set(LLAMA_CUDA_DMMV_Y "1" CACHE STRING "llama: y block size for dmmv CUDA kernels")
option(LLAMA_CLBLAST "llama: use CLBlast" OFF)
option(LLAMA_METAL "llama: use Metal" OFF)
+option(LLAMA_K_QUANTS "llama: use k-quants" ON)
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
)
endif()
+if (LLAMA_K_QUANTS)
+ set(GGML_SOURCES_EXTRA ${GGML_SOURCES_EXTRA} k_quants.c k_quants.h)
+endif()
+
if (LLAMA_CLBLAST)
find_package(CLBlast)
if (CLBlast_FOUND)
add_library(ggml OBJECT
ggml.c
ggml.h
- ggml-quants-k.h
- ggml-quants-k.c
${GGML_SOURCES_CUDA}
${GGML_SOURCES_OPENCL}
${GGML_SOURCES_METAL}
+ ${GGML_SOURCES_EXTRA}
)
target_include_directories(ggml PUBLIC .)
endif
endif
+ifndef LLAMA_NO_K_QUANTS
+ CFLAGS += -DGGML_USE_K_QUANTS
+ OBJS += k_quants.o
+endif
+
ifndef LLAMA_NO_ACCELERATE
# Mac M1 - include Accelerate framework.
# `-framework Accelerate` works on Mac Intel as well, with negliable performance boost (as of the predict time).
endif # LLAMA_OPENBLAS
ifdef LLAMA_BLIS
- CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/blis -I/usr/include/blis
+ CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/blis -I/usr/include/blis
LDFLAGS += -lblis -L/usr/local/lib
endif # LLAMA_BLIS
CFLAGS += -mfp16-format=ieee -mno-unaligned-access
endif
+ifdef LLAMA_NO_K_QUANTS
+k_quants.o: k_quants.c k_quants.h
+ $(CC) $(CFLAGS) -c $< -o $@
+endif # LLAMA_NO_K_QUANTS
+
#
# Print build information
#
# Build library
#
-ggml.o: ggml.c ggml.h ggml-cuda.h ggml-quants-k.h
- $(CC) $(CFLAGS) -c $< -o $@
-
-ggml-quants-k.o: ggml-quants-k.c ggml-quants-k.h ggml.h ggml-cuda.h
+ggml.o: ggml.c ggml.h ggml-cuda.h
$(CC) $(CFLAGS) -c $< -o $@
llama.o: llama.cpp ggml.h ggml-cuda.h llama.h llama-util.h
common.o: examples/common.cpp examples/common.h
$(CXX) $(CXXFLAGS) -c $< -o $@
-libllama.so: llama.o ggml.o ggml-quants-k.o $(OBJS)
+libllama.so: llama.o ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
clean:
# Examples
#
-main: examples/main/main.cpp build-info.h ggml.o ggml-quants-k.o llama.o common.o $(OBJS)
+main: examples/main/main.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
@echo
@echo '==== Run ./main -h for help. ===='
@echo
-quantize: examples/quantize/quantize.cpp build-info.h ggml.o ggml-quants-k.o llama.o $(OBJS)
+quantize: examples/quantize/quantize.cpp build-info.h ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
-quantize-stats: examples/quantize-stats/quantize-stats.cpp build-info.h ggml.o ggml-quants-k.o llama.o $(OBJS)
+quantize-stats: examples/quantize-stats/quantize-stats.cpp build-info.h ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
-perplexity: examples/perplexity/perplexity.cpp build-info.h ggml.o ggml-quants-k.o llama.o common.o $(OBJS)
+perplexity: examples/perplexity/perplexity.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
-embedding: examples/embedding/embedding.cpp build-info.h ggml.o ggml-quants-k.o llama.o common.o $(OBJS)
+embedding: examples/embedding/embedding.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
-save-load-state: examples/save-load-state/save-load-state.cpp build-info.h ggml.o ggml-quants-k.o llama.o common.o $(OBJS)
+save-load-state: examples/save-load-state/save-load-state.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
-server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp build-info.h ggml.o ggml-quants-k.o llama.o common.o $(OBJS)
+server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS)
build-info.h: $(wildcard .git/index) scripts/build-info.sh
# Tests
#
-benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.h ggml.o ggml-quants-k.o $(OBJS)
+benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.h ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
./$@
-vdot: pocs/vdot/vdot.cpp ggml.o ggml-quants-k.o $(OBJS)
+vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
.PHONY: tests clean
uint8_t qs[QK_K/4]; // quants
half d; // super-block scale for quantized scales
half dmin; // super-block scale for quantized mins
-} block_q2_k;
-static_assert(sizeof(block_q2_k) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_k block size/padding");
+} block_q2_K;
+static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");
typedef struct {
uint8_t hmask[QK_K/8];
uint8_t qs[QK_K/4]; // nibbles / quants
uint8_t scales[3*QK_K/64];
half d;
-} block_q3_k;
-static_assert(sizeof(block_q3_k) == sizeof(ggml_fp16_t) + QK_K / 4 + 11 * QK_K / 64, "wrong q3_k block size/padding");
+} block_q3_K;
+static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + 11 * QK_K / 64, "wrong q3_K block size/padding");
typedef struct {
half d; // super-block scale for quantized scales
half dmin; // super-block scale for quantized mins
uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits
uint8_t qs[QK_K/2]; // 4--bit quants
-} block_q4_k;
-static_assert(sizeof(block_q4_k) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2, "wrong q4_k block size/padding");
+} block_q4_K;
+static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2, "wrong q4_K block size/padding");
typedef struct {
half d; // super-block scale for quantized scales
uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits
uint8_t qh[QK_K/8]; // quants, high bit
uint8_t qs[QK_K/2]; // quants, low 4 bits
-} block_q5_k;
-static_assert(sizeof(block_q5_k) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2 + QK_K/8, "wrong q5_k block size/padding");
+} block_q5_K;
+static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
typedef struct {
uint8_t ql[QK_K/2]; // quants, lower 4 bits
uint8_t qh[QK_K/4]; // quants, upper 2 bits
int8_t scales[QK_K/16]; // scales
half d; // delta
-} block_q6_k;
-static_assert(sizeof(block_q6_k) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_k block size/padding");
+} block_q6_K;
+static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_K block size/padding");
#define WARP_SIZE 32
//================================== k-quants
-static __global__ void dequantize_block_q2_k(const void * vx, float * yy) {
+static __global__ void dequantize_block_q2_K(const void * vx, float * yy) {
const int i = blockIdx.x;
const int tid = threadIdx.x;
const int l = tid - 32*n;
const int is = 8*n + l/16;
- const block_q2_k * x = (const block_q2_k *) vx;
+ const block_q2_K * x = (const block_q2_K *) vx;
const uint8_t q = x[i].qs[32*n + l];
float * y = yy + i*QK_K + 128*n;
}
-static __device__ void vec_dot_q2_k(const void * vx, const int ib, const int iqs, const float * yy, float & result) {
+static __device__ void vec_dot_q2_K(const void * vx, const int ib, const int iqs, const float * yy, float & result) {
- const block_q2_k * x = (const block_q2_k *) vx;
+ const block_q2_K * x = (const block_q2_K *) vx;
// if n is 0, we want to do the lower 128, else the upper 128,
// covering y[l+0], y[l+32], y[l+64], y[l+96] and
}
-static __global__ void dequantize_block_q3_k(const void * vx, float * yy) {
+static __global__ void dequantize_block_q3_K(const void * vx, float * yy) {
int r = threadIdx.x/4;
int i = blockIdx.x;
int n = tid / 4;
int j = tid - 4*n;
- const block_q3_k * x = (const block_q3_k *) vx;
+ const block_q3_K * x = (const block_q3_K *) vx;
uint8_t m = 1 << (4*n + j);
int is = 8*n + 2*j + is0;
}
-static __device__ void vec_dot_q3_k(const void * vx, const int ib, const int iqs, const float * yy, float & result) {
+static __device__ void vec_dot_q3_K(const void * vx, const int ib, const int iqs, const float * yy, float & result) {
- const block_q3_k * x = (const block_q3_k *) vx;
+ const block_q3_K * x = (const block_q3_K *) vx;
const uint32_t kmask1 = 0x03030303;
const uint32_t kmask2 = 0x0f0f0f0f;
}
}
-static __global__ void dequantize_block_q4_k(const void * vx, float * yy) {
- const block_q4_k * x = (const block_q4_k *) vx;
+static __global__ void dequantize_block_q4_K(const void * vx, float * yy) {
+ const block_q4_K * x = (const block_q4_K *) vx;
const int i = blockIdx.x;
}
}
-static __device__ void vec_dot_q4_k(const void * vx, const int ib, const int iqs, const float * yy, float & result) {
+static __device__ void vec_dot_q4_K(const void * vx, const int ib, const int iqs, const float * yy, float & result) {
- const block_q4_k * x = (const block_q4_k *) vx;
+ const block_q4_K * x = (const block_q4_K *) vx;
// iqs is in 0...248 in steps of 8 =>
const int j = iqs / 64; // j is in 0...3
}
-static __global__ void dequantize_block_q5_k(const void * vx, float * yy) {
- const block_q5_k * x = (const block_q5_k *) vx;
+static __global__ void dequantize_block_q5_K(const void * vx, float * yy) {
+ const block_q5_K * x = (const block_q5_K *) vx;
const int i = blockIdx.x;
y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
}
-static __device__ void vec_dot_q5_k(const void * vx, const int ib, const int iqs, const float * yy, float & result) {
+static __device__ void vec_dot_q5_K(const void * vx, const int ib, const int iqs, const float * yy, float & result) {
- const block_q5_k * x = (const block_q5_k *) vx;
+ const block_q5_K * x = (const block_q5_K *) vx;
// iqs is in 0...248 in steps of 8 =>
const int j = iqs / 64; // j is in 0...3
}
-static __global__ void dequantize_block_q6_k(const void * vx, float * yy) {
- const block_q6_k * x = (const block_q6_k *) vx;
+static __global__ void dequantize_block_q6_K(const void * vx, float * yy) {
+ const block_q6_K * x = (const block_q6_K *) vx;
const int i = blockIdx.x;
y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
}
-static __device__ void vec_dot_q6_k(const void * vx, const int ib, const int iqs, const float * yy, float & result) {
+static __device__ void vec_dot_q6_K(const void * vx, const int ib, const int iqs, const float * yy, float & result) {
- const block_q6_k * x = (const block_q6_k *) vx;
+ const block_q6_K * x = (const block_q6_K *) vx;
const int ip = iqs / 128; // 0 or 1
const int il = (iqs - 128*ip)/8; // 0...15
dequantize_block<QK8_0, QR8_0, dequantize_q8_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}
-static void dequantize_row_q2_k_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
+static void dequantize_row_q2_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
const int nb = k / QK_K;
- dequantize_block_q2_k<<<nb, 64, 0, stream>>>(vx, y);
+ dequantize_block_q2_K<<<nb, 64, 0, stream>>>(vx, y);
}
-static void dequantize_row_q3_k_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
+static void dequantize_row_q3_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
const int nb = k / QK_K;
- dequantize_block_q3_k<<<nb, 64, 0, stream>>>(vx, y);
+ dequantize_block_q3_K<<<nb, 64, 0, stream>>>(vx, y);
}
-static void dequantize_row_q4_k_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
+static void dequantize_row_q4_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
const int nb = k / QK_K;
- dequantize_block_q4_k<<<nb, 32, 0, stream>>>(vx, y);
+ dequantize_block_q4_K<<<nb, 32, 0, stream>>>(vx, y);
}
-static void dequantize_row_q5_k_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
+static void dequantize_row_q5_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
const int nb = k / QK_K;
- dequantize_block_q5_k<<<nb, 64, 0, stream>>>(vx, y);
+ dequantize_block_q5_K<<<nb, 64, 0, stream>>>(vx, y);
}
-static void dequantize_row_q6_k_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
+static void dequantize_row_q6_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
const int nb = k / QK_K;
- dequantize_block_q6_k<<<nb, 64, 0, stream>>>(vx, y);
+ dequantize_block_q6_K<<<nb, 64, 0, stream>>>(vx, y);
}
static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
<<<nrows/GGML_CUDA_DMMV_Y, block_dims, 0, stream>>>(vx, y, dst, ncols);
}
-static void dequantize_mul_mat_vec_q2_k_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK_K == 0);
const int ny = 2;
const dim3 block_dims(32, ny, 1);
- dequantize_mul_mat_vec_k<32, vec_dot_q2_k><<<(nrows + ny - 1)/ny, block_dims, 0, stream>>>(vx, y, dst, ncols);
+ dequantize_mul_mat_vec_k<32, vec_dot_q2_K><<<(nrows + ny - 1)/ny, block_dims, 0, stream>>>(vx, y, dst, ncols);
}
-static void dequantize_mul_mat_vec_q3_k_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK_K == 0);
const dim3 block_dims(32, 2, 1);
- dequantize_mul_mat_vec_k<32, vec_dot_q3_k><<<nrows/2, block_dims, 0, stream>>>(vx, y, dst, ncols);
+ dequantize_mul_mat_vec_k<32, vec_dot_q3_K><<<nrows/2, block_dims, 0, stream>>>(vx, y, dst, ncols);
}
-static void dequantize_mul_mat_vec_q4_k_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK_K == 0);
const dim3 block_dims(32, 2, 1);
- dequantize_mul_mat_vec_k<32, vec_dot_q4_k><<<nrows/2, block_dims, 0, stream>>>(vx, y, dst, ncols);
+ dequantize_mul_mat_vec_k<32, vec_dot_q4_K><<<nrows/2, block_dims, 0, stream>>>(vx, y, dst, ncols);
}
-static void dequantize_mul_mat_vec_q5_k_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK_K == 0);
const dim3 block_dims(32, 2, 1);
- dequantize_mul_mat_vec_k<32, vec_dot_q5_k><<<nrows/2, block_dims, 0, stream>>>(vx, y, dst, ncols);
+ dequantize_mul_mat_vec_k<32, vec_dot_q5_K><<<nrows/2, block_dims, 0, stream>>>(vx, y, dst, ncols);
}
-static void dequantize_mul_mat_vec_q6_k_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK_K == 0);
const dim3 block_dims(32, 2, 1);
- dequantize_mul_mat_vec_k<32, vec_dot_q6_k><<<nrows/2, block_dims, 0, stream>>>(vx, y, dst, ncols);
+ dequantize_mul_mat_vec_k<32, vec_dot_q6_K><<<nrows/2, block_dims, 0, stream>>>(vx, y, dst, ncols);
}
static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
case GGML_TYPE_Q8_0:
return dequantize_row_q8_0_cuda;
case GGML_TYPE_Q2_K:
- return dequantize_row_q2_k_cuda;
+ return dequantize_row_q2_K_cuda;
case GGML_TYPE_Q3_K:
- return dequantize_row_q3_k_cuda;
+ return dequantize_row_q3_K_cuda;
case GGML_TYPE_Q4_K:
- return dequantize_row_q4_k_cuda;
+ return dequantize_row_q4_K_cuda;
case GGML_TYPE_Q5_K:
- return dequantize_row_q5_k_cuda;
+ return dequantize_row_q5_K_cuda;
case GGML_TYPE_Q6_K:
- return dequantize_row_q6_k_cuda;
+ return dequantize_row_q6_K_cuda;
case GGML_TYPE_F16:
return convert_fp16_to_fp32_cuda;
default:
dequantize_mul_mat_vec_q8_0_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
break;
case GGML_TYPE_Q2_K:
- dequantize_mul_mat_vec_q2_k_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
+ dequantize_mul_mat_vec_q2_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
break;
case GGML_TYPE_Q3_K:
- dequantize_mul_mat_vec_q3_k_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
+ dequantize_mul_mat_vec_q3_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
break;
case GGML_TYPE_Q4_K:
- dequantize_mul_mat_vec_q4_k_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
+ dequantize_mul_mat_vec_q4_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
break;
case GGML_TYPE_Q5_K:
- dequantize_mul_mat_vec_q5_k_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
+ dequantize_mul_mat_vec_q5_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
break;
case GGML_TYPE_Q6_K:
- dequantize_mul_mat_vec_q6_k_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
+ dequantize_mul_mat_vec_q6_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
break;
case GGML_TYPE_F16:
convert_mul_mat_vec_f16_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
+++ /dev/null
-#include "ggml-quants-k.h"
-#include "ggml.h"
-
-#include <math.h>
-#include <string.h>
-#include <assert.h>
-
-#ifdef __ARM_NEON
-
-// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
-//
-// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
-//
-#include <arm_neon.h>
-
-#else
-
-#ifdef __wasm_simd128__
-#include <wasm_simd128.h>
-#else
-#ifdef __POWER9_VECTOR__
-#include <altivec.h>
-#undef bool
-#define bool _Bool
-#else
-#if defined(_MSC_VER) || defined(__MINGW32__)
-#include <intrin.h>
-#else
-#if !defined(__riscv)
-#include <immintrin.h>
-#endif
-#endif
-#endif
-#endif
-#endif
-
-#undef MIN
-#undef MAX
-#define MIN(a, b) ((a) < (b) ? (a) : (b))
-#define MAX(a, b) ((a) > (b) ? (a) : (b))
-
-//
-// 2-6 bit quantization in super-blocks
-//
-
-
-//
-// ===================== Helper functions
-//
-static inline int nearest_int(float fval) {
- assert(fval <= 4194303.f);
- float val = fval + 12582912.f;
- int i; memcpy(&i, &val, sizeof(int));
- return (i & 0x007fffff) - 0x00400000;
-}
-
-static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type) {
- float max = 0;
- float amax = 0;
- for (int i = 0; i < n; ++i) {
- float ax = fabsf(x[i]);
- if (ax > amax) { amax = ax; max = x[i]; }
- }
- if (!amax) { // all zero
- for (int i = 0; i < n; ++i) {
- L[i] = 0;
- }
- return 0.f;
- }
- float iscale = -nmax / max;
- if (rmse_type == 0) {
- for (int i = 0; i < n; ++i) {
- int l = nearest_int(iscale * x[i]);
- L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
- }
- return 1/iscale;
- }
- int weight_type = rmse_type%2;
- float sumlx = 0;
- float suml2 = 0;
- for (int i = 0; i < n; ++i) {
- int l = nearest_int(iscale * x[i]);
- l = MAX(-nmax, MIN(nmax-1, l));
- L[i] = l + nmax;
- float w = weight_type == 1 ? x[i] * x[i] : 1;
- sumlx += w*x[i]*l;
- suml2 += w*l*l;
- }
- float scale = sumlx/suml2;
- float best = scale * sumlx;
- for (int itry = 0; itry < 3; ++itry) {
- iscale = 1/scale;
- float slx = 0;
- float sl2 = 0;
- bool changed = false;
- for (int i = 0; i < n; ++i) {
- int l = nearest_int(iscale * x[i]);
- l = MAX(-nmax, MIN(nmax-1, l));
- if (l + nmax != L[i]) { changed = true; }
- float w = weight_type == 1 ? x[i] * x[i] : 1.f;
- slx += w*x[i]*l;
- sl2 += w*l*l;
- }
- if (!changed || sl2 == 0 || slx*slx <= best*sl2) { break; }
- for (int i = 0; i < n; ++i) {
- int l = nearest_int(iscale * x[i]);
- L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
- }
- sumlx = slx; suml2 = sl2;
- scale = sumlx/suml2;
- best = scale * sumlx;
- }
- for (int itry = 0; itry < 5; ++itry) {
- int n_changed = 0;
- for (int i = 0; i < n; ++i) {
- float w = weight_type == 1 ? x[i]*x[i] : 1;
- int l = L[i] - nmax;
- float slx = sumlx - w*x[i]*l;
- if (slx > 0) {
- float sl2 = suml2 - w*l*l;
- int new_l = nearest_int(x[i] * sl2 / slx);
- new_l = MAX(-nmax, MIN(nmax-1, new_l));
- if (new_l != l) {
- slx += w*x[i]*new_l;
- sl2 += w*new_l*new_l;
- if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
- L[i] = nmax + new_l; sumlx = slx; suml2 = sl2;
- scale = sumlx / suml2; best = scale * sumlx;
- ++n_changed;
- }
- }
- }
- }
- if (!n_changed) { break; }
- }
- if (rmse_type < 3) {
- return scale;
- }
- for (int is = -4; is <= 4; ++is) {
- if (is == 0) {
- continue;
- }
- iscale = -(nmax + 0.1f*is) / max;
- sumlx = suml2 = 0;
- for (int i = 0; i < n; ++i) {
- int l = nearest_int(iscale * x[i]);
- l = MAX(-nmax, MIN(nmax-1, l));
- float w = weight_type == 1 ? x[i] * x[i] : 1;
- sumlx += w*x[i]*l;
- suml2 += w*l*l;
- }
- if (suml2 > 0 && sumlx*sumlx > best*suml2) {
- for (int i = 0; i < n; ++i) {
- int l = nearest_int(iscale * x[i]);
- L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
- }
- scale = sumlx/suml2; best = scale*sumlx;
- }
- }
- return scale;
-}
-
-static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
- float max = 0;
- float amax = 0;
- for (int i = 0; i < n; ++i) {
- float ax = fabsf(x[i]);
- if (ax > amax) { amax = ax; max = x[i]; }
- }
- if (!amax) { // all zero
- for (int i = 0; i < n; ++i) { L[i] = 0; }
- return 0.f;
- }
- float iscale = -nmax / max;
- if (do_rmse) {
- float sumlx = 0;
- float suml2 = 0;
- for (int i = 0; i < n; ++i) {
- int l = nearest_int(iscale * x[i]);
- l = MAX(-nmax, MIN(nmax-1, l));
- L[i] = l;
- float w = x[i]*x[i];
- sumlx += w*x[i]*l;
- suml2 += w*l*l;
- }
- for (int itry = 0; itry < 5; ++itry) {
- int n_changed = 0;
- for (int i = 0; i < n; ++i) {
- float w = x[i]*x[i];
- float slx = sumlx - w*x[i]*L[i];
- if (slx > 0) {
- float sl2 = suml2 - w*L[i]*L[i];
- int new_l = nearest_int(x[i] * sl2 / slx);
- new_l = MAX(-nmax, MIN(nmax-1, new_l));
- if (new_l != L[i]) {
- slx += w*x[i]*new_l;
- sl2 += w*new_l*new_l;
- if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
- L[i] = new_l; sumlx = slx; suml2 = sl2;
- ++n_changed;
- }
- }
- }
- }
- if (!n_changed) {
- break;
- }
- }
- for (int i = 0; i < n; ++i) {
- L[i] += nmax;
- }
- return sumlx / suml2;
- }
- for (int i = 0; i < n; ++i) {
- int l = nearest_int(iscale * x[i]);
- l = MAX(-nmax, MIN(nmax-1, l));
- L[i] = l + nmax;
- }
- return 1/iscale;
-}
-
-static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min, int ntry) {
- float min = x[0];
- float max = x[0];
- for (int i = 1; i < n; ++i) {
- if (x[i] < min) min = x[i];
- if (x[i] > max) max = x[i];
- }
- if (max == min) {
- for (int i = 0; i < n; ++i) L[i] = 0;
- *the_min = 0;
- return 0.f;
- }
- if (min > 0) min = 0;
- float iscale = nmax/(max - min);
- float scale = 1/iscale;
- for (int itry = 0; itry < ntry; ++itry) {
- float sumlx = 0; int suml2 = 0;
- bool did_change = false;
- for (int i = 0; i < n; ++i) {
- int l = nearest_int(iscale*(x[i] - min));
- l = MAX(0, MIN(nmax, l));
- if (l != L[i]) {
- L[i] = l;
- did_change = true;
- }
- sumlx += (x[i] - min)*l;
- suml2 += l*l;
- }
- scale = sumlx/suml2;
- float sum = 0;
- for (int i = 0; i < n; ++i) {
- sum += x[i] - scale*L[i];
- }
- min = sum/n;
- if (min > 0) min = 0;
- iscale = 1/scale;
- if (!did_change) break;
- }
- *the_min = -min;
- return scale;
-}
-
-static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
- if (j < 4) {
- *d = q[j] & 63; *m = q[j + 4] & 63;
- } else {
- *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
- *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
- }
-}
-
-//========================- 2-bit (de)-quantization
-
-void quantize_row_q2_k_reference(const float * restrict x, block_q2_k * restrict y, int k) {
- assert(k % QK_K == 0);
- const int nb = k / QK_K;
-
- uint8_t L[QK_K];
- float mins[QK_K/16];
- float scales[QK_K/16];
-
- const float q4scale = 15.f;
-
- for (int i = 0; i < nb; i++) {
-
- float max_scale = 0; // as we are deducting the min, scales are always positive
- float max_min = 0;
- for (int j = 0; j < QK_K/16; ++j) {
- scales[j] = make_qkx1_quants(16, 3, x + 16*j, L + 16*j, &mins[j], 5);
- float scale = scales[j];
- if (scale > max_scale) {
- max_scale = scale;
- }
- float min = mins[j];
- if (min > max_min) {
- max_min = min;
- }
- }
-
- if (max_scale > 0) {
- float iscale = q4scale/max_scale;
- for (int j = 0; j < QK_K/16; ++j) {
- int l = nearest_int(iscale*scales[j]);
- y[i].scales[j] = l;
- }
- y[i].d = ggml_fp32_to_fp16(max_scale/q4scale);
- } else {
- for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0;
- y[i].d = ggml_fp32_to_fp16(0.f);
- }
- if (max_min > 0) {
- float iscale = q4scale/max_min;
- for (int j = 0; j < QK_K/16; ++j) {
- int l = nearest_int(iscale*mins[j]);
- y[i].scales[j] |= (l << 4);
- }
- y[i].dmin = ggml_fp32_to_fp16(max_min/q4scale);
- } else {
- y[i].dmin = ggml_fp32_to_fp16(0.f);
- }
- for (int j = 0; j < QK_K/16; ++j) {
- const float d = ggml_fp16_to_fp32(y[i].d) * (y[i].scales[j] & 0xF);
- if (!d) continue;
- const float dm = ggml_fp16_to_fp32(y[i].dmin) * (y[i].scales[j] >> 4);
- for (int ii = 0; ii < 16; ++ii) {
- int l = nearest_int((x[16*j + ii] + dm)/d);
- l = MAX(0, MIN(3, l));
- L[16*j + ii] = l;
- }
- }
-
- for (int j = 0; j < QK_K; j += 128) {
- for (int l = 0; l < 32; ++l) {
- y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
- }
- }
-
- x += QK_K;
-
- }
-}
-
-void dequantize_row_q2_k(const block_q2_k * restrict x, float * restrict y, int k) {
- assert(k % QK_K == 0);
- const int nb = k / QK_K;
-
- for (int i = 0; i < nb; i++) {
-
- const float d = ggml_fp16_to_fp32(x[i].d);
- const float min = ggml_fp16_to_fp32(x[i].dmin);
-
- const uint8_t * q = x[i].qs;
-
- int is = 0;
- float dl, ml;
- for (int n = 0; n < QK_K; n += 128) {
- int shift = 0;
- for (int j = 0; j < 4; ++j) {
-
- uint8_t sc = x[i].scales[is++];
- dl = d * (sc & 0xF); ml = min * (sc >> 4);
- for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
-
- sc = x[i].scales[is++];
- dl = d * (sc & 0xF); ml = min * (sc >> 4);
- for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
-
- shift += 2;
- }
- q += 32;
- }
-
- }
-}
-
-void quantize_row_q2_k(const float * restrict x, void * restrict vy, int k) {
- quantize_row_q2_k_reference(x, vy, k);
-}
-
-size_t ggml_quantize_q2_k(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
- const int nb = k / QK_K;
-
- // TODO - collect histograms - although, at a second thought, I don't really care about them
- (void)hist;
-
- for (int j = 0; j < nb; j += k) {
- block_q2_k * restrict y = (block_q2_k *)dst + j/QK_K;
- quantize_row_q2_k_reference(src + j, y, k);
- }
- return (n/QK_K*sizeof(block_q2_k));
-}
-
-//========================= 3-bit (de)-quantization
-
-void quantize_row_q3_k_reference(const float * restrict x, block_q3_k * restrict y, int k) {
- assert(k % QK_K == 0);
- const int nb = k / QK_K;
-
- int8_t L[QK_K];
- float scales[QK_K / 16];
-
- for (int i = 0; i < nb; i++) {
-
- float max_scale = 0;
- float amax = 0;
- for (int j = 0; j < QK_K/16; ++j) {
- scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true);
- float scale = fabsf(scales[j]);
- if (scale > amax) {
- amax = scale; max_scale = scales[j];
- }
- }
-
- memset(y[i].scales, 0, 12);
- if (max_scale) {
- float iscale = -32.f/max_scale;
- for (int j = 0; j < QK_K/16; ++j) {
- int8_t l = nearest_int(iscale*scales[j]);
- l = MAX(-32, MIN(31, l)) + 32;
- if (j < 8) {
- y[i].scales[j] = l & 0xF;
- } else {
- y[i].scales[j-8] |= ((l & 0xF) << 4);
- }
- l >>= 4;
- y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
- }
- y[i].d = ggml_fp32_to_fp16(1/iscale);
- } else {
- y[i].d = ggml_fp32_to_fp16(0.f);
- }
-
- int8_t sc;
- for (int j = 0; j < QK_K/16; ++j) {
- sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
- sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
- float d = ggml_fp16_to_fp32(y[i].d) * sc;
- if (!d) {
- continue;
- }
- for (int ii = 0; ii < 16; ++ii) {
- int l = nearest_int(x[16*j + ii]/d);
- l = MAX(-4, MIN(3, l));
- L[16*j + ii] = l + 4;
- }
- }
-
- memset(y[i].hmask, 0, QK_K/8);
- // We put the high-bit for the 1st 32 quants into bit 0, the next 32 into bit 1, etc.
- int m = 0;
- uint8_t hm = 1;
- for (int j = 0; j < QK_K; ++j) {
- if (L[j] > 3) {
- y[i].hmask[m] |= hm;
- L[j] -= 4;
- }
- if (++m == QK_K/8) {
- m = 0; hm <<= 1;
- }
- }
- for (int j = 0; j < QK_K; j += 128) {
- for (int l = 0; l < 32; ++l) {
- y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
- }
- }
-
- x += QK_K;
- }
-}
-
-void dequantize_row_q3_k(const block_q3_k * restrict x, float * restrict y, int k) {
- assert(k % QK_K == 0);
- assert(QK_K == 256);
- const int nb = k / QK_K;
-
- const uint32_t kmask1 = 0x03030303;
- const uint32_t kmask2 = 0x0f0f0f0f;
-
- uint32_t aux[4];
- const int8_t * scales = (const int8_t*)aux;
-
- for (int i = 0; i < nb; i++) {
-
- const float d_all = ggml_fp16_to_fp32(x[i].d);
-
- const uint8_t * restrict q = x[i].qs;
- const uint8_t * restrict hm = x[i].hmask;
- uint8_t m = 1;
-
- memcpy(aux, x[i].scales, 12);
- uint32_t tmp = aux[2];
- aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
- aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
- aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
- aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
-
- int is = 0;
- float dl;
- for (int n = 0; n < QK_K; n += 128) {
- int shift = 0;
- for (int j = 0; j < 4; ++j) {
-
- dl = d_all * (scales[is++] - 32);
- for (int l = 0; l < 16; ++l) {
- *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
- }
-
- dl = d_all * (scales[is++] - 32);
- for (int l = 0; l < 16; ++l) {
- *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
- }
-
- shift += 2;
- m <<= 1;
- }
- q += 32;
- }
-
- }
-}
-
-void quantize_row_q3_k(const float * restrict x, void * restrict vy, int k) {
- quantize_row_q3_k_reference(x, vy, k);
-}
-
-size_t ggml_quantize_q3_k(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
- const int nb = k / QK_K;
-
- // TODO - collect histograms - although, at a second thought, I don't really care about them
- (void)hist;
-
- for (int j = 0; j < nb; j += k) {
- block_q3_k * restrict y = (block_q3_k *)dst + j/QK_K;
- quantize_row_q3_k_reference(src + j, y, k);
- }
- return (n/QK_K*sizeof(block_q3_k));
-}
-
-// ====================== 4-bit (de)-quantization
-
-void quantize_row_q4_k_reference(const float * restrict x, block_q4_k * restrict y, int k) {
- assert(k % QK_K == 0);
- const int nb = k / QK_K;
-
- uint8_t L[QK_K];
- float mins[QK_K/32];
- float scales[QK_K/32];
-
- for (int i = 0; i < nb; i++) {
-
- float max_scale = 0; // as we are deducting the min, scales are always positive
- float max_min = 0;
- for (int j = 0; j < QK_K/32; ++j) {
- scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 5);
- float scale = scales[j];
- if (scale > max_scale) {
- max_scale = scale;
- }
- float min = mins[j];
- if (min > max_min) {
- max_min = min;
- }
- }
-
- float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
- float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
- for (int j = 0; j < QK_K/32; ++j) {
- uint8_t ls = nearest_int(inv_scale*scales[j]);
- uint8_t lm = nearest_int(inv_min*mins[j]);
- ls = MIN(63, ls);
- lm = MIN(63, lm);
- if (j < 4) {
- y[i].scales[j] = ls;
- y[i].scales[j+4] = lm;
- } else {
- y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
- y[i].scales[j-4] |= ((ls >> 4) << 6);
- y[i].scales[j-0] |= ((lm >> 4) << 6);
- }
- }
- y[i].d = ggml_fp32_to_fp16(max_scale/63.f);
- y[i].dmin = ggml_fp32_to_fp16(max_min/63.f);
-
- uint8_t sc, m;
- for (int j = 0; j < QK_K/32; ++j) {
- get_scale_min_k4(j, y[i].scales, &sc, &m);
- const float d = ggml_fp16_to_fp32(y[i].d) * sc;
- if (!d) continue;
- const float dm = ggml_fp16_to_fp32(y[i].dmin) * m;
- for (int ii = 0; ii < 32; ++ii) {
- int l = nearest_int((x[32*j + ii] + dm)/d);
- l = MAX(0, MIN(15, l));
- L[32*j + ii] = l;
- }
- }
- uint8_t * q = y[i].qs;
- for (int j = 0; j < QK_K; j += 64) {
- for (int l = 0; l < 32; ++l) *q++ = L[j + l] | (L[j + l + 32] << 4);
- }
-
- x += QK_K;
-
- }
-}
-
-void dequantize_row_q4_k(const block_q4_k * restrict x, float * restrict y, int k) {
- assert(k % QK_K == 0);
- const int nb = k / QK_K;
-
- for (int i = 0; i < nb; i++) {
-
- const float d = ggml_fp16_to_fp32(x[i].d);
- const float min = ggml_fp16_to_fp32(x[i].dmin);
-
- const uint8_t * q = x[i].qs;
-
- int is = 0;
- uint8_t sc, m;
- for (int j = 0; j < QK_K; j += 64) {
- get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
- const float d1 = d * sc; const float m1 = min * m;
- get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
- const float d2 = d * sc; const float m2 = min * m;
- for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
- for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2;
- q += 32; is += 2;
- }
-
- }
-}
-
-void quantize_row_q4_k(const float * restrict x, void * restrict vy, int k) {
- assert(k % QK_K == 0);
- block_q4_k * restrict y = vy;
- quantize_row_q4_k_reference(x, y, k);
-}
-
-size_t ggml_quantize_q4_k(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
- assert(k % QK_K == 0);
- const int nb = k / QK_K;
- (void)hist; // TODO: collect histograms
- for (int j = 0; j < nb; j += k) {
- block_q4_k * restrict y = (block_q4_k *)dst + j/QK_K;
- quantize_row_q4_k_reference(src + j, y, k);
- }
- return (n/QK_K*sizeof(block_q4_k));
-}
-
-// ====================== 5-bit (de)-quantization
-
-void quantize_row_q5_k_reference(const float * restrict x, block_q5_k * restrict y, int k) {
- assert(k % QK_K == 0);
- const int nb = k / QK_K;
-
- uint8_t L[QK_K];
- float mins[QK_K/32];
- float scales[QK_K/32];
-
- for (int i = 0; i < nb; i++) {
-
- float max_scale = 0; // as we are deducting the min, scales are always positive
- float max_min = 0;
- for (int j = 0; j < QK_K/32; ++j) {
- scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 5);
- float scale = scales[j];
- if (scale > max_scale) {
- max_scale = scale;
- }
- float min = mins[j];
- if (min > max_min) {
- max_min = min;
- }
- }
-
- float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
- float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
- for (int j = 0; j < QK_K/32; ++j) {
- uint8_t ls = nearest_int(inv_scale*scales[j]);
- uint8_t lm = nearest_int(inv_min*mins[j]);
- ls = MIN(63, ls);
- lm = MIN(63, lm);
- if (j < 4) {
- y[i].scales[j] = ls;
- y[i].scales[j+4] = lm;
- } else {
- y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
- y[i].scales[j-4] |= ((ls >> 4) << 6);
- y[i].scales[j-0] |= ((lm >> 4) << 6);
- }
- }
- y[i].d = ggml_fp32_to_fp16(max_scale/63.f);
- y[i].dmin = ggml_fp32_to_fp16(max_min/63.f);
-
- uint8_t sc, m;
- for (int j = 0; j < QK_K/32; ++j) {
- get_scale_min_k4(j, y[i].scales, &sc, &m);
- const float d = ggml_fp16_to_fp32(y[i].d) * sc;
- if (!d) continue;
- const float dm = ggml_fp16_to_fp32(y[i].dmin) * m;
- for (int ii = 0; ii < 32; ++ii) {
- int l = nearest_int((x[32*j + ii] + dm)/d);
- l = MAX(0, MIN(31, l));
- L[32*j + ii] = l;
- }
- }
-
- uint8_t * restrict qh = y[i].qh;
- uint8_t * restrict ql = y[i].qs;
- memset(qh, 0, QK_K/8);
-
- uint8_t m1 = 1, m2 = 2;
- for (int n = 0; n < QK_K; n += 64) {
- for (int j = 0; j < 32; ++j) {
- int l1 = L[n + j];
- if (l1 > 15) {
- l1 -= 16; qh[j] |= m1;
- }
- int l2 = L[n + j + 32];
- if (l2 > 15) {
- l2 -= 16; qh[j] |= m2;
- }
- ql[j] = l1 | (l2 << 4);
- }
- m1 <<= 2; m2 <<= 2;
- ql += 32;
- }
-
- x += QK_K;
-
- }
-}
-
-void dequantize_row_q5_k(const block_q5_k * restrict x, float * restrict y, int k) {
- assert(k % QK_K == 0);
- const int nb = k / QK_K;
-
- for (int i = 0; i < nb; i++) {
-
- const float d = ggml_fp16_to_fp32(x[i].d);
- const float min = ggml_fp16_to_fp32(x[i].dmin);
-
- const uint8_t * ql = x[i].qs;
- const uint8_t * qh = x[i].qh;
-
- int is = 0;
- uint8_t sc, m;
- uint8_t u1 = 1, u2 = 2;
- for (int j = 0; j < QK_K; j += 64) {
- get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
- const float d1 = d * sc; const float m1 = min * m;
- get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
- const float d2 = d * sc; const float m2 = min * m;
- for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
- for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
- ql += 32; is += 2;
- u1 <<= 2; u2 <<= 2;
- }
- }
-}
-
-void quantize_row_q5_k(const float * restrict x, void * restrict vy, int k) {
- assert(k % QK_K == 0);
- block_q5_k * restrict y = vy;
- quantize_row_q5_k_reference(x, y, k);
-}
-
-size_t ggml_quantize_q5_k(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
- assert(k % QK_K == 0);
- const int nb = k / QK_K;
- (void)hist;
- for (int j = 0; j < nb; j += k) {
- block_q5_k * restrict y = (block_q5_k *)dst + j/QK_K;
- quantize_row_q5_k_reference(src + j, y, k);
- }
- return (n/QK_K*sizeof(block_q5_k));
-}
-
-// ====================== 6-bit (de)-quantization
-
-void quantize_row_q6_k_reference(const float * restrict x, block_q6_k * restrict y, int k) {
- assert(k % QK_K == 0);
- const int nb = k / QK_K;
-
- int8_t L[QK_K];
- float scales[QK_K/16];
-
- for (int i = 0; i < nb; i++) {
-
- float max_scale = 0;
- float max_abs_scale = 0;
-
- for (int ib = 0; ib < QK_K/16; ++ib) {
-
- const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1);
- scales[ib] = scale;
-
- const float abs_scale = fabsf(scale);
- if (abs_scale > max_abs_scale) {
- max_abs_scale = abs_scale;
- max_scale = scale;
- }
-
- }
-
- float iscale = -128.f/max_scale;
- y[i].d = ggml_fp32_to_fp16(1/iscale);
- for (int ib = 0; ib < QK_K/16; ++ib) {
- y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
- }
-
- for (int j = 0; j < QK_K/16; ++j) {
- float d = ggml_fp16_to_fp32(y[i].d) * y[i].scales[j];
- if (!d) {
- continue;
- }
- for (int ii = 0; ii < 16; ++ii) {
- int l = nearest_int(x[16*j + ii]/d);
- l = MAX(-32, MIN(31, l));
- L[16*j + ii] = l + 32;
- }
- }
-
- uint8_t * restrict ql = y[i].ql;
- uint8_t * restrict qh = y[i].qh;
- for (int j = 0; j < QK_K; j += 128) {
- for (int l = 0; l < 32; ++l) {
- const uint8_t q1 = L[j + l + 0] & 0xF;
- const uint8_t q2 = L[j + l + 32] & 0xF;
- const uint8_t q3 = L[j + l + 64] & 0xF;
- const uint8_t q4 = L[j + l + 96] & 0xF;
- ql[l+ 0] = q1 | (q3 << 4);
- ql[l+32] = q2 | (q4 << 4);
- qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
- }
- ql += 64;
- qh += 32;
- }
-
- x += QK_K;
-
- }
-}
-
-void dequantize_row_q6_k(const block_q6_k * restrict x, float * restrict y, int k) {
- assert(k % QK_K == 0);
- const int nb = k / QK_K;
-
- for (int i = 0; i < nb; i++) {
-
- const float d = ggml_fp16_to_fp32(x[i].d);
-
- const uint8_t * restrict ql = x[i].ql;
- const uint8_t * restrict qh = x[i].qh;
- const int8_t * restrict sc = x[i].scales;
-
- for (int n = 0; n < QK_K; n += 128) {
- for (int l = 0; l < 32; ++l) {
- int is = l/16;
- const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
- const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
- const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
- const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
- y[l + 0] = d * sc[is + 0] * q1;
- y[l + 32] = d * sc[is + 2] * q2;
- y[l + 64] = d * sc[is + 4] * q3;
- y[l + 96] = d * sc[is + 6] * q4;
- }
- y += 128;
- ql += 64;
- qh += 32;
- sc += 8;
- }
-
- }
-}
-
-void quantize_row_q6_k(const float * restrict x, void * restrict vy, int k) {
- assert(k % QK_K == 0);
- block_q6_k * restrict y = vy;
- quantize_row_q6_k_reference(x, y, k);
-}
-
-size_t ggml_quantize_q6_k(const float * src, void * dst, int n, int k, int64_t * hist) {
- assert(k % QK_K == 0);
- const int nb = k / QK_K;
-
- (void)hist; // TODO
-
- for (int j = 0; j < nb; j += k) {
- block_q6_k * restrict y = (block_q6_k *)dst + j/QK_K;
- quantize_row_q6_k_reference(src + j, y, k);
- }
- return (n/QK_K*sizeof(block_q6_k));
-}
-
-//===================================== Q8_K ==============================================
-
-void quantize_row_q8_k_reference(const float * restrict x, block_q8_k * restrict y, int k) {
- assert(k % QK_K == 0);
- const int nb = k / QK_K;
-
- for (int i = 0; i < nb; i++) {
-
- float max = 0;
- float amax = 0;
- for (int j = 0; j < QK_K; ++j) {
- float ax = fabsf(x[j]);
- if (ax > amax) {
- amax = ax; max = x[j];
- }
- }
- if (!amax) {
- y[i].d = 0;
- memset(y[i].qs, 0, QK_K);
- x += QK_K;
- continue;
- }
- const float iscale = -128.f/max;
- for (int j = 0; j < QK_K; ++j) {
- int v = nearest_int(iscale*x[j]);
- y[i].qs[j] = MIN(127, v);
- }
- for (int j = 0; j < QK_K/16; ++j) {
- int sum = 0;
- for (int ii = 0; ii < 16; ++ii) {
- sum += y[i].qs[j*16 + ii];
- }
- y[i].bsums[j] = sum;
- }
- y[i].d = 1/iscale;
- x += QK_K;
- }
-}
-
-void dequantize_row_q8_k(const block_q8_k * restrict x, float * restrict y, int k) {
- assert(k % QK_K == 0);
- const int nb = k / QK_K;
-
- for (int i = 0; i < nb; i++) {
- for (int j = 0; j < QK_K; ++j) {
- *y++ = x[i].d * x[i].qs[j];
- }
- }
-}
-
-void quantize_row_q8_k(const float * restrict x, void * restrict y, int k) {
- quantize_row_q8_k_reference(x, y, k);
-}
-
-//===================================== Dot ptoducts =================================
-
-//
-// Helper functions
-//
-#if __AVX__ || __AVX2__ || __AVX512F__
-
-// horizontally add 8 floats
-static inline float hsum_float_8(const __m256 x) {
- __m128 res = _mm256_extractf128_ps(x, 1);
- res = _mm_add_ps(res, _mm256_castps256_ps128(x));
- res = _mm_add_ps(res, _mm_movehl_ps(res, res));
- res = _mm_add_ss(res, _mm_movehdup_ps(res));
- return _mm_cvtss_f32(res);
-}
-
-// shuffles to pick the required scales in dot products
-static inline __m256i get_scale_shuffle_q3k(int i) {
- static const uint8_t k_shuffle[128] = {
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
- 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
- 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
- 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
- };
- return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
-}
-static inline __m256i get_scale_shuffle_k4(int i) {
- static const uint8_t k_shuffle[256] = {
- 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
- 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
- 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
- 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
- 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
- 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
- 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
- 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
- };
- return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
-}
-static inline __m128i get_scale_shuffle(int i) {
- static const uint8_t k_shuffle[128] = {
- 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
- 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
- 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
- 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
- 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
- 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
- 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
- 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
- };
- return _mm_loadu_si128((const __m128i*)k_shuffle + i);
-}
-#endif
-
-void ggml_vec_dot_q2_k_q8_k(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
-
- const block_q2_k * restrict x = vx;
- const block_q8_k * restrict y = vy;
-
- const int nb = n / QK_K;
-
-#ifdef __ARM_NEON
-
- const uint8x16_t m3 = vdupq_n_u8(0x3);
- const uint8x16_t m4 = vdupq_n_u8(0xF);
- const int32x4_t vzero = vdupq_n_s32(0);
-
- int8x16x2_t q2bytes;
- uint8_t aux[16];
-
- float sum = 0;
-
- for (int i = 0; i < nb; ++i) {
-
- const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
- const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
-
- const uint8_t * restrict q2 = x[i].qs;
- const int8_t * restrict q8 = y[i].qs;
- const uint8_t * restrict sc = x[i].scales;
-
- const uint8x16_t mins_and_scales = vld1q_u8(sc);
- const uint8x16_t scales = vandq_u8(mins_and_scales, m4);
- vst1q_u8(aux, scales);
-
- const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
- const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums);
- const int16x8x2_t mins16 = {vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))};
- const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
- vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
- const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
- vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1])));
- sum += dmin * vaddvq_s32(vaddq_s32(s0, s1));
-
- int isum = 0;
- int is = 0;
-
-// We use this macro instead of a function call because for some reason
-// the code runs 2-3% slower, even if the function is declared inline
-#if defined(__ARM_FEATURE_DOTPROD)
-#define MULTIPLY_ACCUM_WITH_SCALE(index)\
- isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
- isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
-#else
-#define MULTIPLY_ACCUM_WITH_SCALE(index)\
- {\
- const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])),\
- vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0])));\
- const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])),\
- vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1])));\
- isum += vaddvq_s16(p1) * aux[is+(index)] + vaddvq_s16(p2) * aux[is+1+(index)];\
- }
-#endif
-
-#define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
- q8bytes = vld1q_s8_x2(q8); q8 += 32;\
- q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
- q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
- MULTIPLY_ACCUM_WITH_SCALE((index));
-
-
- for (int j = 0; j < QK_K/128; ++j) {
-
- const uint8x16x2_t q2bits = vld1q_u8_x2(q2); q2 += 32;
-
- int8x16x2_t q8bytes = vld1q_s8_x2(q8); q8 += 32;
- q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
- q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
- MULTIPLY_ACCUM_WITH_SCALE(0);
-
- SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
-
- SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
-
- SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
-
- is += 8;
- }
- sum += d * isum;
-
- }
-
- *s = sum;
-
-#elif defined __AVX2__
-
- const __m256i m3 = _mm256_set1_epi8(3);
- const __m128i m4 = _mm_set1_epi8(0xF);
-
- __m256 acc = _mm256_setzero_ps();
-
- for (int i = 0; i < nb; ++i) {
-
- const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
- const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
-
- const uint8_t * restrict q2 = x[i].qs;
- const int8_t * restrict q8 = y[i].qs;
-
- const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
- const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
- const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
- const __m256i mins = _mm256_cvtepi8_epi16(mins8);
- const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums));
-
- acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);
-
- const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
- const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
- const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
- const __m256i scales[2] = {_mm256_set_m128i(l_scales, l_scales), _mm256_set_m128i(h_scales, h_scales)};
-
- __m256i sumi = _mm256_setzero_si256();
-
- for (int j = 0; j < QK_K/128; ++j) {
-
- const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32;
-
- const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
- const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
- const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
- const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
-
- const __m256i q2_0 = _mm256_and_si256(q2bits, m3);
- const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
- const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
- const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);
-
- __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
- __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
- __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2);
- __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3);
-
- p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0);
- p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1);
- p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2);
- p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3);
-
- p0 = _mm256_add_epi32(p0, p1);
- p2 = _mm256_add_epi32(p2, p3);
-
- sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
- }
-
- acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
-
- }
-
- *s = hsum_float_8(acc);
-
-#else
-
- float sumf = 0;
-
- for (int i = 0; i < nb; ++i) {
-
- const uint8_t * q2 = x[i].qs;
- const int8_t * q8 = y[i].qs;
- const uint8_t * sc = x[i].scales;
-
- int summs = 0;
- for (int j = 0; j < 16; ++j) {
- summs += y[i].bsums[j] * (sc[j] >> 4);
- }
-
- const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
- const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
-
- int isum = 0;
- int is = 0;
- int d;
- for (int k = 0; k < QK_K/128; ++k) {
- int shift = 0;
- for (int j = 0; j < 4; ++j) {
- d = sc[is++] & 0xF;
- int isuml = 0;
- for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
- isum += d * isuml;
- d = sc[is++] & 0xF;
- isuml = 0;
- for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
- isum += d * isuml;
- shift += 2;
- q8 += 32;
- }
- q2 += 32;
- }
- sumf += dall * isum - dmin * summs;
- }
- *s = sumf;
-#endif
-}
-
-void ggml_vec_dot_q3_k_q8_k(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
- assert(n % QK_K == 0);
-
- const uint32_t kmask1 = 0x03030303;
- const uint32_t kmask2 = 0x0f0f0f0f;
-
- const block_q3_k * restrict x = vx;
- const block_q8_k * restrict y = vy;
-
- const int nb = n / QK_K;
-
-#ifdef __ARM_NEON
-
- uint32_t aux[3];
- uint32_t utmp[4];
-
- const uint8x16_t m3b = vdupq_n_u8(0x3);
-#ifdef __ARM_FEATURE_DOTPROD
- const int32x4_t vzero = vdupq_n_s32(0);
-#endif
-
- const uint8x16_t m0 = vdupq_n_u8(1);
- const uint8x16_t m1 = vshlq_n_u8(m0, 1);
- const uint8x16_t m2 = vshlq_n_u8(m0, 2);
- const uint8x16_t m3 = vshlq_n_u8(m0, 3);
- const int8_t m32 = 32;
-
- int8x16x4_t q3bytes;
-
- float sum = 0;
-
- for (int i = 0; i < nb; ++i) {
-
- const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
-
- const uint8_t * restrict q3 = x[i].qs;
- const uint8_t * restrict qh = x[i].hmask;
- const int8_t * restrict q8 = y[i].qs;
-
- uint8x16x2_t qhbits = vld1q_u8_x2(qh);
-
- uint8x16x4_t q3h;
-
- int32_t isum = 0;
-
- // Set up scales
- memcpy(aux, x[i].scales, 12);
- utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
- utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
- utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
- utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
-
- int8_t * scale = (int8_t *)utmp;
- for (int j = 0; j < 16; ++j) scale[j] -= m32;
-
- for (int j = 0; j < QK_K/128; ++j) {
-
- const uint8x16x2_t q3bits = vld1q_u8_x2(q3); q3 += 32;
- const int8x16x4_t q8bytes_1 = vld1q_s8_x4(q8); q8 += 64;
- const int8x16x4_t q8bytes_2 = vld1q_s8_x4(q8); q8 += 64;
-
- q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
- q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
- q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1);
- q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1);
-
- q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0]));
- q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1]));
- q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
- q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
-
-#if defined(__ARM_FEATURE_DOTPROD)
- isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
- isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
- isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
- isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
-#else
- int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_1.val[0])),
- vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_1.val[0])));
- int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_1.val[1])),
- vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_1.val[1])));
- int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_1.val[2])),
- vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_1.val[2])));
- int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_1.val[3])),
- vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_1.val[3])));
- isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
-#endif
- scale += 4;
-
- q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
- q3h.val[1] = vbicq_u8(m2, qhbits.val[1]);
- q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1);
- q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1);
-
- q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0]));
- q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1]));
- q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
- q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
-
-#if defined(__ARM_FEATURE_DOTPROD)
- isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
- isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
- isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
- isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
-#else
- p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_2.val[0])),
- vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_2.val[0])));
- p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_2.val[1])),
- vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_2.val[1])));
- p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_2.val[2])),
- vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_2.val[2])));
- p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_2.val[3])),
- vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_2.val[3])));
- isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
-#endif
- scale += 4;
-
- if (j == 0) {
- qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4);
- qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4);
- }
-
- }
- sum += d * isum;
-
- }
-
- *s = sum;
-
-#elif defined __AVX2__
-
- const __m256i m3 = _mm256_set1_epi8(3);
- const __m256i mone = _mm256_set1_epi8(1);
- const __m128i m32 = _mm_set1_epi8(32);
-
- __m256 acc = _mm256_setzero_ps();
-
- uint32_t aux[3];
-
- for (int i = 0; i < nb; ++i) {
-
- const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
-
- const uint8_t * restrict q3 = x[i].qs;
- const int8_t * restrict q8 = y[i].qs;
-
- // Set up scales
- memcpy(aux, x[i].scales, 12);
- __m128i scales128 = _mm_set_epi32(
- ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
- ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
- (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
- (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
- scales128 = _mm_sub_epi8(scales128, m32);
- const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
- const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
- const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
- const __m256i scales[2] = {_mm256_set_m128i(l_scales, l_scales), _mm256_set_m128i(h_scales, h_scales)};
-
- // high bit
- const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
-
- // integer accumulator
- __m256i sumi = _mm256_setzero_si256();
-
- int bit = 0;
- int is = 0;
-
- for (int j = 0; j < QK_K/128; ++j) {
- // load low 2 bits
- const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32;
-
- // prepare low and high bits
- const __m256i q3l_0 = _mm256_and_si256(q3bits, m3);
- const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
- ++bit;
-
- const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
- const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
- ++bit;
-
- const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
- const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
- ++bit;
-
- const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
- const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
- ++bit;
-
- // load Q8 quants
- const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
- const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
- const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
- const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
-
- // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
- // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
- // and 2 if the high bit was set)
- __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
- __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
- __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
- __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);
-
- __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
- __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
- __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
- __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);
-
- p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
- p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
- p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
- p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
-
- // multiply with scales
- p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
- p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
- p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
- p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
-
- // accumulate
- p16_0 = _mm256_add_epi32(p16_0, p16_1);
- p16_2 = _mm256_add_epi32(p16_2, p16_3);
- sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
-
- }
-
- // multiply with block scale and accumulate
- acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
-
- }
-
- *s = hsum_float_8(acc);
-
-#else
- // scalar version
- // This function is written like this so the compiler can manage to vectorize most of it
- // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
- // manually vectorized version above. Every other version I tried would run at least 4 times slower.
- // The ideal situation would be if we could just write the code once, and the compiler would
- // automatically produce the best possible set of machine instructions, instead of us having to manually
- // write vectorized versions for AVX, ARM_NEON, etc.
-
- int8_t aux8[QK_K];
- int16_t aux16[8];
- float sums [8];
- int32_t aux32[8];
- memset(sums, 0, 8*sizeof(float));
-
- uint32_t auxs[4];
- const int8_t * scales = (const int8_t*)auxs;
-
- float sumf = 0;
- for (int i = 0; i < nb; ++i) {
- const uint8_t * restrict q3 = x[i].qs;
- const uint8_t * restrict hm = x[i].hmask;
- const int8_t * restrict q8 = y[i].qs;
- memset(aux32, 0, 8*sizeof(int32_t));
- int8_t * restrict a = aux8;
- uint8_t m = 1;
- for (int j = 0; j < QK_K; j += 128) {
- for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
- for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
- a += 32; m <<= 1;
- for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
- for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
- a += 32; m <<= 1;
- for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
- for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
- a += 32; m <<= 1;
- for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
- for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
- a += 32; m <<= 1;
- q3 += 32;
- }
- a = aux8;
-
- memcpy(auxs, x[i].scales, 12);
- uint32_t tmp = auxs[2];
- auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
- auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
- auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
- auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
- for (int j = 0; j < QK_K/16; ++j) {
- for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
- for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
- q8 += 8; a += 8;
- for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
- for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
- q8 += 8; a += 8;
- }
- const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
- for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
- }
- for (int l = 0; l < 8; ++l) sumf += sums[l];
- *s = sumf;
-
-#endif
-
-}
-
-void ggml_vec_dot_q4_k_q8_k(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
- assert(n % QK_K == 0);
-
- const block_q4_k * restrict x = vx;
- const block_q8_k * restrict y = vy;
-
- const int nb = n / QK_K;
-
- static const uint32_t kmask1 = 0x3f3f3f3f;
- static const uint32_t kmask2 = 0x0f0f0f0f;
- static const uint32_t kmask3 = 0x03030303;
-
- uint32_t utmp[4];
-
-#ifdef __ARM_NEON
-
- const uint8x16_t m4b = vdupq_n_u8(0xf);
-#ifdef __ARM_FEATURE_DOTPROD
- const uint32x4_t mzero = vdupq_n_s32(0);
-#endif
-
- int8x16x2_t q4bytes;
- int8x16x2_t q8bytes;
-
- float sumf = 0;
-
- for (int i = 0; i < nb; ++i) {
-
- const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
- const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
-
- const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
-
- memcpy(utmp, x[i].scales, 12);
-
- const uint32x2_t mins8 = {utmp[1] & kmask1, ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4)};
- utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
- utmp[0] &= kmask1;
-
- const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
- const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
- vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
- sumf -= dmin * vaddvq_s32(prod);
-
- const uint8_t * scales = (const uint8_t *)utmp;
-
- const uint8_t * restrict q4 = x[i].qs;
- const int8_t * restrict q8 = y[i].qs;
-
- //int32x4_t isum = mzero;
-
- int32_t sumi1 = 0;
- int32_t sumi2 = 0;
-
- for (int j = 0; j < QK_K/64; ++j) {
-
- const uint8x16x2_t q4bits = vld1q_u8_x2(q4); q4 += 32;
-
-#ifdef __ARM_FEATURE_DOTPROD
- q8bytes = vld1q_s8_x2(q8); q8 += 32;
- q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
- q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
-
- const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
- sumi1 += vaddvq_s32(p1) * scales[2*j+0];
-
- q8bytes = vld1q_s8_x2(q8); q8 += 32;
- q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
- q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
-
- const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
-
- sumi2 += vaddvq_s32(p2) * scales[2*j+1];
-#else
- q8bytes = vld1q_s8_x2(q8); q8 += 32;
- q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
- q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
- const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
- vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
- const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
- vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
- sumi1 += vaddvq_s16(vaddq_s16(p0, p1)) * scales[2*j+0];
-
- q8bytes = vld1q_s8_x2(q8); q8 += 32;
- q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
- q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
- const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
- vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
- const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
- vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
- sumi2 += vaddvq_s16(vaddq_s16(p2, p3)) * scales[2*j+1];
-
-#endif
- }
-
- sumf += d * (sumi1 + sumi2);
-
- }
-
- *s = sumf;
-
-#elif defined __AVX2__
-
- const __m256i m4 = _mm256_set1_epi8(0xF);
-
- __m256 acc = _mm256_setzero_ps();
- __m128 acc_m = _mm_setzero_ps();
-
- for (int i = 0; i < nb; ++i) {
-
- const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
- const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
-
- const uint8_t * restrict q4 = x[i].qs;
- const int8_t * restrict q8 = y[i].qs;
-
- memcpy(utmp, x[i].scales, 12);
- utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
- const uint32_t uaux = utmp[1] & kmask1;
- utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
- utmp[2] = uaux;
- utmp[0] &= kmask1;
-
- const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
-
- const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
- const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
- const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
- acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
-
- const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
- const __m256i scales = _mm256_set_m128i(sc128, sc128);
-
- __m256i sumi = _mm256_setzero_si256();
-
- for (int j = 0; j < QK_K/64; ++j) {
-
- const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
- const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
-
- const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
- const __m256i q4l = _mm256_and_si256(q4bits, m4);
- const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
-
- const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
- __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
- p16l = _mm256_madd_epi16(scale_l, p16l);
- sumi = _mm256_add_epi32(sumi, p16l);
-
- const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
- __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
- p16h = _mm256_madd_epi16(scale_h, p16h);
- sumi = _mm256_add_epi32(sumi, p16h);
-
- }
-
- __m256 vd = _mm256_set1_ps(d);
- acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
-
- }
-
- acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
- acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
-
- *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
-
-#else
-
-
- const uint8_t * scales = (const uint8_t*)&utmp[0];
- const uint8_t * mins = (const uint8_t*)&utmp[2];
-
- int8_t aux8[QK_K];
- int16_t aux16[8];
- float sums [8];
- int32_t aux32[8];
- memset(sums, 0, 8*sizeof(float));
-
- float sumf = 0;
- for (int i = 0; i < nb; ++i) {
- const uint8_t * restrict q4 = x[i].qs;
- const int8_t * restrict q8 = y[i].qs;
- memset(aux32, 0, 8*sizeof(int32_t));
- int8_t * restrict a = aux8;
- for (int j = 0; j < QK_K/64; ++j) {
- for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
- a += 32;
- for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
- a += 32; q4 += 32;
- }
- memcpy(utmp, x[i].scales, 12);
- utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
- const uint32_t uaux = utmp[1] & kmask1;
- utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
- utmp[2] = uaux;
- utmp[0] &= kmask1;
-
- int sumi = 0;
- for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
- a = aux8;
- int is = 0;
- for (int j = 0; j < QK_K/32; ++j) {
- int32_t scale = scales[is++];
- for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
- for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
- q8 += 8; a += 8;
- for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
- for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
- q8 += 8; a += 8;
- for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
- for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
- q8 += 8; a += 8;
- for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
- for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
- q8 += 8; a += 8;
- }
- const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
- for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
- const float dmin = ggml_fp16_to_fp32(x[i].dmin) * y[i].d;
- sumf -= dmin * sumi;
- }
- for (int l = 0; l < 8; ++l) sumf += sums[l];
- *s = sumf;
-#endif
-}
-
-void ggml_vec_dot_q5_k_q8_k(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
- assert(n % QK_K == 0);
-
- const block_q5_k * restrict x = vx;
- const block_q8_k * restrict y = vy;
-
- const int nb = n / QK_K;
-
- static const uint32_t kmask1 = 0x3f3f3f3f;
- static const uint32_t kmask2 = 0x0f0f0f0f;
- static const uint32_t kmask3 = 0x03030303;
-
- uint32_t utmp[4];
-
-
-#ifdef __ARM_NEON
-
- const uint8x16_t m4b = vdupq_n_u8(0xf);
- const uint32x4_t mzero = vdupq_n_u32(0);
- const uint8x16_t mone = vdupq_n_u8(1);
- const uint8x16_t mtwo = vdupq_n_u8(2);
-
- int8x16x4_t q5bytes;
-
- float sumf = 0;
-
- for (int i = 0; i < nb; ++i) {
-
- const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
- const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
-
- const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
-
- memcpy(utmp, x[i].scales, 12);
- utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
- const uint32_t uaux = utmp[1] & kmask1;
- utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
- utmp[2] = uaux;
- utmp[0] &= kmask1;
-
- const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8);
- const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
- const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
- vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
- int32_t sumi_mins = vaddvq_s32(prod);
-
- const uint8_t * scales = (const uint8_t *)utmp;
-
- const uint8_t * restrict q5 = x[i].qs;
- const uint8_t * restrict qh = x[i].qh;
- const int8_t * restrict q8 = y[i].qs;
-
- uint8x16x2_t qhbits = vld1q_u8_x2(qh);
-
- uint8x16x4_t q5h;
-
- int32_t sumi = 0;
-
- for (int j = 0; j < QK_K/64; ++j) {
-
- const uint8x16x2_t q5bits = vld1q_u8_x2(q5); q5 += 32;
- const int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64;
-
- q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
- q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
- q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3);
- q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3);
- qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2);
- qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2);
-
- q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0]));
- q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1]));
- q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
- q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
-
-#if defined(__ARM_FEATURE_DOTPROD)
-
- sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
- sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
-#else
-
- const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
- vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0])));
- const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
- vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1])));
- sumi += vaddvq_s16(vaddq_s16(p0, p1)) * *scales++;
-
- const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
- vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2])));
- const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
- vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3])));
- sumi += vaddvq_s16(vaddq_s16(p2, p3)) * *scales++;
-#endif
- }
-
- sumf += d * sumi - dmin * sumi_mins;
-
- }
-
- *s = sumf;
-
-#elif defined __AVX2__
-
- const __m256i m4 = _mm256_set1_epi8(0xF);
- const __m128i mzero = _mm_setzero_si128();
- const __m256i mone = _mm256_set1_epi8(1);
-
- __m256 acc = _mm256_setzero_ps();
-
- float summs = 0.f;
-
- for (int i = 0; i < nb; ++i) {
-
- const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
- const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
-
- const uint8_t * restrict q5 = x[i].qs;
- const int8_t * restrict q8 = y[i].qs;
-
- memcpy(utmp, x[i].scales, 12);
- utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
- const uint32_t uaux = utmp[1] & kmask1;
- utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
- utmp[2] = uaux;
- utmp[0] &= kmask1;
-
- const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
-
- const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
- const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
- const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
- const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
- summs += dmin * _mm_extract_epi32(hsum, 0);
-
- const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
- const __m256i scales = _mm256_set_m128i(sc128, sc128);
-
- const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
- __m256i hmask = mone;
-
- __m256i sumi = _mm256_setzero_si256();
-
- int bit = 0;
-
- for (int j = 0; j < QK_K/64; ++j) {
-
- const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
- const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
-
- const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32;
-
- const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
- const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
- const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0);
- hmask = _mm256_slli_epi16(hmask, 1);
-
- const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
- const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
- const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1);
- hmask = _mm256_slli_epi16(hmask, 1);
-
- const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
- const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
-
- __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
- __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);
-
- p16_0 = _mm256_madd_epi16(scale_0, p16_0);
- p16_1 = _mm256_madd_epi16(scale_1, p16_1);
-
- sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
-
- }
-
- __m256 vd = _mm256_set1_ps(d);
- acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
-
- }
-
- *s = hsum_float_8(acc) + summs;
-
-#else
-
- const uint8_t * scales = (const uint8_t*)&utmp[0];
- const uint8_t * mins = (const uint8_t*)&utmp[2];
-
- int8_t aux8[QK_K];
- int16_t aux16[8];
- float sums [8];
- int32_t aux32[8];
- memset(sums, 0, 8*sizeof(float));
-
- float sumf = 0;
- for (int i = 0; i < nb; ++i) {
- const uint8_t * restrict q4 = x[i].qs;
- const uint8_t * restrict hm = x[i].qh;
- const int8_t * restrict q8 = y[i].qs;
- memset(aux32, 0, 8*sizeof(int32_t));
- int8_t * restrict a = aux8;
- uint8_t m = 1;
- for (int j = 0; j < QK_K/64; ++j) {
- for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
- for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
- a += 32; m <<= 1;
- for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
- for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
- a += 32; m <<= 1;
- q4 += 32;
- }
- memcpy(utmp, x[i].scales, 12);
- utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
- const uint32_t uaux = utmp[1] & kmask1;
- utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
- utmp[2] = uaux;
- utmp[0] &= kmask1;
-
- int sumi = 0;
- for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
- a = aux8;
- int is = 0;
- for (int j = 0; j < QK_K/32; ++j) {
- int32_t scale = scales[is++];
- for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
- for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
- q8 += 8; a += 8;
- for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
- for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
- q8 += 8; a += 8;
- for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
- for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
- q8 += 8; a += 8;
- for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
- for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
- q8 += 8; a += 8;
- }
- const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
- for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
- const float dmin = ggml_fp16_to_fp32(x[i].dmin) * y[i].d;
- sumf -= dmin * sumi;
- }
- for (int l = 0; l < 8; ++l) sumf += sums[l];
- *s = sumf;
-#endif
-}
-
-
-
-void ggml_vec_dot_q6_k_q8_k(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
- assert(n % QK_K == 0);
-
- const block_q6_k * restrict x = vx;
- const block_q8_k * restrict y = vy;
-
- const int nb = n / QK_K;
-
-#ifdef __ARM_NEON
-
- float sum = 0;
-
- const uint8x16_t m4b = vdupq_n_u8(0xF);
- const int32x4_t vzero = vdupq_n_s32(0);
- //const int8x16_t m32s = vdupq_n_s8(32);
-
- const uint8x16_t mone = vdupq_n_u8(3);
-
- int8x16x4_t q6bytes;
- uint8x16x4_t q6h;
-
- for (int i = 0; i < nb; ++i) {
-
- const float d_all = ggml_fp16_to_fp32(x[i].d);
-
- const uint8_t * restrict q6 = x[i].ql;
- const uint8_t * restrict qh = x[i].qh;
- const int8_t * restrict q8 = y[i].qs;
-
- const int8_t * restrict scale = x[i].scales;
-
- const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums);
- const int8x16_t scales = vld1q_s8(scale);
- const int16x8x2_t q6scales = {vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))};
-
- const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
- vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
- vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])),
- vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1]))));
- int32_t isum_mins = vaddvq_s32(prod);
-
- int32_t isum = 0;
-
- for (int j = 0; j < QK_K/128; ++j) {
-
- uint8x16x2_t qhbits = vld1q_u8_x2(qh); qh += 32;
- uint8x16x4_t q6bits = vld1q_u8_x4(q6); q6 += 64;
- int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64;
-
- q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
- q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
- uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2);
- q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
- shifted = vshrq_n_u8(qhbits.val[1], 2);
- q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
-
- //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
- //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
- //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s);
- //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s);
- q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0]));
- q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1]));
- q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
- q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
-
-#if defined(__ARM_FEATURE_DOTPROD)
-
- isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
- vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
- vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
- vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
- scale += 4;
-
-#else
-
- int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
- vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
- int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
- vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
- isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
- scale += 2;
-
- int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
- vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
- int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
- vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
- isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1];
- scale += 2;
-#endif
-
- q8bytes = vld1q_s8_x4(q8); q8 += 64;
-
- shifted = vshrq_n_u8(qhbits.val[0], 4);
- q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
- shifted = vshrq_n_u8(qhbits.val[1], 4);
- q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
- shifted = vshrq_n_u8(qhbits.val[0], 6);
- q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
- shifted = vshrq_n_u8(qhbits.val[1], 6);
- q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
-
- //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s);
- //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s);
- //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s);
- //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s);
- q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0]));
- q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1]));
- q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
- q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
-
-#if defined(__ARM_FEATURE_DOTPROD)
-
- isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
- vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
- vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
- vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
- scale += 4;
-
- //for (int l = 0; l < 4; ++l) {
- // const int32x4_t p = vdotq_s32(vzero, q6bytes.val[l], q8bytes.val[l]);
- // isum += vaddvq_s32(p) * *scale++;
- //}
-#else
- p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
- vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
- p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
- vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
- isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
- scale += 2;
-
- p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
- vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
- p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
- vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
- isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1];
- scale += 2;
-#endif
-
- }
- //sum += isum * d_all * y[i].d;
- sum += d_all * y[i].d * (isum - 32 * isum_mins);
-
- }
- *s = sum;
-
-#elif defined __AVX2__
-
- const __m256i m4 = _mm256_set1_epi8(0xF);
- const __m256i m2 = _mm256_set1_epi8(3);
- const __m256i m32s = _mm256_set1_epi8(32);
-
- __m256 acc = _mm256_setzero_ps();
-
- for (int i = 0; i < nb; ++i) {
-
- const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
-
- const uint8_t * restrict q4 = x[i].ql;
- const uint8_t * restrict qh = x[i].qh;
- const int8_t * restrict q8 = y[i].qs;
-
- const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
-
- __m256i sumi = _mm256_setzero_si256();
-
- int is = 0;
-
- for (int j = 0; j < QK_K/128; ++j) {
-
- const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
- const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
- const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
- const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
- is += 4;
-
- const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
- const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
- const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32;
-
- const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4);
- const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4);
- const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4);
- const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4);
-
- const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
- const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
- const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
- const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);
-
- const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
- const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
- const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
- const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
-
- __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
- __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
- __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
- __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);
-
- __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
- __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
- __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
- __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);
-
- p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
- p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
- p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
- p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
-
- p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
- p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
- p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
- p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);
-
- sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
- sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
-
- }
-
- acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
- }
-
- *s = hsum_float_8(acc);
-
-#else
-
- int8_t aux8[QK_K];
- int16_t aux16[8];
- float sums [8];
- int32_t aux32[8];
- memset(sums, 0, 8*sizeof(float));
-
- float sumf = 0;
- for (int i = 0; i < nb; ++i) {
- const uint8_t * restrict q4 = x[i].ql;
- const uint8_t * restrict qh = x[i].qh;
- const int8_t * restrict q8 = y[i].qs;
- memset(aux32, 0, 8*sizeof(int32_t));
- int8_t * restrict a = aux8;
- for (int j = 0; j < QK_K; j += 128) {
- for (int l = 0; l < 32; ++l) {
- a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
- a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
- a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
- a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
- }
- a += 128;
- q4 += 64;
- qh += 32;
- }
- a = aux8;
- int is = 0;
- for (int j = 0; j < QK_K/16; ++j) {
- int scale = x[i].scales[is++];
- for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
- for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
- q8 += 8; a += 8;
- for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
- for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
- q8 += 8; a += 8;
- }
- const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
- for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
- }
- for (int l = 0; l < 8; ++l) sumf += sums[l];
- *s = sumf;
-#endif
-}
-
-
+++ /dev/null
-#pragma once
-
-#include "ggml.h"
-
-#include <stdint.h>
-#include <assert.h>
-#include <stddef.h>
-
-// Super-block size
-#define QK_K 256
-
-//
-// Super-block quantization structures
-//
-
-// 2-bit quantization
-// weight is represented as x = a * q + b
-// 16 blocks of 16 elemenets each
-// Effectively 2.5625 bits per weight
-typedef struct {
- uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
- uint8_t qs[QK_K/4]; // quants
- ggml_fp16_t d; // super-block scale for quantized scales
- ggml_fp16_t dmin; // super-block scale for quantized mins
-} block_q2_k;
-static_assert(sizeof(block_q2_k) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_k block size/padding");
-
-// 3-bit quantization
-// weight is represented as x = a * q
-// 16 blocks of 16 elemenets each
-// Effectively 3.4375 bits per weight
-typedef struct {
- uint8_t hmask[QK_K/8]; // quants - high bit
- uint8_t qs[QK_K/4]; // quants - low 2 bits
- uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits
- ggml_fp16_t d; // super-block scale
-} block_q3_k;
-static_assert(sizeof(block_q3_k) == sizeof(ggml_fp16_t) + QK_K / 4 + 11 * QK_K / 64, "wrong q3_k block size/padding");
-
-// 4-bit quantization
-// 16 blocks of 32 elements each
-// weight is represented as x = a * q + b
-// Effectively 4.5 bits per weight
-typedef struct {
- ggml_fp16_t d; // super-block scale for quantized scales
- ggml_fp16_t dmin; // super-block scale for quantized mins
- uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits
- uint8_t qs[QK_K/2]; // 4--bit quants
-} block_q4_k;
-static_assert(sizeof(block_q4_k) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2, "wrong q4_k block size/padding");
-
-// 5-bit quantization
-// 16 blocks of 32 elements each
-// weight is represented as x = a * q + b
-// Effectively 5.5 bits per weight
-typedef struct {
- ggml_fp16_t d; // super-block scale for quantized scales
- ggml_fp16_t dmin; // super-block scale for quantized mins
- uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits
- uint8_t qh[QK_K/8]; // quants, high bit
- uint8_t qs[QK_K/2]; // quants, low 4 bits
-} block_q5_k;
-static_assert(sizeof(block_q5_k) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2 + QK_K/8, "wrong q5_k block size/padding");
-
-// 6-bit quantization
-// weight is represented as x = a * q
-// 16 blocks of 16 elemenets each
-// Effectively 6.5625 bits per weight
-typedef struct {
- uint8_t ql[QK_K/2]; // quants, lower 4 bits
- uint8_t qh[QK_K/4]; // quants, upper 2 bits
- int8_t scales[QK_K/16]; // scales, quantized with 8 bits
- ggml_fp16_t d; // super-block scale
-} block_q6_k;
-static_assert(sizeof(block_q6_k) == sizeof(ggml_fp16_t) + QK_K / 16 + 3*QK_K/4, "wrong q6_k block size/padding");
-
-// This is only used for intermediate quantization and dot products
-typedef struct {
- float d; // delta
- int8_t qs[QK_K]; // quants
- int16_t bsums[QK_K/16]; // sum of quants in groups of 16
-} block_q8_k;
-static_assert(sizeof(block_q8_k) == sizeof(float) + QK_K + QK_K/16*sizeof(int16_t), "wrong q8_k block size/padding");
-
-
-// Quantization
-void quantize_row_q2_k_reference(const float * restrict x, block_q2_k * restrict y, int k);
-void quantize_row_q3_k_reference(const float * restrict x, block_q3_k * restrict y, int k);
-void quantize_row_q4_k_reference(const float * restrict x, block_q4_k * restrict y, int k);
-void quantize_row_q5_k_reference(const float * restrict x, block_q5_k * restrict y, int k);
-void quantize_row_q6_k_reference(const float * restrict x, block_q6_k * restrict y, int k);
-void quantize_row_q8_k_reference(const float * restrict x, block_q8_k * restrict y, int k);
-
-void quantize_row_q2_k(const float * restrict x, void * restrict y, int k);
-void quantize_row_q3_k(const float * restrict x, void * restrict y, int k);
-void quantize_row_q4_k(const float * restrict x, void * restrict y, int k);
-void quantize_row_q5_k(const float * restrict x, void * restrict y, int k);
-void quantize_row_q6_k(const float * restrict x, void * restrict y, int k);
-void quantize_row_q8_k(const float * restrict x, void * restrict y, int k);
-
-// Dequantization
-void dequantize_row_q2_k(const block_q2_k * restrict x, float * restrict y, int k);
-void dequantize_row_q3_k(const block_q3_k * restrict x, float * restrict y, int k);
-void dequantize_row_q4_k(const block_q4_k * restrict x, float * restrict y, int k);
-void dequantize_row_q5_k(const block_q5_k * restrict x, float * restrict y, int k);
-void dequantize_row_q6_k(const block_q6_k * restrict x, float * restrict y, int k);
-void dequantize_row_q8_k(const block_q8_k * restrict x, float * restrict y, int k);
-
-// Dot product
-void ggml_vec_dot_q2_k_q8_k(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
-void ggml_vec_dot_q3_k_q8_k(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
-void ggml_vec_dot_q4_k_q8_k(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
-void ggml_vec_dot_q5_k_q8_k(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
-void ggml_vec_dot_q6_k_q8_k(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
-
-// Quantization with histogram collection
-size_t ggml_quantize_q2_k(const float * src, void * dst, int n, int k, int64_t * hist);
-size_t ggml_quantize_q3_k(const float * src, void * dst, int n, int k, int64_t * hist);
-size_t ggml_quantize_q4_k(const float * src, void * dst, int n, int k, int64_t * hist);
-size_t ggml_quantize_q5_k(const float * src, void * dst, int n, int k, int64_t * hist);
-size_t ggml_quantize_q6_k(const float * src, void * dst, int n, int k, int64_t * hist);
-
#define _GNU_SOURCE
#include "ggml.h"
-#include "ggml-quants-k.h"
+
+#ifdef GGML_USE_K_QUANTS
+#include "k_quants.h"
+#endif
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <malloc.h> // using malloc.h with MSC/MINGW
.vec_dot_q = NULL, // TODO
.vec_dot_type = GGML_TYPE_Q8_1,
},
+#ifdef GGML_USE_K_QUANTS
[GGML_TYPE_Q2_K] = {
- .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q2_k,
- .quantize_row_q = quantize_row_q2_k,
- .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q2_k_reference,
- .quantize_row_q_dot = quantize_row_q8_k,
- .vec_dot_q = ggml_vec_dot_q2_k_q8_k,
+ .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q2_K,
+ .quantize_row_q = quantize_row_q2_K,
+ .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q2_K_reference,
+ .quantize_row_q_dot = quantize_row_q8_K,
+ .vec_dot_q = ggml_vec_dot_q2_K_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
},
[GGML_TYPE_Q3_K] = {
- .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q3_k,
- .quantize_row_q = quantize_row_q3_k,
- .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q3_k_reference,
- .quantize_row_q_dot = quantize_row_q8_k,
- .vec_dot_q = ggml_vec_dot_q3_k_q8_k,
+ .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q3_K,
+ .quantize_row_q = quantize_row_q3_K,
+ .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q3_K_reference,
+ .quantize_row_q_dot = quantize_row_q8_K,
+ .vec_dot_q = ggml_vec_dot_q3_K_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
},
[GGML_TYPE_Q4_K] = {
- .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_k,
- .quantize_row_q = quantize_row_q4_k,
- .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_k_reference,
- .quantize_row_q_dot = quantize_row_q8_k,
- .vec_dot_q = ggml_vec_dot_q4_k_q8_k,
+ .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_K,
+ .quantize_row_q = quantize_row_q4_K,
+ .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_K_reference,
+ .quantize_row_q_dot = quantize_row_q8_K,
+ .vec_dot_q = ggml_vec_dot_q4_K_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
},
[GGML_TYPE_Q5_K] = {
- .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_k,
- .quantize_row_q = quantize_row_q5_k,
- .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_k_reference,
- .quantize_row_q_dot = quantize_row_q8_k,
- .vec_dot_q = ggml_vec_dot_q5_k_q8_k,
+ .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_K,
+ .quantize_row_q = quantize_row_q5_K,
+ .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_K_reference,
+ .quantize_row_q_dot = quantize_row_q8_K,
+ .vec_dot_q = ggml_vec_dot_q5_K_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
},
[GGML_TYPE_Q6_K] = {
- .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q6_k,
- .quantize_row_q = quantize_row_q6_k,
- .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q6_k_reference,
- .quantize_row_q_dot = quantize_row_q8_k,
- .vec_dot_q = ggml_vec_dot_q6_k_q8_k,
+ .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q6_K,
+ .quantize_row_q = quantize_row_q6_K,
+ .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q6_K_reference,
+ .quantize_row_q_dot = quantize_row_q8_K,
+ .vec_dot_q = ggml_vec_dot_q6_K_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
},
+#endif
};
// For internal test use
[GGML_TYPE_Q5_1] = QK5_1,
[GGML_TYPE_Q8_0] = QK8_0,
[GGML_TYPE_Q8_1] = QK8_1,
+#ifdef GGML_USE_K_QUANTS
[GGML_TYPE_Q2_K] = QK_K,
[GGML_TYPE_Q3_K] = QK_K,
[GGML_TYPE_Q4_K] = QK_K,
[GGML_TYPE_Q5_K] = QK_K,
[GGML_TYPE_Q6_K] = QK_K,
[GGML_TYPE_Q8_K] = QK_K,
+#endif
[GGML_TYPE_I8] = 1,
[GGML_TYPE_I16] = 1,
[GGML_TYPE_I32] = 1,
[GGML_TYPE_Q5_1] = sizeof(block_q5_1),
[GGML_TYPE_Q8_0] = sizeof(block_q8_0),
[GGML_TYPE_Q8_1] = sizeof(block_q8_1),
- [GGML_TYPE_Q2_K] = sizeof(block_q2_k),
- [GGML_TYPE_Q3_K] = sizeof(block_q3_k),
- [GGML_TYPE_Q4_K] = sizeof(block_q4_k),
- [GGML_TYPE_Q5_K] = sizeof(block_q5_k),
- [GGML_TYPE_Q6_K] = sizeof(block_q6_k),
- [GGML_TYPE_Q8_K] = sizeof(block_q8_k),
+#ifdef GGML_USE_K_QUANTS
+ [GGML_TYPE_Q2_K] = sizeof(block_q2_K),
+ [GGML_TYPE_Q3_K] = sizeof(block_q3_K),
+ [GGML_TYPE_Q4_K] = sizeof(block_q4_K),
+ [GGML_TYPE_Q5_K] = sizeof(block_q5_K),
+ [GGML_TYPE_Q6_K] = sizeof(block_q6_K),
+ [GGML_TYPE_Q8_K] = sizeof(block_q8_K),
+#endif
[GGML_TYPE_I8] = sizeof(int8_t),
[GGML_TYPE_I16] = sizeof(int16_t),
[GGML_TYPE_I32] = sizeof(int32_t),
[GGML_TYPE_Q5_1] = "q5_1",
[GGML_TYPE_Q8_0] = "q8_0",
[GGML_TYPE_Q8_1] = "q8_1",
- [GGML_TYPE_Q2_K] = "q2_k",
- [GGML_TYPE_Q3_K] = "q3_k",
- [GGML_TYPE_Q4_K] = "q4_k",
- [GGML_TYPE_Q5_K] = "q5_k",
- [GGML_TYPE_Q6_K] = "q6_k",
- [GGML_TYPE_Q8_K] = "q8_k",
+ [GGML_TYPE_Q2_K] = "q2_K",
+ [GGML_TYPE_Q3_K] = "q3_K",
+ [GGML_TYPE_Q4_K] = "q4_K",
+ [GGML_TYPE_Q5_K] = "q5_K",
+ [GGML_TYPE_Q6_K] = "q6_K",
+ [GGML_TYPE_Q8_K] = "q8_K",
[GGML_TYPE_I8] = "i8",
[GGML_TYPE_I16] = "i16",
[GGML_TYPE_I32] = "i32",
block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
result = ggml_quantize_q8_0(src + start, block, n, n, hist);
} break;
+#ifdef GGML_USE_K_QUANTS
case GGML_TYPE_Q2_K:
{
GGML_ASSERT(start % QK_K == 0);
- block_q2_k * block = (block_q2_k*)dst + start / QK_K;
- result = ggml_quantize_q2_k(src + start, block, n, n, hist);
+ block_q2_K * block = (block_q2_K*)dst + start / QK_K;
+ result = ggml_quantize_q2_K(src + start, block, n, n, hist);
} break;
case GGML_TYPE_Q3_K:
{
GGML_ASSERT(start % QK_K == 0);
- block_q3_k * block = (block_q3_k*)dst + start / QK_K;
- result = ggml_quantize_q3_k(src + start, block, n, n, hist);
+ block_q3_K * block = (block_q3_K*)dst + start / QK_K;
+ result = ggml_quantize_q3_K(src + start, block, n, n, hist);
} break;
case GGML_TYPE_Q4_K:
{
GGML_ASSERT(start % QK_K == 0);
- block_q4_k * block = (block_q4_k*)dst + start / QK_K;
- result = ggml_quantize_q4_k(src + start, block, n, n, hist);
+ block_q4_K * block = (block_q4_K*)dst + start / QK_K;
+ result = ggml_quantize_q4_K(src + start, block, n, n, hist);
} break;
case GGML_TYPE_Q5_K:
{
GGML_ASSERT(start % QK_K == 0);
- block_q5_k * block = (block_q5_k*)dst + start / QK_K;
- result = ggml_quantize_q5_k(src + start, block, n, n, hist);
+ block_q5_K * block = (block_q5_K*)dst + start / QK_K;
+ result = ggml_quantize_q5_K(src + start, block, n, n, hist);
} break;
case GGML_TYPE_Q6_K:
{
GGML_ASSERT(start % QK_K == 0);
- block_q6_k * block = (block_q6_k*)dst + start / QK_K;
- result = ggml_quantize_q6_k(src + start, block, n, n, hist);
+ block_q6_K * block = (block_q6_K*)dst + start / QK_K;
+ result = ggml_quantize_q6_K(src + start, block, n, n, hist);
} break;
+#endif
default:
assert(false);
}
--- /dev/null
+#include "k_quants.h"
+#include "ggml.h"
+
+#include <math.h>
+#include <string.h>
+#include <assert.h>
+
+#ifdef __ARM_NEON
+
+// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
+//
+// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
+//
+#include <arm_neon.h>
+
+#else
+
+#ifdef __wasm_simd128__
+#include <wasm_simd128.h>
+#else
+#ifdef __POWER9_VECTOR__
+#include <altivec.h>
+#undef bool
+#define bool _Bool
+#else
+#if defined(_MSC_VER) || defined(__MINGW32__)
+#include <intrin.h>
+#else
+#if !defined(__riscv)
+#include <immintrin.h>
+#endif
+#endif
+#endif
+#endif
+#endif
+
+#undef MIN
+#undef MAX
+#define MIN(a, b) ((a) < (b) ? (a) : (b))
+#define MAX(a, b) ((a) > (b) ? (a) : (b))
+
+//
+// 2-6 bit quantization in super-blocks
+//
+
+
+//
+// ===================== Helper functions
+//
+static inline int nearest_int(float fval) {
+ assert(fval <= 4194303.f);
+ float val = fval + 12582912.f;
+ int i; memcpy(&i, &val, sizeof(int));
+ return (i & 0x007fffff) - 0x00400000;
+}
+
+static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type) {
+ float max = 0;
+ float amax = 0;
+ for (int i = 0; i < n; ++i) {
+ float ax = fabsf(x[i]);
+ if (ax > amax) { amax = ax; max = x[i]; }
+ }
+ if (!amax) { // all zero
+ for (int i = 0; i < n; ++i) {
+ L[i] = 0;
+ }
+ return 0.f;
+ }
+ float iscale = -nmax / max;
+ if (rmse_type == 0) {
+ for (int i = 0; i < n; ++i) {
+ int l = nearest_int(iscale * x[i]);
+ L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
+ }
+ return 1/iscale;
+ }
+ int weight_type = rmse_type%2;
+ float sumlx = 0;
+ float suml2 = 0;
+ for (int i = 0; i < n; ++i) {
+ int l = nearest_int(iscale * x[i]);
+ l = MAX(-nmax, MIN(nmax-1, l));
+ L[i] = l + nmax;
+ float w = weight_type == 1 ? x[i] * x[i] : 1;
+ sumlx += w*x[i]*l;
+ suml2 += w*l*l;
+ }
+ float scale = sumlx/suml2;
+ float best = scale * sumlx;
+ for (int itry = 0; itry < 3; ++itry) {
+ iscale = 1/scale;
+ float slx = 0;
+ float sl2 = 0;
+ bool changed = false;
+ for (int i = 0; i < n; ++i) {
+ int l = nearest_int(iscale * x[i]);
+ l = MAX(-nmax, MIN(nmax-1, l));
+ if (l + nmax != L[i]) { changed = true; }
+ float w = weight_type == 1 ? x[i] * x[i] : 1.f;
+ slx += w*x[i]*l;
+ sl2 += w*l*l;
+ }
+ if (!changed || sl2 == 0 || slx*slx <= best*sl2) { break; }
+ for (int i = 0; i < n; ++i) {
+ int l = nearest_int(iscale * x[i]);
+ L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
+ }
+ sumlx = slx; suml2 = sl2;
+ scale = sumlx/suml2;
+ best = scale * sumlx;
+ }
+ for (int itry = 0; itry < 5; ++itry) {
+ int n_changed = 0;
+ for (int i = 0; i < n; ++i) {
+ float w = weight_type == 1 ? x[i]*x[i] : 1;
+ int l = L[i] - nmax;
+ float slx = sumlx - w*x[i]*l;
+ if (slx > 0) {
+ float sl2 = suml2 - w*l*l;
+ int new_l = nearest_int(x[i] * sl2 / slx);
+ new_l = MAX(-nmax, MIN(nmax-1, new_l));
+ if (new_l != l) {
+ slx += w*x[i]*new_l;
+ sl2 += w*new_l*new_l;
+ if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
+ L[i] = nmax + new_l; sumlx = slx; suml2 = sl2;
+ scale = sumlx / suml2; best = scale * sumlx;
+ ++n_changed;
+ }
+ }
+ }
+ }
+ if (!n_changed) { break; }
+ }
+ if (rmse_type < 3) {
+ return scale;
+ }
+ for (int is = -4; is <= 4; ++is) {
+ if (is == 0) {
+ continue;
+ }
+ iscale = -(nmax + 0.1f*is) / max;
+ sumlx = suml2 = 0;
+ for (int i = 0; i < n; ++i) {
+ int l = nearest_int(iscale * x[i]);
+ l = MAX(-nmax, MIN(nmax-1, l));
+ float w = weight_type == 1 ? x[i] * x[i] : 1;
+ sumlx += w*x[i]*l;
+ suml2 += w*l*l;
+ }
+ if (suml2 > 0 && sumlx*sumlx > best*suml2) {
+ for (int i = 0; i < n; ++i) {
+ int l = nearest_int(iscale * x[i]);
+ L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
+ }
+ scale = sumlx/suml2; best = scale*sumlx;
+ }
+ }
+ return scale;
+}
+
+static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
+ float max = 0;
+ float amax = 0;
+ for (int i = 0; i < n; ++i) {
+ float ax = fabsf(x[i]);
+ if (ax > amax) { amax = ax; max = x[i]; }
+ }
+ if (!amax) { // all zero
+ for (int i = 0; i < n; ++i) { L[i] = 0; }
+ return 0.f;
+ }
+ float iscale = -nmax / max;
+ if (do_rmse) {
+ float sumlx = 0;
+ float suml2 = 0;
+ for (int i = 0; i < n; ++i) {
+ int l = nearest_int(iscale * x[i]);
+ l = MAX(-nmax, MIN(nmax-1, l));
+ L[i] = l;
+ float w = x[i]*x[i];
+ sumlx += w*x[i]*l;
+ suml2 += w*l*l;
+ }
+ for (int itry = 0; itry < 5; ++itry) {
+ int n_changed = 0;
+ for (int i = 0; i < n; ++i) {
+ float w = x[i]*x[i];
+ float slx = sumlx - w*x[i]*L[i];
+ if (slx > 0) {
+ float sl2 = suml2 - w*L[i]*L[i];
+ int new_l = nearest_int(x[i] * sl2 / slx);
+ new_l = MAX(-nmax, MIN(nmax-1, new_l));
+ if (new_l != L[i]) {
+ slx += w*x[i]*new_l;
+ sl2 += w*new_l*new_l;
+ if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
+ L[i] = new_l; sumlx = slx; suml2 = sl2;
+ ++n_changed;
+ }
+ }
+ }
+ }
+ if (!n_changed) {
+ break;
+ }
+ }
+ for (int i = 0; i < n; ++i) {
+ L[i] += nmax;
+ }
+ return sumlx / suml2;
+ }
+ for (int i = 0; i < n; ++i) {
+ int l = nearest_int(iscale * x[i]);
+ l = MAX(-nmax, MIN(nmax-1, l));
+ L[i] = l + nmax;
+ }
+ return 1/iscale;
+}
+
+static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min, int ntry) {
+ float min = x[0];
+ float max = x[0];
+ for (int i = 1; i < n; ++i) {
+ if (x[i] < min) min = x[i];
+ if (x[i] > max) max = x[i];
+ }
+ if (max == min) {
+ for (int i = 0; i < n; ++i) L[i] = 0;
+ *the_min = 0;
+ return 0.f;
+ }
+ if (min > 0) min = 0;
+ float iscale = nmax/(max - min);
+ float scale = 1/iscale;
+ for (int itry = 0; itry < ntry; ++itry) {
+ float sumlx = 0; int suml2 = 0;
+ bool did_change = false;
+ for (int i = 0; i < n; ++i) {
+ int l = nearest_int(iscale*(x[i] - min));
+ l = MAX(0, MIN(nmax, l));
+ if (l != L[i]) {
+ L[i] = l;
+ did_change = true;
+ }
+ sumlx += (x[i] - min)*l;
+ suml2 += l*l;
+ }
+ scale = sumlx/suml2;
+ float sum = 0;
+ for (int i = 0; i < n; ++i) {
+ sum += x[i] - scale*L[i];
+ }
+ min = sum/n;
+ if (min > 0) min = 0;
+ iscale = 1/scale;
+ if (!did_change) break;
+ }
+ *the_min = -min;
+ return scale;
+}
+
+static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
+ if (j < 4) {
+ *d = q[j] & 63; *m = q[j + 4] & 63;
+ } else {
+ *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
+ *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
+ }
+}
+
+//========================- 2-bit (de)-quantization
+
+void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k) {
+ assert(k % QK_K == 0);
+ const int nb = k / QK_K;
+
+ uint8_t L[QK_K];
+ float mins[QK_K/16];
+ float scales[QK_K/16];
+
+ const float q4scale = 15.f;
+
+ for (int i = 0; i < nb; i++) {
+
+ float max_scale = 0; // as we are deducting the min, scales are always positive
+ float max_min = 0;
+ for (int j = 0; j < QK_K/16; ++j) {
+ scales[j] = make_qkx1_quants(16, 3, x + 16*j, L + 16*j, &mins[j], 5);
+ float scale = scales[j];
+ if (scale > max_scale) {
+ max_scale = scale;
+ }
+ float min = mins[j];
+ if (min > max_min) {
+ max_min = min;
+ }
+ }
+
+ if (max_scale > 0) {
+ float iscale = q4scale/max_scale;
+ for (int j = 0; j < QK_K/16; ++j) {
+ int l = nearest_int(iscale*scales[j]);
+ y[i].scales[j] = l;
+ }
+ y[i].d = ggml_fp32_to_fp16(max_scale/q4scale);
+ } else {
+ for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0;
+ y[i].d = ggml_fp32_to_fp16(0.f);
+ }
+ if (max_min > 0) {
+ float iscale = q4scale/max_min;
+ for (int j = 0; j < QK_K/16; ++j) {
+ int l = nearest_int(iscale*mins[j]);
+ y[i].scales[j] |= (l << 4);
+ }
+ y[i].dmin = ggml_fp32_to_fp16(max_min/q4scale);
+ } else {
+ y[i].dmin = ggml_fp32_to_fp16(0.f);
+ }
+ for (int j = 0; j < QK_K/16; ++j) {
+ const float d = ggml_fp16_to_fp32(y[i].d) * (y[i].scales[j] & 0xF);
+ if (!d) continue;
+ const float dm = ggml_fp16_to_fp32(y[i].dmin) * (y[i].scales[j] >> 4);
+ for (int ii = 0; ii < 16; ++ii) {
+ int l = nearest_int((x[16*j + ii] + dm)/d);
+ l = MAX(0, MIN(3, l));
+ L[16*j + ii] = l;
+ }
+ }
+
+ for (int j = 0; j < QK_K; j += 128) {
+ for (int l = 0; l < 32; ++l) {
+ y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
+ }
+ }
+
+ x += QK_K;
+
+ }
+}
+
+void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k) {
+ assert(k % QK_K == 0);
+ const int nb = k / QK_K;
+
+ for (int i = 0; i < nb; i++) {
+
+ const float d = ggml_fp16_to_fp32(x[i].d);
+ const float min = ggml_fp16_to_fp32(x[i].dmin);
+
+ const uint8_t * q = x[i].qs;
+
+ int is = 0;
+ float dl, ml;
+ for (int n = 0; n < QK_K; n += 128) {
+ int shift = 0;
+ for (int j = 0; j < 4; ++j) {
+
+ uint8_t sc = x[i].scales[is++];
+ dl = d * (sc & 0xF); ml = min * (sc >> 4);
+ for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
+
+ sc = x[i].scales[is++];
+ dl = d * (sc & 0xF); ml = min * (sc >> 4);
+ for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
+
+ shift += 2;
+ }
+ q += 32;
+ }
+
+ }
+}
+
+void quantize_row_q2_K(const float * restrict x, void * restrict vy, int k) {
+ quantize_row_q2_K_reference(x, vy, k);
+}
+
+size_t ggml_quantize_q2_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
+ const int nb = k / QK_K;
+
+ // TODO - collect histograms - although, at a second thought, I don't really care about them
+ (void)hist;
+
+ for (int j = 0; j < nb; j += k) {
+ block_q2_K * restrict y = (block_q2_K *)dst + j/QK_K;
+ quantize_row_q2_K_reference(src + j, y, k);
+ }
+ return (n/QK_K*sizeof(block_q2_K));
+}
+
+//========================= 3-bit (de)-quantization
+
+void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k) {
+ assert(k % QK_K == 0);
+ const int nb = k / QK_K;
+
+ int8_t L[QK_K];
+ float scales[QK_K / 16];
+
+ for (int i = 0; i < nb; i++) {
+
+ float max_scale = 0;
+ float amax = 0;
+ for (int j = 0; j < QK_K/16; ++j) {
+ scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true);
+ float scale = fabsf(scales[j]);
+ if (scale > amax) {
+ amax = scale; max_scale = scales[j];
+ }
+ }
+
+ memset(y[i].scales, 0, 12);
+ if (max_scale) {
+ float iscale = -32.f/max_scale;
+ for (int j = 0; j < QK_K/16; ++j) {
+ int8_t l = nearest_int(iscale*scales[j]);
+ l = MAX(-32, MIN(31, l)) + 32;
+ if (j < 8) {
+ y[i].scales[j] = l & 0xF;
+ } else {
+ y[i].scales[j-8] |= ((l & 0xF) << 4);
+ }
+ l >>= 4;
+ y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
+ }
+ y[i].d = ggml_fp32_to_fp16(1/iscale);
+ } else {
+ y[i].d = ggml_fp32_to_fp16(0.f);
+ }
+
+ int8_t sc;
+ for (int j = 0; j < QK_K/16; ++j) {
+ sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
+ sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
+ float d = ggml_fp16_to_fp32(y[i].d) * sc;
+ if (!d) {
+ continue;
+ }
+ for (int ii = 0; ii < 16; ++ii) {
+ int l = nearest_int(x[16*j + ii]/d);
+ l = MAX(-4, MIN(3, l));
+ L[16*j + ii] = l + 4;
+ }
+ }
+
+ memset(y[i].hmask, 0, QK_K/8);
+ // We put the high-bit for the 1st 32 quants into bit 0, the next 32 into bit 1, etc.
+ int m = 0;
+ uint8_t hm = 1;
+ for (int j = 0; j < QK_K; ++j) {
+ if (L[j] > 3) {
+ y[i].hmask[m] |= hm;
+ L[j] -= 4;
+ }
+ if (++m == QK_K/8) {
+ m = 0; hm <<= 1;
+ }
+ }
+ for (int j = 0; j < QK_K; j += 128) {
+ for (int l = 0; l < 32; ++l) {
+ y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
+ }
+ }
+
+ x += QK_K;
+ }
+}
+
+void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
+ assert(k % QK_K == 0);
+ assert(QK_K == 256);
+ const int nb = k / QK_K;
+
+ const uint32_t kmask1 = 0x03030303;
+ const uint32_t kmask2 = 0x0f0f0f0f;
+
+ uint32_t aux[4];
+ const int8_t * scales = (const int8_t*)aux;
+
+ for (int i = 0; i < nb; i++) {
+
+ const float d_all = ggml_fp16_to_fp32(x[i].d);
+
+ const uint8_t * restrict q = x[i].qs;
+ const uint8_t * restrict hm = x[i].hmask;
+ uint8_t m = 1;
+
+ memcpy(aux, x[i].scales, 12);
+ uint32_t tmp = aux[2];
+ aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
+ aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
+ aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
+ aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
+
+ int is = 0;
+ float dl;
+ for (int n = 0; n < QK_K; n += 128) {
+ int shift = 0;
+ for (int j = 0; j < 4; ++j) {
+
+ dl = d_all * (scales[is++] - 32);
+ for (int l = 0; l < 16; ++l) {
+ *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
+ }
+
+ dl = d_all * (scales[is++] - 32);
+ for (int l = 0; l < 16; ++l) {
+ *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
+ }
+
+ shift += 2;
+ m <<= 1;
+ }
+ q += 32;
+ }
+
+ }
+}
+
+void quantize_row_q3_K(const float * restrict x, void * restrict vy, int k) {
+ quantize_row_q3_K_reference(x, vy, k);
+}
+
+size_t ggml_quantize_q3_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
+ const int nb = k / QK_K;
+
+ // TODO - collect histograms - although, at a second thought, I don't really care about them
+ (void)hist;
+
+ for (int j = 0; j < nb; j += k) {
+ block_q3_K * restrict y = (block_q3_K *)dst + j/QK_K;
+ quantize_row_q3_K_reference(src + j, y, k);
+ }
+ return (n/QK_K*sizeof(block_q3_K));
+}
+
+// ====================== 4-bit (de)-quantization
+
+void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k) {
+ assert(k % QK_K == 0);
+ const int nb = k / QK_K;
+
+ uint8_t L[QK_K];
+ float mins[QK_K/32];
+ float scales[QK_K/32];
+
+ for (int i = 0; i < nb; i++) {
+
+ float max_scale = 0; // as we are deducting the min, scales are always positive
+ float max_min = 0;
+ for (int j = 0; j < QK_K/32; ++j) {
+ scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 5);
+ float scale = scales[j];
+ if (scale > max_scale) {
+ max_scale = scale;
+ }
+ float min = mins[j];
+ if (min > max_min) {
+ max_min = min;
+ }
+ }
+
+ float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
+ float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
+ for (int j = 0; j < QK_K/32; ++j) {
+ uint8_t ls = nearest_int(inv_scale*scales[j]);
+ uint8_t lm = nearest_int(inv_min*mins[j]);
+ ls = MIN(63, ls);
+ lm = MIN(63, lm);
+ if (j < 4) {
+ y[i].scales[j] = ls;
+ y[i].scales[j+4] = lm;
+ } else {
+ y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
+ y[i].scales[j-4] |= ((ls >> 4) << 6);
+ y[i].scales[j-0] |= ((lm >> 4) << 6);
+ }
+ }
+ y[i].d = ggml_fp32_to_fp16(max_scale/63.f);
+ y[i].dmin = ggml_fp32_to_fp16(max_min/63.f);
+
+ uint8_t sc, m;
+ for (int j = 0; j < QK_K/32; ++j) {
+ get_scale_min_k4(j, y[i].scales, &sc, &m);
+ const float d = ggml_fp16_to_fp32(y[i].d) * sc;
+ if (!d) continue;
+ const float dm = ggml_fp16_to_fp32(y[i].dmin) * m;
+ for (int ii = 0; ii < 32; ++ii) {
+ int l = nearest_int((x[32*j + ii] + dm)/d);
+ l = MAX(0, MIN(15, l));
+ L[32*j + ii] = l;
+ }
+ }
+ uint8_t * q = y[i].qs;
+ for (int j = 0; j < QK_K; j += 64) {
+ for (int l = 0; l < 32; ++l) *q++ = L[j + l] | (L[j + l + 32] << 4);
+ }
+
+ x += QK_K;
+
+ }
+}
+
+void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k) {
+ assert(k % QK_K == 0);
+ const int nb = k / QK_K;
+
+ for (int i = 0; i < nb; i++) {
+
+ const float d = ggml_fp16_to_fp32(x[i].d);
+ const float min = ggml_fp16_to_fp32(x[i].dmin);
+
+ const uint8_t * q = x[i].qs;
+
+ int is = 0;
+ uint8_t sc, m;
+ for (int j = 0; j < QK_K; j += 64) {
+ get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
+ const float d1 = d * sc; const float m1 = min * m;
+ get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
+ const float d2 = d * sc; const float m2 = min * m;
+ for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
+ for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2;
+ q += 32; is += 2;
+ }
+
+ }
+}
+
+void quantize_row_q4_K(const float * restrict x, void * restrict vy, int k) {
+ assert(k % QK_K == 0);
+ block_q4_K * restrict y = vy;
+ quantize_row_q4_K_reference(x, y, k);
+}
+
+size_t ggml_quantize_q4_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
+ assert(k % QK_K == 0);
+ const int nb = k / QK_K;
+ (void)hist; // TODO: collect histograms
+ for (int j = 0; j < nb; j += k) {
+ block_q4_K * restrict y = (block_q4_K *)dst + j/QK_K;
+ quantize_row_q4_K_reference(src + j, y, k);
+ }
+ return (n/QK_K*sizeof(block_q4_K));
+}
+
+// ====================== 5-bit (de)-quantization
+
+void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k) {
+ assert(k % QK_K == 0);
+ const int nb = k / QK_K;
+
+ uint8_t L[QK_K];
+ float mins[QK_K/32];
+ float scales[QK_K/32];
+
+ for (int i = 0; i < nb; i++) {
+
+ float max_scale = 0; // as we are deducting the min, scales are always positive
+ float max_min = 0;
+ for (int j = 0; j < QK_K/32; ++j) {
+ scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 5);
+ float scale = scales[j];
+ if (scale > max_scale) {
+ max_scale = scale;
+ }
+ float min = mins[j];
+ if (min > max_min) {
+ max_min = min;
+ }
+ }
+
+ float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
+ float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
+ for (int j = 0; j < QK_K/32; ++j) {
+ uint8_t ls = nearest_int(inv_scale*scales[j]);
+ uint8_t lm = nearest_int(inv_min*mins[j]);
+ ls = MIN(63, ls);
+ lm = MIN(63, lm);
+ if (j < 4) {
+ y[i].scales[j] = ls;
+ y[i].scales[j+4] = lm;
+ } else {
+ y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
+ y[i].scales[j-4] |= ((ls >> 4) << 6);
+ y[i].scales[j-0] |= ((lm >> 4) << 6);
+ }
+ }
+ y[i].d = ggml_fp32_to_fp16(max_scale/63.f);
+ y[i].dmin = ggml_fp32_to_fp16(max_min/63.f);
+
+ uint8_t sc, m;
+ for (int j = 0; j < QK_K/32; ++j) {
+ get_scale_min_k4(j, y[i].scales, &sc, &m);
+ const float d = ggml_fp16_to_fp32(y[i].d) * sc;
+ if (!d) continue;
+ const float dm = ggml_fp16_to_fp32(y[i].dmin) * m;
+ for (int ii = 0; ii < 32; ++ii) {
+ int l = nearest_int((x[32*j + ii] + dm)/d);
+ l = MAX(0, MIN(31, l));
+ L[32*j + ii] = l;
+ }
+ }
+
+ uint8_t * restrict qh = y[i].qh;
+ uint8_t * restrict ql = y[i].qs;
+ memset(qh, 0, QK_K/8);
+
+ uint8_t m1 = 1, m2 = 2;
+ for (int n = 0; n < QK_K; n += 64) {
+ for (int j = 0; j < 32; ++j) {
+ int l1 = L[n + j];
+ if (l1 > 15) {
+ l1 -= 16; qh[j] |= m1;
+ }
+ int l2 = L[n + j + 32];
+ if (l2 > 15) {
+ l2 -= 16; qh[j] |= m2;
+ }
+ ql[j] = l1 | (l2 << 4);
+ }
+ m1 <<= 2; m2 <<= 2;
+ ql += 32;
+ }
+
+ x += QK_K;
+
+ }
+}
+
+void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k) {
+ assert(k % QK_K == 0);
+ const int nb = k / QK_K;
+
+ for (int i = 0; i < nb; i++) {
+
+ const float d = ggml_fp16_to_fp32(x[i].d);
+ const float min = ggml_fp16_to_fp32(x[i].dmin);
+
+ const uint8_t * ql = x[i].qs;
+ const uint8_t * qh = x[i].qh;
+
+ int is = 0;
+ uint8_t sc, m;
+ uint8_t u1 = 1, u2 = 2;
+ for (int j = 0; j < QK_K; j += 64) {
+ get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
+ const float d1 = d * sc; const float m1 = min * m;
+ get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
+ const float d2 = d * sc; const float m2 = min * m;
+ for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
+ for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
+ ql += 32; is += 2;
+ u1 <<= 2; u2 <<= 2;
+ }
+ }
+}
+
+void quantize_row_q5_K(const float * restrict x, void * restrict vy, int k) {
+ assert(k % QK_K == 0);
+ block_q5_K * restrict y = vy;
+ quantize_row_q5_K_reference(x, y, k);
+}
+
+size_t ggml_quantize_q5_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
+ assert(k % QK_K == 0);
+ const int nb = k / QK_K;
+ (void)hist;
+ for (int j = 0; j < nb; j += k) {
+ block_q5_K * restrict y = (block_q5_K *)dst + j/QK_K;
+ quantize_row_q5_K_reference(src + j, y, k);
+ }
+ return (n/QK_K*sizeof(block_q5_K));
+}
+
+// ====================== 6-bit (de)-quantization
+
+void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k) {
+ assert(k % QK_K == 0);
+ const int nb = k / QK_K;
+
+ int8_t L[QK_K];
+ float scales[QK_K/16];
+
+ for (int i = 0; i < nb; i++) {
+
+ float max_scale = 0;
+ float max_abs_scale = 0;
+
+ for (int ib = 0; ib < QK_K/16; ++ib) {
+
+ const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1);
+ scales[ib] = scale;
+
+ const float abs_scale = fabsf(scale);
+ if (abs_scale > max_abs_scale) {
+ max_abs_scale = abs_scale;
+ max_scale = scale;
+ }
+
+ }
+
+ float iscale = -128.f/max_scale;
+ y[i].d = ggml_fp32_to_fp16(1/iscale);
+ for (int ib = 0; ib < QK_K/16; ++ib) {
+ y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
+ }
+
+ for (int j = 0; j < QK_K/16; ++j) {
+ float d = ggml_fp16_to_fp32(y[i].d) * y[i].scales[j];
+ if (!d) {
+ continue;
+ }
+ for (int ii = 0; ii < 16; ++ii) {
+ int l = nearest_int(x[16*j + ii]/d);
+ l = MAX(-32, MIN(31, l));
+ L[16*j + ii] = l + 32;
+ }
+ }
+
+ uint8_t * restrict ql = y[i].ql;
+ uint8_t * restrict qh = y[i].qh;
+ for (int j = 0; j < QK_K; j += 128) {
+ for (int l = 0; l < 32; ++l) {
+ const uint8_t q1 = L[j + l + 0] & 0xF;
+ const uint8_t q2 = L[j + l + 32] & 0xF;
+ const uint8_t q3 = L[j + l + 64] & 0xF;
+ const uint8_t q4 = L[j + l + 96] & 0xF;
+ ql[l+ 0] = q1 | (q3 << 4);
+ ql[l+32] = q2 | (q4 << 4);
+ qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
+ }
+ ql += 64;
+ qh += 32;
+ }
+
+ x += QK_K;
+
+ }
+}
+
+void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k) {
+ assert(k % QK_K == 0);
+ const int nb = k / QK_K;
+
+ for (int i = 0; i < nb; i++) {
+
+ const float d = ggml_fp16_to_fp32(x[i].d);
+
+ const uint8_t * restrict ql = x[i].ql;
+ const uint8_t * restrict qh = x[i].qh;
+ const int8_t * restrict sc = x[i].scales;
+
+ for (int n = 0; n < QK_K; n += 128) {
+ for (int l = 0; l < 32; ++l) {
+ int is = l/16;
+ const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
+ const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
+ const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
+ const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
+ y[l + 0] = d * sc[is + 0] * q1;
+ y[l + 32] = d * sc[is + 2] * q2;
+ y[l + 64] = d * sc[is + 4] * q3;
+ y[l + 96] = d * sc[is + 6] * q4;
+ }
+ y += 128;
+ ql += 64;
+ qh += 32;
+ sc += 8;
+ }
+
+ }
+}
+
+void quantize_row_q6_K(const float * restrict x, void * restrict vy, int k) {
+ assert(k % QK_K == 0);
+ block_q6_K * restrict y = vy;
+ quantize_row_q6_K_reference(x, y, k);
+}
+
+size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist) {
+ assert(k % QK_K == 0);
+ const int nb = k / QK_K;
+
+ (void)hist; // TODO
+
+ for (int j = 0; j < nb; j += k) {
+ block_q6_K * restrict y = (block_q6_K *)dst + j/QK_K;
+ quantize_row_q6_K_reference(src + j, y, k);
+ }
+ return (n/QK_K*sizeof(block_q6_K));
+}
+
+//===================================== Q8_K ==============================================
+
+void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k) {
+ assert(k % QK_K == 0);
+ const int nb = k / QK_K;
+
+ for (int i = 0; i < nb; i++) {
+
+ float max = 0;
+ float amax = 0;
+ for (int j = 0; j < QK_K; ++j) {
+ float ax = fabsf(x[j]);
+ if (ax > amax) {
+ amax = ax; max = x[j];
+ }
+ }
+ if (!amax) {
+ y[i].d = 0;
+ memset(y[i].qs, 0, QK_K);
+ x += QK_K;
+ continue;
+ }
+ const float iscale = -128.f/max;
+ for (int j = 0; j < QK_K; ++j) {
+ int v = nearest_int(iscale*x[j]);
+ y[i].qs[j] = MIN(127, v);
+ }
+ for (int j = 0; j < QK_K/16; ++j) {
+ int sum = 0;
+ for (int ii = 0; ii < 16; ++ii) {
+ sum += y[i].qs[j*16 + ii];
+ }
+ y[i].bsums[j] = sum;
+ }
+ y[i].d = 1/iscale;
+ x += QK_K;
+ }
+}
+
+void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k) {
+ assert(k % QK_K == 0);
+ const int nb = k / QK_K;
+
+ for (int i = 0; i < nb; i++) {
+ for (int j = 0; j < QK_K; ++j) {
+ *y++ = x[i].d * x[i].qs[j];
+ }
+ }
+}
+
+void quantize_row_q8_K(const float * restrict x, void * restrict y, int k) {
+ quantize_row_q8_K_reference(x, y, k);
+}
+
+//===================================== Dot ptoducts =================================
+
+//
+// Helper functions
+//
+#if __AVX__ || __AVX2__ || __AVX512F__
+
+// horizontally add 8 floats
+static inline float hsum_float_8(const __m256 x) {
+ __m128 res = _mm256_extractf128_ps(x, 1);
+ res = _mm_add_ps(res, _mm256_castps256_ps128(x));
+ res = _mm_add_ps(res, _mm_movehl_ps(res, res));
+ res = _mm_add_ss(res, _mm_movehdup_ps(res));
+ return _mm_cvtss_f32(res);
+}
+
+// shuffles to pick the required scales in dot products
+static inline __m256i get_scale_shuffle_q3k(int i) {
+ static const uint8_t k_shuffle[128] = {
+ 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
+ 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
+ 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
+ 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
+ };
+ return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
+}
+static inline __m256i get_scale_shuffle_k4(int i) {
+ static const uint8_t k_shuffle[256] = {
+ 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
+ 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
+ 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
+ 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
+ 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
+ 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
+ 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
+ 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
+ };
+ return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
+}
+static inline __m128i get_scale_shuffle(int i) {
+ static const uint8_t k_shuffle[128] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
+ 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
+ 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
+ 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
+ 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
+ 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
+ 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
+ 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
+ };
+ return _mm_loadu_si128((const __m128i*)k_shuffle + i);
+}
+#endif
+
+void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
+
+ const block_q2_K * restrict x = vx;
+ const block_q8_K * restrict y = vy;
+
+ const int nb = n / QK_K;
+
+#ifdef __ARM_NEON
+
+ const uint8x16_t m3 = vdupq_n_u8(0x3);
+ const uint8x16_t m4 = vdupq_n_u8(0xF);
+ const int32x4_t vzero = vdupq_n_s32(0);
+
+ int8x16x2_t q2bytes;
+ uint8_t aux[16];
+
+ float sum = 0;
+
+ for (int i = 0; i < nb; ++i) {
+
+ const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
+ const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
+
+ const uint8_t * restrict q2 = x[i].qs;
+ const int8_t * restrict q8 = y[i].qs;
+ const uint8_t * restrict sc = x[i].scales;
+
+ const uint8x16_t mins_and_scales = vld1q_u8(sc);
+ const uint8x16_t scales = vandq_u8(mins_and_scales, m4);
+ vst1q_u8(aux, scales);
+
+ const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
+ const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums);
+ const int16x8x2_t mins16 = {vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))};
+ const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
+ vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
+ const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
+ vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1])));
+ sum += dmin * vaddvq_s32(vaddq_s32(s0, s1));
+
+ int isum = 0;
+ int is = 0;
+
+// We use this macro instead of a function call because for some reason
+// the code runs 2-3% slower, even if the function is declared inline
+#if defined(__ARM_FEATURE_DOTPROD)
+#define MULTIPLY_ACCUM_WITH_SCALE(index)\
+ isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
+ isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
+#else
+#define MULTIPLY_ACCUM_WITH_SCALE(index)\
+ {\
+ const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])),\
+ vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0])));\
+ const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])),\
+ vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1])));\
+ isum += vaddvq_s16(p1) * aux[is+(index)] + vaddvq_s16(p2) * aux[is+1+(index)];\
+ }
+#endif
+
+#define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
+ q8bytes = vld1q_s8_x2(q8); q8 += 32;\
+ q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
+ q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
+ MULTIPLY_ACCUM_WITH_SCALE((index));
+
+
+ for (int j = 0; j < QK_K/128; ++j) {
+
+ const uint8x16x2_t q2bits = vld1q_u8_x2(q2); q2 += 32;
+
+ int8x16x2_t q8bytes = vld1q_s8_x2(q8); q8 += 32;
+ q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
+ q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
+ MULTIPLY_ACCUM_WITH_SCALE(0);
+
+ SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
+
+ SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
+
+ SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
+
+ is += 8;
+ }
+ sum += d * isum;
+
+ }
+
+ *s = sum;
+
+#elif defined __AVX2__
+
+ const __m256i m3 = _mm256_set1_epi8(3);
+ const __m128i m4 = _mm_set1_epi8(0xF);
+
+ __m256 acc = _mm256_setzero_ps();
+
+ for (int i = 0; i < nb; ++i) {
+
+ const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
+ const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
+
+ const uint8_t * restrict q2 = x[i].qs;
+ const int8_t * restrict q8 = y[i].qs;
+
+ const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
+ const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
+ const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
+ const __m256i mins = _mm256_cvtepi8_epi16(mins8);
+ const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums));
+
+ acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);
+
+ const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
+ const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
+ const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
+ const __m256i scales[2] = {_mm256_set_m128i(l_scales, l_scales), _mm256_set_m128i(h_scales, h_scales)};
+
+ __m256i sumi = _mm256_setzero_si256();
+
+ for (int j = 0; j < QK_K/128; ++j) {
+
+ const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32;
+
+ const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+ const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+ const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+ const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+
+ const __m256i q2_0 = _mm256_and_si256(q2bits, m3);
+ const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
+ const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
+ const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);
+
+ __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
+ __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
+ __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2);
+ __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3);
+
+ p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0);
+ p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1);
+ p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2);
+ p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3);
+
+ p0 = _mm256_add_epi32(p0, p1);
+ p2 = _mm256_add_epi32(p2, p3);
+
+ sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
+ }
+
+ acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
+
+ }
+
+ *s = hsum_float_8(acc);
+
+#else
+
+ float sumf = 0;
+
+ for (int i = 0; i < nb; ++i) {
+
+ const uint8_t * q2 = x[i].qs;
+ const int8_t * q8 = y[i].qs;
+ const uint8_t * sc = x[i].scales;
+
+ int summs = 0;
+ for (int j = 0; j < 16; ++j) {
+ summs += y[i].bsums[j] * (sc[j] >> 4);
+ }
+
+ const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
+ const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
+
+ int isum = 0;
+ int is = 0;
+ int d;
+ for (int k = 0; k < QK_K/128; ++k) {
+ int shift = 0;
+ for (int j = 0; j < 4; ++j) {
+ d = sc[is++] & 0xF;
+ int isuml = 0;
+ for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
+ isum += d * isuml;
+ d = sc[is++] & 0xF;
+ isuml = 0;
+ for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
+ isum += d * isuml;
+ shift += 2;
+ q8 += 32;
+ }
+ q2 += 32;
+ }
+ sumf += dall * isum - dmin * summs;
+ }
+ *s = sumf;
+#endif
+}
+
+void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
+ assert(n % QK_K == 0);
+
+ const uint32_t kmask1 = 0x03030303;
+ const uint32_t kmask2 = 0x0f0f0f0f;
+
+ const block_q3_K * restrict x = vx;
+ const block_q8_K * restrict y = vy;
+
+ const int nb = n / QK_K;
+
+#ifdef __ARM_NEON
+
+ uint32_t aux[3];
+ uint32_t utmp[4];
+
+ const uint8x16_t m3b = vdupq_n_u8(0x3);
+#ifdef __ARM_FEATURE_DOTPROD
+ const int32x4_t vzero = vdupq_n_s32(0);
+#endif
+
+ const uint8x16_t m0 = vdupq_n_u8(1);
+ const uint8x16_t m1 = vshlq_n_u8(m0, 1);
+ const uint8x16_t m2 = vshlq_n_u8(m0, 2);
+ const uint8x16_t m3 = vshlq_n_u8(m0, 3);
+ const int8_t m32 = 32;
+
+ int8x16x4_t q3bytes;
+
+ float sum = 0;
+
+ for (int i = 0; i < nb; ++i) {
+
+ const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
+
+ const uint8_t * restrict q3 = x[i].qs;
+ const uint8_t * restrict qh = x[i].hmask;
+ const int8_t * restrict q8 = y[i].qs;
+
+ uint8x16x2_t qhbits = vld1q_u8_x2(qh);
+
+ uint8x16x4_t q3h;
+
+ int32_t isum = 0;
+
+ // Set up scales
+ memcpy(aux, x[i].scales, 12);
+ utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
+ utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
+ utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
+ utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
+
+ int8_t * scale = (int8_t *)utmp;
+ for (int j = 0; j < 16; ++j) scale[j] -= m32;
+
+ for (int j = 0; j < QK_K/128; ++j) {
+
+ const uint8x16x2_t q3bits = vld1q_u8_x2(q3); q3 += 32;
+ const int8x16x4_t q8bytes_1 = vld1q_s8_x4(q8); q8 += 64;
+ const int8x16x4_t q8bytes_2 = vld1q_s8_x4(q8); q8 += 64;
+
+ q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
+ q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
+ q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1);
+ q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1);
+
+ q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0]));
+ q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1]));
+ q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
+ q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
+
+#if defined(__ARM_FEATURE_DOTPROD)
+ isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
+ isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
+ isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
+ isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
+#else
+ int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_1.val[0])),
+ vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_1.val[0])));
+ int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_1.val[1])),
+ vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_1.val[1])));
+ int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_1.val[2])),
+ vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_1.val[2])));
+ int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_1.val[3])),
+ vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_1.val[3])));
+ isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
+#endif
+ scale += 4;
+
+ q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
+ q3h.val[1] = vbicq_u8(m2, qhbits.val[1]);
+ q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1);
+ q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1);
+
+ q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0]));
+ q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1]));
+ q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
+ q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
+
+#if defined(__ARM_FEATURE_DOTPROD)
+ isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
+ isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
+ isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
+ isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
+#else
+ p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_2.val[0])),
+ vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_2.val[0])));
+ p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_2.val[1])),
+ vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_2.val[1])));
+ p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_2.val[2])),
+ vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_2.val[2])));
+ p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_2.val[3])),
+ vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_2.val[3])));
+ isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
+#endif
+ scale += 4;
+
+ if (j == 0) {
+ qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4);
+ qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4);
+ }
+
+ }
+ sum += d * isum;
+
+ }
+
+ *s = sum;
+
+#elif defined __AVX2__
+
+ const __m256i m3 = _mm256_set1_epi8(3);
+ const __m256i mone = _mm256_set1_epi8(1);
+ const __m128i m32 = _mm_set1_epi8(32);
+
+ __m256 acc = _mm256_setzero_ps();
+
+ uint32_t aux[3];
+
+ for (int i = 0; i < nb; ++i) {
+
+ const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
+
+ const uint8_t * restrict q3 = x[i].qs;
+ const int8_t * restrict q8 = y[i].qs;
+
+ // Set up scales
+ memcpy(aux, x[i].scales, 12);
+ __m128i scales128 = _mm_set_epi32(
+ ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
+ ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
+ (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
+ (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
+ scales128 = _mm_sub_epi8(scales128, m32);
+ const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
+ const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
+ const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
+ const __m256i scales[2] = {_mm256_set_m128i(l_scales, l_scales), _mm256_set_m128i(h_scales, h_scales)};
+
+ // high bit
+ const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
+
+ // integer accumulator
+ __m256i sumi = _mm256_setzero_si256();
+
+ int bit = 0;
+ int is = 0;
+
+ for (int j = 0; j < QK_K/128; ++j) {
+ // load low 2 bits
+ const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32;
+
+ // prepare low and high bits
+ const __m256i q3l_0 = _mm256_and_si256(q3bits, m3);
+ const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
+ ++bit;
+
+ const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
+ const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
+ ++bit;
+
+ const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
+ const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
+ ++bit;
+
+ const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
+ const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
+ ++bit;
+
+ // load Q8 quants
+ const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+ const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+ const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+ const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+
+ // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
+ // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
+ // and 2 if the high bit was set)
+ __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
+ __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
+ __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
+ __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);
+
+ __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
+ __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
+ __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
+ __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);
+
+ p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
+ p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
+ p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
+ p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
+
+ // multiply with scales
+ p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
+ p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
+ p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
+ p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
+
+ // accumulate
+ p16_0 = _mm256_add_epi32(p16_0, p16_1);
+ p16_2 = _mm256_add_epi32(p16_2, p16_3);
+ sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
+
+ }
+
+ // multiply with block scale and accumulate
+ acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
+
+ }
+
+ *s = hsum_float_8(acc);
+
+#else
+ // scalar version
+ // This function is written like this so the compiler can manage to vectorize most of it
+ // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
+ // manually vectorized version above. Every other version I tried would run at least 4 times slower.
+ // The ideal situation would be if we could just write the code once, and the compiler would
+ // automatically produce the best possible set of machine instructions, instead of us having to manually
+ // write vectorized versions for AVX, ARM_NEON, etc.
+
+ int8_t aux8[QK_K];
+ int16_t aux16[8];
+ float sums [8];
+ int32_t aux32[8];
+ memset(sums, 0, 8*sizeof(float));
+
+ uint32_t auxs[4];
+ const int8_t * scales = (const int8_t*)auxs;
+
+ float sumf = 0;
+ for (int i = 0; i < nb; ++i) {
+ const uint8_t * restrict q3 = x[i].qs;
+ const uint8_t * restrict hm = x[i].hmask;
+ const int8_t * restrict q8 = y[i].qs;
+ memset(aux32, 0, 8*sizeof(int32_t));
+ int8_t * restrict a = aux8;
+ uint8_t m = 1;
+ for (int j = 0; j < QK_K; j += 128) {
+ for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
+ for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
+ a += 32; m <<= 1;
+ for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
+ for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
+ a += 32; m <<= 1;
+ for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
+ for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
+ a += 32; m <<= 1;
+ for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
+ for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
+ a += 32; m <<= 1;
+ q3 += 32;
+ }
+ a = aux8;
+
+ memcpy(auxs, x[i].scales, 12);
+ uint32_t tmp = auxs[2];
+ auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
+ auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
+ auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
+ auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
+ for (int j = 0; j < QK_K/16; ++j) {
+ for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
+ for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
+ q8 += 8; a += 8;
+ for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
+ for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
+ q8 += 8; a += 8;
+ }
+ const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
+ for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
+ }
+ for (int l = 0; l < 8; ++l) sumf += sums[l];
+ *s = sumf;
+
+#endif
+
+}
+
+void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
+ assert(n % QK_K == 0);
+
+ const block_q4_K * restrict x = vx;
+ const block_q8_K * restrict y = vy;
+
+ const int nb = n / QK_K;
+
+ static const uint32_t kmask1 = 0x3f3f3f3f;
+ static const uint32_t kmask2 = 0x0f0f0f0f;
+ static const uint32_t kmask3 = 0x03030303;
+
+ uint32_t utmp[4];
+
+#ifdef __ARM_NEON
+
+ const uint8x16_t m4b = vdupq_n_u8(0xf);
+#ifdef __ARM_FEATURE_DOTPROD
+ const uint32x4_t mzero = vdupq_n_s32(0);
+#endif
+
+ int8x16x2_t q4bytes;
+ int8x16x2_t q8bytes;
+
+ float sumf = 0;
+
+ for (int i = 0; i < nb; ++i) {
+
+ const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
+ const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
+
+ const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
+
+ memcpy(utmp, x[i].scales, 12);
+
+ const uint32x2_t mins8 = {utmp[1] & kmask1, ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4)};
+ utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
+ utmp[0] &= kmask1;
+
+ const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
+ const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
+ vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
+ sumf -= dmin * vaddvq_s32(prod);
+
+ const uint8_t * scales = (const uint8_t *)utmp;
+
+ const uint8_t * restrict q4 = x[i].qs;
+ const int8_t * restrict q8 = y[i].qs;
+
+ //int32x4_t isum = mzero;
+
+ int32_t sumi1 = 0;
+ int32_t sumi2 = 0;
+
+ for (int j = 0; j < QK_K/64; ++j) {
+
+ const uint8x16x2_t q4bits = vld1q_u8_x2(q4); q4 += 32;
+
+#ifdef __ARM_FEATURE_DOTPROD
+ q8bytes = vld1q_s8_x2(q8); q8 += 32;
+ q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
+ q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
+
+ const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
+ sumi1 += vaddvq_s32(p1) * scales[2*j+0];
+
+ q8bytes = vld1q_s8_x2(q8); q8 += 32;
+ q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
+ q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
+
+ const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
+
+ sumi2 += vaddvq_s32(p2) * scales[2*j+1];
+#else
+ q8bytes = vld1q_s8_x2(q8); q8 += 32;
+ q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
+ q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
+ const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
+ vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
+ const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
+ vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
+ sumi1 += vaddvq_s16(vaddq_s16(p0, p1)) * scales[2*j+0];
+
+ q8bytes = vld1q_s8_x2(q8); q8 += 32;
+ q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
+ q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
+ const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
+ vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
+ const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
+ vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
+ sumi2 += vaddvq_s16(vaddq_s16(p2, p3)) * scales[2*j+1];
+
+#endif
+ }
+
+ sumf += d * (sumi1 + sumi2);
+
+ }
+
+ *s = sumf;
+
+#elif defined __AVX2__
+
+ const __m256i m4 = _mm256_set1_epi8(0xF);
+
+ __m256 acc = _mm256_setzero_ps();
+ __m128 acc_m = _mm_setzero_ps();
+
+ for (int i = 0; i < nb; ++i) {
+
+ const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
+ const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
+
+ const uint8_t * restrict q4 = x[i].qs;
+ const int8_t * restrict q8 = y[i].qs;
+
+ memcpy(utmp, x[i].scales, 12);
+ utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
+ const uint32_t uaux = utmp[1] & kmask1;
+ utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
+ utmp[2] = uaux;
+ utmp[0] &= kmask1;
+
+ const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
+
+ const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
+ const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
+ const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
+ acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
+
+ const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
+ const __m256i scales = _mm256_set_m128i(sc128, sc128);
+
+ __m256i sumi = _mm256_setzero_si256();
+
+ for (int j = 0; j < QK_K/64; ++j) {
+
+ const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
+ const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
+
+ const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
+ const __m256i q4l = _mm256_and_si256(q4bits, m4);
+ const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
+
+ const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+ __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
+ p16l = _mm256_madd_epi16(scale_l, p16l);
+ sumi = _mm256_add_epi32(sumi, p16l);
+
+ const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+ __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
+ p16h = _mm256_madd_epi16(scale_h, p16h);
+ sumi = _mm256_add_epi32(sumi, p16h);
+
+ }
+
+ __m256 vd = _mm256_set1_ps(d);
+ acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
+
+ }
+
+ acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
+ acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
+
+ *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
+
+#else
+
+
+ const uint8_t * scales = (const uint8_t*)&utmp[0];
+ const uint8_t * mins = (const uint8_t*)&utmp[2];
+
+ int8_t aux8[QK_K];
+ int16_t aux16[8];
+ float sums [8];
+ int32_t aux32[8];
+ memset(sums, 0, 8*sizeof(float));
+
+ float sumf = 0;
+ for (int i = 0; i < nb; ++i) {
+ const uint8_t * restrict q4 = x[i].qs;
+ const int8_t * restrict q8 = y[i].qs;
+ memset(aux32, 0, 8*sizeof(int32_t));
+ int8_t * restrict a = aux8;
+ for (int j = 0; j < QK_K/64; ++j) {
+ for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
+ a += 32;
+ for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
+ a += 32; q4 += 32;
+ }
+ memcpy(utmp, x[i].scales, 12);
+ utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
+ const uint32_t uaux = utmp[1] & kmask1;
+ utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
+ utmp[2] = uaux;
+ utmp[0] &= kmask1;
+
+ int sumi = 0;
+ for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
+ a = aux8;
+ int is = 0;
+ for (int j = 0; j < QK_K/32; ++j) {
+ int32_t scale = scales[is++];
+ for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
+ for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
+ q8 += 8; a += 8;
+ for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
+ for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
+ q8 += 8; a += 8;
+ for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
+ for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
+ q8 += 8; a += 8;
+ for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
+ for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
+ q8 += 8; a += 8;
+ }
+ const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
+ for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
+ const float dmin = ggml_fp16_to_fp32(x[i].dmin) * y[i].d;
+ sumf -= dmin * sumi;
+ }
+ for (int l = 0; l < 8; ++l) sumf += sums[l];
+ *s = sumf;
+#endif
+}
+
+void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
+ assert(n % QK_K == 0);
+
+ const block_q5_K * restrict x = vx;
+ const block_q8_K * restrict y = vy;
+
+ const int nb = n / QK_K;
+
+ static const uint32_t kmask1 = 0x3f3f3f3f;
+ static const uint32_t kmask2 = 0x0f0f0f0f;
+ static const uint32_t kmask3 = 0x03030303;
+
+ uint32_t utmp[4];
+
+
+#ifdef __ARM_NEON
+
+ const uint8x16_t m4b = vdupq_n_u8(0xf);
+ const uint32x4_t mzero = vdupq_n_u32(0);
+ const uint8x16_t mone = vdupq_n_u8(1);
+ const uint8x16_t mtwo = vdupq_n_u8(2);
+
+ int8x16x4_t q5bytes;
+
+ float sumf = 0;
+
+ for (int i = 0; i < nb; ++i) {
+
+ const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
+ const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
+
+ const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
+
+ memcpy(utmp, x[i].scales, 12);
+ utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
+ const uint32_t uaux = utmp[1] & kmask1;
+ utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
+ utmp[2] = uaux;
+ utmp[0] &= kmask1;
+
+ const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8);
+ const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
+ const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
+ vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
+ int32_t sumi_mins = vaddvq_s32(prod);
+
+ const uint8_t * scales = (const uint8_t *)utmp;
+
+ const uint8_t * restrict q5 = x[i].qs;
+ const uint8_t * restrict qh = x[i].qh;
+ const int8_t * restrict q8 = y[i].qs;
+
+ uint8x16x2_t qhbits = vld1q_u8_x2(qh);
+
+ uint8x16x4_t q5h;
+
+ int32_t sumi = 0;
+
+ for (int j = 0; j < QK_K/64; ++j) {
+
+ const uint8x16x2_t q5bits = vld1q_u8_x2(q5); q5 += 32;
+ const int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64;
+
+ q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
+ q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
+ q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3);
+ q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3);
+ qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2);
+ qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2);
+
+ q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0]));
+ q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1]));
+ q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
+ q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
+
+#if defined(__ARM_FEATURE_DOTPROD)
+
+ sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
+ sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
+#else
+
+ const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
+ vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0])));
+ const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
+ vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1])));
+ sumi += vaddvq_s16(vaddq_s16(p0, p1)) * *scales++;
+
+ const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
+ vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2])));
+ const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
+ vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3])));
+ sumi += vaddvq_s16(vaddq_s16(p2, p3)) * *scales++;
+#endif
+ }
+
+ sumf += d * sumi - dmin * sumi_mins;
+
+ }
+
+ *s = sumf;
+
+#elif defined __AVX2__
+
+ const __m256i m4 = _mm256_set1_epi8(0xF);
+ const __m128i mzero = _mm_setzero_si128();
+ const __m256i mone = _mm256_set1_epi8(1);
+
+ __m256 acc = _mm256_setzero_ps();
+
+ float summs = 0.f;
+
+ for (int i = 0; i < nb; ++i) {
+
+ const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
+ const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
+
+ const uint8_t * restrict q5 = x[i].qs;
+ const int8_t * restrict q8 = y[i].qs;
+
+ memcpy(utmp, x[i].scales, 12);
+ utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
+ const uint32_t uaux = utmp[1] & kmask1;
+ utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
+ utmp[2] = uaux;
+ utmp[0] &= kmask1;
+
+ const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
+
+ const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
+ const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
+ const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
+ const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
+ summs += dmin * _mm_extract_epi32(hsum, 0);
+
+ const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
+ const __m256i scales = _mm256_set_m128i(sc128, sc128);
+
+ const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
+ __m256i hmask = mone;
+
+ __m256i sumi = _mm256_setzero_si256();
+
+ int bit = 0;
+
+ for (int j = 0; j < QK_K/64; ++j) {
+
+ const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
+ const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
+
+ const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32;
+
+ const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
+ const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
+ const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0);
+ hmask = _mm256_slli_epi16(hmask, 1);
+
+ const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
+ const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
+ const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1);
+ hmask = _mm256_slli_epi16(hmask, 1);
+
+ const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+ const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+
+ __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
+ __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);
+
+ p16_0 = _mm256_madd_epi16(scale_0, p16_0);
+ p16_1 = _mm256_madd_epi16(scale_1, p16_1);
+
+ sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
+
+ }
+
+ __m256 vd = _mm256_set1_ps(d);
+ acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
+
+ }
+
+ *s = hsum_float_8(acc) + summs;
+
+#else
+
+ const uint8_t * scales = (const uint8_t*)&utmp[0];
+ const uint8_t * mins = (const uint8_t*)&utmp[2];
+
+ int8_t aux8[QK_K];
+ int16_t aux16[8];
+ float sums [8];
+ int32_t aux32[8];
+ memset(sums, 0, 8*sizeof(float));
+
+ float sumf = 0;
+ for (int i = 0; i < nb; ++i) {
+ const uint8_t * restrict q4 = x[i].qs;
+ const uint8_t * restrict hm = x[i].qh;
+ const int8_t * restrict q8 = y[i].qs;
+ memset(aux32, 0, 8*sizeof(int32_t));
+ int8_t * restrict a = aux8;
+ uint8_t m = 1;
+ for (int j = 0; j < QK_K/64; ++j) {
+ for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
+ for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
+ a += 32; m <<= 1;
+ for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
+ for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
+ a += 32; m <<= 1;
+ q4 += 32;
+ }
+ memcpy(utmp, x[i].scales, 12);
+ utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
+ const uint32_t uaux = utmp[1] & kmask1;
+ utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
+ utmp[2] = uaux;
+ utmp[0] &= kmask1;
+
+ int sumi = 0;
+ for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
+ a = aux8;
+ int is = 0;
+ for (int j = 0; j < QK_K/32; ++j) {
+ int32_t scale = scales[is++];
+ for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
+ for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
+ q8 += 8; a += 8;
+ for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
+ for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
+ q8 += 8; a += 8;
+ for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
+ for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
+ q8 += 8; a += 8;
+ for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
+ for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
+ q8 += 8; a += 8;
+ }
+ const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
+ for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
+ const float dmin = ggml_fp16_to_fp32(x[i].dmin) * y[i].d;
+ sumf -= dmin * sumi;
+ }
+ for (int l = 0; l < 8; ++l) sumf += sums[l];
+ *s = sumf;
+#endif
+}
+
+
+
+void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
+ assert(n % QK_K == 0);
+
+ const block_q6_K * restrict x = vx;
+ const block_q8_K * restrict y = vy;
+
+ const int nb = n / QK_K;
+
+#ifdef __ARM_NEON
+
+ float sum = 0;
+
+ const uint8x16_t m4b = vdupq_n_u8(0xF);
+ const int32x4_t vzero = vdupq_n_s32(0);
+ //const int8x16_t m32s = vdupq_n_s8(32);
+
+ const uint8x16_t mone = vdupq_n_u8(3);
+
+ int8x16x4_t q6bytes;
+ uint8x16x4_t q6h;
+
+ for (int i = 0; i < nb; ++i) {
+
+ const float d_all = ggml_fp16_to_fp32(x[i].d);
+
+ const uint8_t * restrict q6 = x[i].ql;
+ const uint8_t * restrict qh = x[i].qh;
+ const int8_t * restrict q8 = y[i].qs;
+
+ const int8_t * restrict scale = x[i].scales;
+
+ const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums);
+ const int8x16_t scales = vld1q_s8(scale);
+ const int16x8x2_t q6scales = {vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))};
+
+ const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
+ vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
+ vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])),
+ vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1]))));
+ int32_t isum_mins = vaddvq_s32(prod);
+
+ int32_t isum = 0;
+
+ for (int j = 0; j < QK_K/128; ++j) {
+
+ uint8x16x2_t qhbits = vld1q_u8_x2(qh); qh += 32;
+ uint8x16x4_t q6bits = vld1q_u8_x4(q6); q6 += 64;
+ int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64;
+
+ q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
+ q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
+ uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2);
+ q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
+ shifted = vshrq_n_u8(qhbits.val[1], 2);
+ q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
+
+ //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
+ //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
+ //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s);
+ //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s);
+ q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0]));
+ q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1]));
+ q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
+ q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
+
+#if defined(__ARM_FEATURE_DOTPROD)
+
+ isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
+ vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
+ vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
+ vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
+ scale += 4;
+
+#else
+
+ int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
+ vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
+ int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
+ vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
+ isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
+ scale += 2;
+
+ int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
+ vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
+ int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
+ vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
+ isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1];
+ scale += 2;
+#endif
+
+ q8bytes = vld1q_s8_x4(q8); q8 += 64;
+
+ shifted = vshrq_n_u8(qhbits.val[0], 4);
+ q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
+ shifted = vshrq_n_u8(qhbits.val[1], 4);
+ q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
+ shifted = vshrq_n_u8(qhbits.val[0], 6);
+ q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
+ shifted = vshrq_n_u8(qhbits.val[1], 6);
+ q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
+
+ //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s);
+ //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s);
+ //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s);
+ //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s);
+ q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0]));
+ q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1]));
+ q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
+ q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
+
+#if defined(__ARM_FEATURE_DOTPROD)
+
+ isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
+ vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
+ vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
+ vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
+ scale += 4;
+
+ //for (int l = 0; l < 4; ++l) {
+ // const int32x4_t p = vdotq_s32(vzero, q6bytes.val[l], q8bytes.val[l]);
+ // isum += vaddvq_s32(p) * *scale++;
+ //}
+#else
+ p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
+ vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
+ p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
+ vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
+ isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
+ scale += 2;
+
+ p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
+ vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
+ p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
+ vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
+ isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1];
+ scale += 2;
+#endif
+
+ }
+ //sum += isum * d_all * y[i].d;
+ sum += d_all * y[i].d * (isum - 32 * isum_mins);
+
+ }
+ *s = sum;
+
+#elif defined __AVX2__
+
+ const __m256i m4 = _mm256_set1_epi8(0xF);
+ const __m256i m2 = _mm256_set1_epi8(3);
+ const __m256i m32s = _mm256_set1_epi8(32);
+
+ __m256 acc = _mm256_setzero_ps();
+
+ for (int i = 0; i < nb; ++i) {
+
+ const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
+
+ const uint8_t * restrict q4 = x[i].ql;
+ const uint8_t * restrict qh = x[i].qh;
+ const int8_t * restrict q8 = y[i].qs;
+
+ const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
+
+ __m256i sumi = _mm256_setzero_si256();
+
+ int is = 0;
+
+ for (int j = 0; j < QK_K/128; ++j) {
+
+ const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
+ const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
+ const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
+ const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
+ is += 4;
+
+ const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
+ const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
+ const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32;
+
+ const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4);
+ const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4);
+ const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4);
+ const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4);
+
+ const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
+ const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
+ const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
+ const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);
+
+ const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+ const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+ const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+ const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
+
+ __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
+ __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
+ __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
+ __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);
+
+ __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
+ __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
+ __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
+ __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);
+
+ p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
+ p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
+ p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
+ p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
+
+ p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
+ p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
+ p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
+ p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);
+
+ sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
+ sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
+
+ }
+
+ acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
+ }
+
+ *s = hsum_float_8(acc);
+
+#else
+
+ int8_t aux8[QK_K];
+ int16_t aux16[8];
+ float sums [8];
+ int32_t aux32[8];
+ memset(sums, 0, 8*sizeof(float));
+
+ float sumf = 0;
+ for (int i = 0; i < nb; ++i) {
+ const uint8_t * restrict q4 = x[i].ql;
+ const uint8_t * restrict qh = x[i].qh;
+ const int8_t * restrict q8 = y[i].qs;
+ memset(aux32, 0, 8*sizeof(int32_t));
+ int8_t * restrict a = aux8;
+ for (int j = 0; j < QK_K; j += 128) {
+ for (int l = 0; l < 32; ++l) {
+ a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
+ a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
+ a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
+ a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
+ }
+ a += 128;
+ q4 += 64;
+ qh += 32;
+ }
+ a = aux8;
+ int is = 0;
+ for (int j = 0; j < QK_K/16; ++j) {
+ int scale = x[i].scales[is++];
+ for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
+ for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
+ q8 += 8; a += 8;
+ for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
+ for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
+ q8 += 8; a += 8;
+ }
+ const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
+ for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
+ }
+ for (int l = 0; l < 8; ++l) sumf += sums[l];
+ *s = sumf;
+#endif
+}
+
+
--- /dev/null
+#pragma once
+
+#include "ggml.h"
+
+#include <stdint.h>
+#include <assert.h>
+#include <stddef.h>
+
+// Super-block size
+#define QK_K 256
+
+//
+// Super-block quantization structures
+//
+
+// 2-bit quantization
+// weight is represented as x = a * q + b
+// 16 blocks of 16 elemenets each
+// Effectively 2.5625 bits per weight
+typedef struct {
+ uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
+ uint8_t qs[QK_K/4]; // quants
+ ggml_fp16_t d; // super-block scale for quantized scales
+ ggml_fp16_t dmin; // super-block scale for quantized mins
+} block_q2_K;
+static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");
+
+// 3-bit quantization
+// weight is represented as x = a * q
+// 16 blocks of 16 elemenets each
+// Effectively 3.4375 bits per weight
+typedef struct {
+ uint8_t hmask[QK_K/8]; // quants - high bit
+ uint8_t qs[QK_K/4]; // quants - low 2 bits
+ uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits
+ ggml_fp16_t d; // super-block scale
+} block_q3_K;
+static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + 11 * QK_K / 64, "wrong q3_K block size/padding");
+
+// 4-bit quantization
+// 16 blocks of 32 elements each
+// weight is represented as x = a * q + b
+// Effectively 4.5 bits per weight
+typedef struct {
+ ggml_fp16_t d; // super-block scale for quantized scales
+ ggml_fp16_t dmin; // super-block scale for quantized mins
+ uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits
+ uint8_t qs[QK_K/2]; // 4--bit quants
+} block_q4_K;
+static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2, "wrong q4_K block size/padding");
+
+// 5-bit quantization
+// 16 blocks of 32 elements each
+// weight is represented as x = a * q + b
+// Effectively 5.5 bits per weight
+typedef struct {
+ ggml_fp16_t d; // super-block scale for quantized scales
+ ggml_fp16_t dmin; // super-block scale for quantized mins
+ uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits
+ uint8_t qh[QK_K/8]; // quants, high bit
+ uint8_t qs[QK_K/2]; // quants, low 4 bits
+} block_q5_K;
+static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
+
+// 6-bit quantization
+// weight is represented as x = a * q
+// 16 blocks of 16 elemenets each
+// Effectively 6.5625 bits per weight
+typedef struct {
+ uint8_t ql[QK_K/2]; // quants, lower 4 bits
+ uint8_t qh[QK_K/4]; // quants, upper 2 bits
+ int8_t scales[QK_K/16]; // scales, quantized with 8 bits
+ ggml_fp16_t d; // super-block scale
+} block_q6_K;
+static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + QK_K / 16 + 3*QK_K/4, "wrong q6_K block size/padding");
+
+// This is only used for intermediate quantization and dot products
+typedef struct {
+ float d; // delta
+ int8_t qs[QK_K]; // quants
+ int16_t bsums[QK_K/16]; // sum of quants in groups of 16
+} block_q8_K;
+static_assert(sizeof(block_q8_K) == sizeof(float) + QK_K + QK_K/16*sizeof(int16_t), "wrong q8_K block size/padding");
+
+
+// Quantization
+void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k);
+void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k);
+void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k);
+void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k);
+void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k);
+void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k);
+
+void quantize_row_q2_K(const float * restrict x, void * restrict y, int k);
+void quantize_row_q3_K(const float * restrict x, void * restrict y, int k);
+void quantize_row_q4_K(const float * restrict x, void * restrict y, int k);
+void quantize_row_q5_K(const float * restrict x, void * restrict y, int k);
+void quantize_row_q6_K(const float * restrict x, void * restrict y, int k);
+void quantize_row_q8_K(const float * restrict x, void * restrict y, int k);
+
+// Dequantization
+void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k);
+void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k);
+void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k);
+void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k);
+void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k);
+void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k);
+
+// Dot product
+void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
+void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
+void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
+void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
+void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
+
+// Quantization with histogram collection
+size_t ggml_quantize_q2_K(const float * src, void * dst, int n, int k, int64_t * hist);
+size_t ggml_quantize_q3_K(const float * src, void * dst, int n, int k, int64_t * hist);
+size_t ggml_quantize_q4_K(const float * src, void * dst, int n, int k, int64_t * hist);
+size_t ggml_quantize_q5_K(const float * src, void * dst, int n, int k, int64_t * hist);
+size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist);
+