const int64_t chunk_size = (n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row));
const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
case LLM_ARCH_COMMAND_R:
case LLM_ARCH_OLMO:
case LLM_ARCH_ARCTIC:
+ case LLM_ARCH_DEEPSEEK:
case LLM_ARCH_DEEPSEEK2:
case LLM_ARCH_CHATGLM:
case LLM_ARCH_GRANITE:
case LLM_ARCH_MINICPM3:
return LLAMA_ROPE_TYPE_NEOX;
+ case LLM_ARCH_QWEN2VL:
+ return LLAMA_ROPE_TYPE_MROPE;
+
// all model arches should be listed explicitly here
case LLM_ARCH_UNKNOWN:
GGML_ABORT("unknown architecture");
throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
}
} else if ((size_t) i >= ctx->output_ids.size()) {
- throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
+ throw std::runtime_error(format("out of range [0, %zu)", ctx->output_ids.size()));
} else {
j = ctx->output_ids[i];
}
}
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>")) {
return LLM_CHAT_TEMPLATE_PHI_3;
+ } else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|user|>")) {
+ return LLM_CHAT_TEMPLATE_FALCON_3;
} else if (tmpl_contains("<|user|>") && tmpl_contains("<|endoftext|>")) {
return LLM_CHAT_TEMPLATE_ZEPHYR;
} else if (tmpl_contains("bos_token + message['role']")) {
return LLM_CHAT_TEMPLATE_RWKV_WORLD;
} else if (tmpl_contains("<|start_of_role|>")) {
return LLM_CHAT_TEMPLATE_GRANITE;
+ } else if (tmpl_contains("message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1]")) {
+ return LLM_CHAT_TEMPLATE_GIGACHAT;
}
return LLM_CHAT_TEMPLATE_UNKNOWN;
}
if (add_ass) {
ss << "<|assistant|>\n";
}
+ } else if (tmpl == LLM_CHAT_TEMPLATE_FALCON_3) {
+ // Falcon 3
+ for (auto message : chat) {
+ std::string role(message->role);
+ ss << "<|" << role << "|>\n" << message->content << "\n";
+ }
+ if (add_ass) {
+ ss << "<|assistant|>\n";
+ }
} else if (tmpl == LLM_CHAT_TEMPLATE_ZEPHYR) {
// zephyr template
for (auto message : chat) {
if (add_ass) {
ss << "<|start_of_role|>assistant<|end_of_role|>\n";
}
+ } else if (tmpl == LLM_CHAT_TEMPLATE_GIGACHAT) {
+ // GigaChat template
+ bool has_system = !chat.empty() && std::string(chat[0]->role) == "system";
+
+ // Handle system message if present
+ if (has_system) {
+ ss << "<s>" << chat[0]->content << "<|message_sep|>";
+ } else {
+ ss << "<s>";
+ }
+
+ // Process remaining messages
+ for (size_t i = has_system ? 1 : 0; i < chat.size(); i++) {
+ std::string role(chat[i]->role);
+ if (role == "user") {
+ ss << "user<|role_sep|>" << chat[i]->content << "<|message_sep|>"
+ << "available functions<|role_sep|>[]<|message_sep|>";
+ } else if (role == "assistant") {
+ ss << "assistant<|role_sep|>" << chat[i]->content << "<|message_sep|>";
+ }
+ }
+
+ // Add generation prompt if needed
+ if (add_ass) {
+ ss << "assistant<|role_sep|>";
+ }
} else {
// template not supported
return -1;
throw std::invalid_argument("failed to convert utf8 to codepoint");
}
-//static std::vector<uint16_t> unicode_cpt_to_utf16(uint32_t cp) {
+//static std::vector<uint16_t> unicode_cpt_to_utf16(uint32_t cpt) {
// std::vector<uint16_t> result;
-// if (/* 0x0000 <= cp && */ cp <= 0xffff) {
-// result.emplace_back(cp);
+// if (/* 0x0000 <= cpt && */ cpt <= 0xffff) {
+// result.emplace_back(cpt);
// return result;
// }
-// if (0x10000 <= cp && cp <= 0x10ffff) {
-// result.emplace_back(0xd800 | ((cp - 0x10000) >> 10));
-// result.emplace_back(0xdc00 | ((cp - 0x10000) & 0x03ff));
+// if (0x10000 <= cpt && cpt <= 0x10ffff) {
+// result.emplace_back(0xd800 | ((cpt - 0x10000) >> 10));
+// result.emplace_back(0xdc00 | ((cpt - 0x10000) & 0x03ff));
// return result;
// }
// throw std::invalid_argument("failed to convert codepoint to utf16");
// return result;
//}
-static std::vector<codepoint_flags> unicode_cpt_flags_array() {
- std::vector<codepoint_flags> cpt_flags(MAX_CODEPOINTS, codepoint_flags::UNDEFINED);
+static std::vector<unicode_cpt_flags> unicode_cpt_flags_array() {
+ std::vector<unicode_cpt_flags> cpt_flags(MAX_CODEPOINTS, unicode_cpt_flags::UNDEFINED);
assert (unicode_ranges_flags.begin()[0].first == 0);
assert (unicode_ranges_flags.begin()[unicode_ranges_flags.size()-1].first == MAX_CODEPOINTS);
return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : OUT_OF_RANGE;
};
- auto _get_flags = [&] (const size_t pos) -> codepoint_flags {
- return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags(cpts[pos]) : codepoint_flags{};
+ auto _get_flags = [&] (const size_t pos) -> unicode_cpt_flags {
+ return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags_from_cpt(cpts[pos]) : unicode_cpt_flags{};
};
size_t _prev_end = offset_ini;
return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : OUT_OF_RANGE;
};
- auto _get_flags = [&] (const size_t pos) -> codepoint_flags {
- return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags(cpts[pos]) : codepoint_flags{};
+ auto _get_flags = [&] (const size_t pos) -> unicode_cpt_flags {
+ return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags_from_cpt(cpts[pos]) : unicode_cpt_flags{};
};
size_t _prev_end = offset_ini;
// interface
//
-std::string unicode_cpt_to_utf8(uint32_t cp) {
+std::string unicode_cpt_to_utf8(uint32_t cpt) {
std::string result;
- if (/* 0x00 <= cp && */ cp <= 0x7f) {
- result.push_back(cp);
+ if (/* 0x00 <= cpt && */ cpt <= 0x7f) {
+ result.push_back(cpt);
return result;
}
- if (0x80 <= cp && cp <= 0x7ff) {
- result.push_back(0xc0 | ((cp >> 6) & 0x1f));
- result.push_back(0x80 | (cp & 0x3f));
+ if (0x80 <= cpt && cpt <= 0x7ff) {
+ result.push_back(0xc0 | ((cpt >> 6) & 0x1f));
+ result.push_back(0x80 | (cpt & 0x3f));
return result;
}
- if (0x800 <= cp && cp <= 0xffff) {
- result.push_back(0xe0 | ((cp >> 12) & 0x0f));
- result.push_back(0x80 | ((cp >> 6) & 0x3f));
- result.push_back(0x80 | (cp & 0x3f));
+ if (0x800 <= cpt && cpt <= 0xffff) {
+ result.push_back(0xe0 | ((cpt >> 12) & 0x0f));
+ result.push_back(0x80 | ((cpt >> 6) & 0x3f));
+ result.push_back(0x80 | (cpt & 0x3f));
return result;
}
- if (0x10000 <= cp && cp <= 0x10ffff) {
- result.push_back(0xf0 | ((cp >> 18) & 0x07));
- result.push_back(0x80 | ((cp >> 12) & 0x3f));
- result.push_back(0x80 | ((cp >> 6) & 0x3f));
- result.push_back(0x80 | (cp & 0x3f));
+ if (0x10000 <= cpt && cpt <= 0x10ffff) {
+ result.push_back(0xf0 | ((cpt >> 18) & 0x07));
+ result.push_back(0x80 | ((cpt >> 12) & 0x3f));
+ result.push_back(0x80 | ((cpt >> 6) & 0x3f));
+ result.push_back(0x80 | (cpt & 0x3f));
return result;
}
return result;
}
-codepoint_flags unicode_cpt_flags(const uint32_t cp) {
- static const codepoint_flags undef(codepoint_flags::UNDEFINED);
+unicode_cpt_flags unicode_cpt_flags_from_cpt(const uint32_t cpt) {
+ static const unicode_cpt_flags undef(unicode_cpt_flags::UNDEFINED);
static const auto cpt_flags = unicode_cpt_flags_array();
- return cp < cpt_flags.size() ? cpt_flags[cp] : undef;
+ return cpt < cpt_flags.size() ? cpt_flags[cpt] : undef;
}
-codepoint_flags unicode_cpt_flags(const std::string & utf8) {
- static const codepoint_flags undef(codepoint_flags::UNDEFINED);
+unicode_cpt_flags unicode_cpt_flags_from_utf8(const std::string & utf8) {
+ static const unicode_cpt_flags undef(unicode_cpt_flags::UNDEFINED);
if (utf8.empty()) {
return undef; // undefined
}
size_t offset = 0;
- return unicode_cpt_flags(unicode_cpt_from_utf8(utf8, offset));
+ return unicode_cpt_flags_from_cpt(unicode_cpt_from_utf8(utf8, offset));
}
std::string unicode_byte_to_utf8(uint8_t byte) {
return map.at(utf8);
}
-uint32_t unicode_tolower(uint32_t cp) {
+uint32_t unicode_tolower(uint32_t cpt) {
// binary search
- auto it = std::lower_bound(unicode_map_lowercase.begin(), unicode_map_lowercase.end(), cp,
+ auto it = std::lower_bound(unicode_map_lowercase.begin(), unicode_map_lowercase.end(), cpt,
[](const std::pair<uint32_t, uint32_t> & pair, uint32_t value) {
return pair.first < value;
});
- if (it != unicode_map_lowercase.end() && it->first == cp) {
+ if (it != unicode_map_lowercase.end() && it->first == cpt) {
return it->second;
}
- return cp; // Return the original code point if no lowercase mapping is found
+ return cpt; // Return the original code point if no lowercase mapping is found
}
std::vector<std::string> unicode_regex_split(const std::string & text, const std::vector<std::string> & regex_exprs) {
// unicode categories
static const std::map<std::string, int> k_ucat_enum = {
- { "\\p{N}", codepoint_flags::NUMBER },
- { "\\p{L}", codepoint_flags::LETTER },
- { "\\p{P}", codepoint_flags::PUNCTUATION },
+ { "\\p{N}", unicode_cpt_flags::NUMBER },
+ { "\\p{L}", unicode_cpt_flags::LETTER },
+ { "\\p{P}", unicode_cpt_flags::PUNCTUATION },
};
static const std::map<int, int> k_ucat_cpt = {
- { codepoint_flags::NUMBER, 0xD1 },
- { codepoint_flags::LETTER, 0xD2 },
- { codepoint_flags::PUNCTUATION, 0xD3 },
+ { unicode_cpt_flags::NUMBER, 0xD1 },
+ { unicode_cpt_flags::LETTER, 0xD2 },
+ { unicode_cpt_flags::PUNCTUATION, 0xD3 },
};
static const std::map<int, std::string> k_ucat_map = {
- { codepoint_flags::NUMBER, "\x30-\x39" }, // 0-9
- { codepoint_flags::LETTER, "\x41-\x5A\x61-\x7A" }, // A-Za-z
- { codepoint_flags::PUNCTUATION, "\x21-\x23\x25-\x2A\x2C-\x2F\x3A-\x3B\x3F-\x40\\\x5B-\\\x5D\x5F\\\x7B\\\x7D" }, // !-#%-*,-/:-;?-@\[-\]_\{\}
+ { unicode_cpt_flags::NUMBER, "\x30-\x39" }, // 0-9
+ { unicode_cpt_flags::LETTER, "\x41-\x5A\x61-\x7A" }, // A-Za-z
+ { unicode_cpt_flags::PUNCTUATION, "\x21-\x23\x25-\x2A\x2C-\x2F\x3A-\x3B\x3F-\x40\\\x5B-\\\x5D\x5F\\\x7B\\\x7D" }, // !-#%-*,-/:-;?-@\[-\]_\{\}
};
// compute collapsed codepoints only if needed by at least one regex
bool need_collapse = false;
- for (auto & regex_expr : regex_exprs) {
+ for (const auto & regex_expr : regex_exprs) {
// search for unicode categories
for (const auto & ucat : k_ucat_enum) {
if (std::string::npos != regex_expr.find(ucat.first)) {
continue;
}
- const auto flags = unicode_cpt_flags(cpts[i]);
+ const auto flags = unicode_cpt_flags_from_cpt(cpts[i]);
if (flags.is_whitespace) {
//NOTE: C++ std::regex \s does not mach 0x85, Rust and Python regex does.
std::vector<size_t> bpe_offsets = { cpts.size() };
- for (auto & regex_expr : regex_exprs) {
+ for (const auto & regex_expr : regex_exprs) {
// first, see if we have an efficient custom regex implementation
auto tmp = unicode_regex_split_custom(text, regex_expr, bpe_offsets);
// if a unicode category is used in the regex, we use the collapsed text and replace the unicode category
// with the corresponding collapsed representation
bool use_collapsed = false;
- for (auto & ucat : k_ucat_enum) {
+ for (const auto & ucat : k_ucat_enum) {
if (std::string::npos != regex_expr.find(ucat.first)) {
use_collapsed = true;
break;
// std::wregex \s does not mach non-ASCII whitespaces, using 0x0B as fallback
std::wstring wtext(cpts.begin(), cpts.end());
for (size_t i = 0; i < wtext.size(); ++i) {
- if (wtext[i] > 0x7F && unicode_cpt_flags(wtext[i]).is_whitespace) {
+ if (wtext[i] > 0x7F && unicode_cpt_flags_from_cpt(wtext[i]).is_whitespace) {
wtext[i] = 0x0B;
}
}