#define GGML_METAL_HAS_RESIDENCY_SETS 1
#endif
-// overload of MTLGPUFamilyMetal3 (not available in some environments)
+// overload of MTLGPUFamilyMetalX (not available in some environments)
static const NSInteger MTLGPUFamilyMetal3_GGML = 5001;
+static const NSInteger MTLGPUFamilyMetal4_GGML = 5002;
// virtual address for GPU memory allocations
static atomic_uintptr_t g_addr_device = 0x000000400ULL;
[prep setObject:@"1" forKey:@"GGML_METAL_HAS_BF16"];
}
+ if (ggml_metal_device_get_props(dev)->has_tensor) {
+ [prep setObject:@"1" forKey:@"GGML_METAL_HAS_TENSOR"];
+ }
+
#if GGML_METAL_EMBED_LIBRARY
[prep setObject:@"1" forKey:@"GGML_METAL_EMBED_LIBRARY"];
#endif
return res;
}
+ggml_metal_library_t ggml_metal_library_init_from_source(ggml_metal_device_t dev, const char * source, bool verbose) {
+ if (source == NULL) {
+ GGML_LOG_ERROR("%s: source is NULL\n", __func__);
+ return NULL;
+ }
+
+ id<MTLDevice> device = ggml_metal_device_get_obj(dev);
+ id<MTLLibrary> library = nil;
+ NSError * error = nil;
+
+ const int64_t t_start = ggml_time_us();
+
+ NSString * src = [[NSString alloc] initWithBytes:source
+ length:strlen(source)
+ encoding:NSUTF8StringEncoding];
+ if (!src) {
+ GGML_LOG_ERROR("%s: failed to create NSString from source\n", __func__);
+ return NULL;
+ }
+
+ @autoreleasepool {
+ NSMutableDictionary * prep = [NSMutableDictionary dictionary];
+
+ MTLCompileOptions * options = [MTLCompileOptions new];
+ options.preprocessorMacros = prep;
+
+ library = [device newLibraryWithSource:src options:options error:&error];
+ if (error) {
+ if (verbose) {
+ GGML_LOG_ERROR("%s: error compiling source: %s\n", __func__, [[error description] UTF8String]);
+ } else {
+ GGML_LOG_ERROR("%s: error compiling source\n", __func__);
+ }
+ library = nil;
+ }
+
+ [options release];
+ }
+
+ [src release];
+
+ if (!library) {
+ if (verbose) {
+ GGML_LOG_ERROR("%s: failed to create Metal library from source\n", __func__);
+ }
+
+ return NULL;
+ }
+
+ if (verbose) {
+ GGML_LOG_INFO("%s: compiled in %.3f sec\n", __func__, (ggml_time_us() - t_start) / 1e6);
+ }
+
+ ggml_metal_library_t res = calloc(1, sizeof(struct ggml_metal_library));
+ if (!res) {
+ GGML_LOG_ERROR("%s: calloc failed\n", __func__);
+ return NULL;
+ }
+
+ res->obj = library;
+ res->device = device;
+ res->pipelines = ggml_metal_pipelines_init();
+
+ return res;
+}
+
void ggml_metal_library_free(ggml_metal_library_t lib) {
if (!lib) {
return;
if (!mtl_function) {
ggml_critical_section_end();
- GGML_LOG_ERROR("%s: error: failed to compile pipeline: base = '%s', name = '%s'\n", __func__, base, name);
+ GGML_LOG_ERROR("%s: failed to compile pipeline: base = '%s', name = '%s'\n", __func__, base, name);
if (error) {
- GGML_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
+ GGML_LOG_ERROR("%s: %s\n", __func__, [[error description] UTF8String]);
}
return nil;
res->obj = [lib->device newComputePipelineStateWithFunction:mtl_function error:&error];
- ggml_metal_pipelines_add(lib->pipelines, name, res);
-
[mtl_function release];
GGML_LOG_DEBUG("%s: loaded %-40s %16p | th_max = %4d | th_width = %4d\n", __func__, name, (void *) res->obj,
(int) res->obj.maxTotalThreadsPerThreadgroup,
(int) res->obj.threadExecutionWidth);
+
+ if (res->obj.maxTotalThreadsPerThreadgroup == 0 || res->obj.threadExecutionWidth == 0) {
+ ggml_critical_section_end();
+
+ GGML_LOG_ERROR("%s: incompatible pipeline %s\n", __func__, name);
+
+ return nil;
+ }
+
+ ggml_metal_pipelines_add(lib->pipelines, name, res);
}
ggml_critical_section_end();
dev->props.has_bfloat = [dev->mtl_device supportsFamily:MTLGPUFamilyMetal3_GGML];
dev->props.has_bfloat |= [dev->mtl_device supportsFamily:MTLGPUFamilyApple6];
+ if (getenv("GGML_METAL_BF16_DISABLE") != NULL) {
+ dev->props.has_bfloat = false;
+ }
+
+ dev->props.has_tensor = [dev->mtl_device supportsFamily:MTLGPUFamilyMetal4_GGML];
+ if (getenv("GGML_METAL_TENSOR_DISABLE") != NULL) {
+ dev->props.has_tensor = false;
+ }
+
+ // note: disable the tensor API by default for old chips because with the current implementation it is not useful
+ // - M2 Ultra: ~5% slower
+ // - M4, M4 Max: no significant difference
+ //
+ // TODO: try to update the tensor API kernels to at least match the simdgroup performance
+ if (getenv("GGML_METAL_TENSOR_ENABLE") == NULL &&
+ ![[dev->mtl_device name] containsString:@"M5"] &&
+ ![[dev->mtl_device name] containsString:@"M6"]) {
+ GGML_LOG_WARN("%s: tensor API disabled for pre-M5 device\n", __func__);
+ dev->props.has_tensor = false;
+ }
+
+ // double-check that the tensor API compiles
+ if (dev->props.has_tensor) {
+ const char * src_tensor_f16 = "\n"
+ "#include <metal_stdlib> \n"
+ "#include <metal_tensor> \n"
+ "#include <MetalPerformancePrimitives/MetalPerformancePrimitives.h> \n"
+ " \n"
+ "using namespace metal; \n"
+ "using namespace mpp::tensor_ops; \n"
+ " \n"
+ "kernel void dummy_kernel( \n"
+ " tensor<device half, dextents<int32_t, 2>> A [[buffer(0)]], \n"
+ " tensor<device half, dextents<int32_t, 2>> B [[buffer(1)]], \n"
+ " device float * C [[buffer(2)]], \n"
+ " uint2 tgid [[threadgroup_position_in_grid]]) \n"
+ "{ \n"
+ " auto tA = A.slice(0, (int)tgid.y); \n"
+ " auto tB = B.slice((int)tgid.x, 0); \n"
+ " \n"
+ " matmul2d< \n"
+ " matmul2d_descriptor(8, 8, dynamic_extent), \n"
+ " execution_simdgroups<4>> mm; \n"
+ " \n"
+ " auto cT = mm.get_destination_cooperative_tensor<decltype(tA), decltype(tB), float>(); \n"
+ " \n"
+ " auto sA = tA.slice(0, 0); \n"
+ " auto sB = tB.slice(0, 0); \n"
+ " mm.run(sB, sA, cT); \n"
+ " \n"
+ " auto tC = tensor<device float, dextents<int32_t, 2>, tensor_inline>(C, dextents<int32_t, 2>(4, 4)); \n"
+ " \n"
+ " cT.store(tC); \n"
+ "}";
+
+ GGML_LOG_INFO("%s: testing tensor API for f16 support\n", __func__);
+ ggml_metal_library_t lib = ggml_metal_library_init_from_source(dev, src_tensor_f16, false);
+ if (lib == NULL) {
+ GGML_LOG_WARN("%s: - the tensor API is not supported in this environment - disabling\n", __func__);
+ dev->props.has_tensor = false;
+ } else {
+ ggml_metal_pipeline_t ppl = ggml_metal_library_compile_pipeline(lib, "dummy_kernel", "dummy_kernel", nil);
+ if (!ppl) {
+ GGML_LOG_WARN("%s: - the tensor API is not supported in this environment - disabling\n", __func__);
+ dev->props.has_tensor = false;
+ }
+
+ ggml_metal_library_free(lib);
+ }
+ }
+
+ // try to compile a dummy kernel to determine if the tensor API is supported for bfloat
+ if (dev->props.has_tensor && dev->props.has_bfloat) {
+ const char * src_tensor_bf16 = "\n"
+ "#include <metal_stdlib> \n"
+ "#include <metal_tensor> \n"
+ "#include <MetalPerformancePrimitives/MetalPerformancePrimitives.h> \n"
+ " \n"
+ "using namespace metal; \n"
+ "using namespace mpp::tensor_ops; \n"
+ " \n"
+ "kernel void dummy_kernel( \n"
+ " tensor<device bfloat, dextents<int32_t, 2>> A [[buffer(0)]], \n"
+ " tensor<device bfloat, dextents<int32_t, 2>> B [[buffer(1)]], \n"
+ " device float * C [[buffer(2)]], \n"
+ " uint2 tgid [[threadgroup_position_in_grid]]) \n"
+ "{ \n"
+ " auto tA = A.slice(0, (int)tgid.y); \n"
+ " auto tB = B.slice((int)tgid.x, 0); \n"
+ " \n"
+ " matmul2d< \n"
+ " matmul2d_descriptor(8, 8, dynamic_extent), \n"
+ " execution_simdgroups<4>> mm; \n"
+ " \n"
+ " auto cT = mm.get_destination_cooperative_tensor<decltype(tA), decltype(tB), float>(); \n"
+ " \n"
+ " auto sA = tA.slice(0, 0); \n"
+ " auto sB = tB.slice(0, 0); \n"
+ " mm.run(sB, sA, cT); \n"
+ " \n"
+ " auto tC = tensor<device float, dextents<int32_t, 2>, tensor_inline>(C, dextents<int32_t, 2>(4, 4)); \n"
+ " \n"
+ " cT.store(tC); \n"
+ "}";
+
+ GGML_LOG_INFO("%s: testing tensor API for bfloat support\n", __func__);
+ ggml_metal_library_t lib = ggml_metal_library_init_from_source(dev, src_tensor_bf16, false);
+ if (lib == NULL) {
+ GGML_LOG_WARN("%s: - the tensor API does not support bfloat - disabling bfloat support\n", __func__);
+ dev->props.has_bfloat = false;
+ } else {
+ ggml_metal_pipeline_t ppl = ggml_metal_library_compile_pipeline(lib, "dummy_kernel", "dummy_kernel", nil);
+ if (!ppl) {
+ GGML_LOG_WARN("%s: - the tensor API does not support bfloat - disabling bfloat support\n", __func__);
+ dev->props.has_bfloat = false;
+ }
+
+ ggml_metal_library_free(lib);
+ }
+ }
dev->props.use_residency_sets = true;
#if defined(GGML_METAL_HAS_RESIDENCY_SETS)
#endif
dev->props.use_shared_buffers = dev->props.has_unified_memory;
-
if (getenv("GGML_METAL_SHARED_BUFFERS_DISABLE") != NULL) {
dev->props.use_shared_buffers = false;
}
GGML_LOG_INFO("%s: simdgroup matrix mul. = %s\n", __func__, dev->props.has_simdgroup_mm ? "true" : "false");
GGML_LOG_INFO("%s: has unified memory = %s\n", __func__, dev->props.has_unified_memory ? "true" : "false");
GGML_LOG_INFO("%s: has bfloat = %s\n", __func__, dev->props.has_bfloat ? "true" : "false");
+ GGML_LOG_INFO("%s: has tensor = %s\n", __func__, dev->props.has_tensor ? "true" : "false");
GGML_LOG_INFO("%s: use residency sets = %s\n", __func__, dev->props.use_residency_sets ? "true" : "false");
GGML_LOG_INFO("%s: use shared buffers = %s\n", __func__, dev->props.use_shared_buffers ? "true" : "false");
#include <metal_stdlib>
+#ifdef GGML_METAL_HAS_TENSOR
+#include <metal_tensor>
+
+#include <MetalPerformancePrimitives/MetalPerformancePrimitives.h>
+#endif
+
using namespace metal;
#define MAX(x, y) ((x) > (y) ? (x) : (y))
float sumf = 0;
- for (int64_t i0 = tpitg.x; i0 < args.np; i0 += ntg.x) {
+ for (uint64_t i0 = tpitg.x; i0 < args.np; i0 += ntg.x) {
sumf += src0[i0];
}
#undef FA_TYPES
#undef FA_TYPES_BF
+#undef FA_TYPES_F32
constant bool FC_flash_attn_ext_vec_has_mask [[function_constant(FC_FLASH_ATTN_EXT_VEC + 0)]];
constant bool FC_flash_attn_ext_vec_has_sinks [[function_constant(FC_FLASH_ATTN_EXT_VEC + 1)]];
template [[host_name("kernel_flash_attn_ext_vec_q8_0_dk576_dv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 576, 512, 2>;
#undef FA_TYPES
+#undef FA_TYPES_F32
constant int32_t FC_flash_attn_ext_vec_reduce_DV [[function_constant(FC_FLASH_ATTN_EXT_VEC_REDUCE + 0)]];
constant int32_t FC_flash_attn_ext_vec_reduce_NWG [[function_constant(FC_FLASH_ATTN_EXT_VEC_REDUCE + 1)]];
constant bool FC_mul_mm_bc_inp [[function_constant(FC_MUL_MM + 0)]];
constant bool FC_mul_mm_bc_out [[function_constant(FC_MUL_MM + 1)]];
-#define BLOCK_SIZE_M 64 // 8 simdgroup matrices from matrix A
-#define BLOCK_SIZE_N 32 // 4 simdgroup matrices from matrix B
-#define BLOCK_SIZE_K 32
-#define THREAD_MAT_M 4 // each thread take 4 simdgroup matrices from matrix A
-#define THREAD_MAT_N 2 // each thread take 2 simdgroup matrices from matrix B
-#define THREAD_PER_BLOCK 128
-#define THREAD_PER_ROW 2 // 2 thread for each row in matrix A to load numbers
-#define THREAD_PER_COL 4 // 4 thread for each row in matrix B to load numbers
-#define SG_MAT_SIZE 64 // simdgroup matrix is of shape 8x8
-#define SG_MAT_ROW 8
-
// each block_q contains 16*nl weights
template<typename S0, typename S0_4x4, typename S0_8x8, typename S1, typename S1_2x4, typename S1_8x8, typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread S0_4x4 &), typename T0, typename T0_4x4, typename T1, typename T1_2x4>
kernel void kernel_mul_mm(
threadgroup S0 * sa = (threadgroup S0 *)(shmem);
threadgroup S1 * sb = (threadgroup S1 *)(shmem + 4096);
- const int r0 = tgpig.y;
- const int r1 = tgpig.x;
+ threadgroup float * sc = (threadgroup float *)(shmem);
+
+ constexpr int NR0 = 64;
+ constexpr int NR1 = 32;
+
+ constexpr int NK = 32;
+ constexpr int NL0 = NK/16;
+ constexpr int NL1 = NK/8;
+
const int im = tgpig.z;
+ const int r0 = tgpig.y*NR0;
+ const int r1 = tgpig.x*NR1;
// if this block is of 64x32 shape or smaller
- const short n_rows = (args.ne0 - r0*BLOCK_SIZE_M < BLOCK_SIZE_M) ? (args.ne0 - r0*BLOCK_SIZE_M) : BLOCK_SIZE_M;
- const short n_cols = (args.ne1 - r1*BLOCK_SIZE_N < BLOCK_SIZE_N) ? (args.ne1 - r1*BLOCK_SIZE_N) : BLOCK_SIZE_N;
+ const short nr0 = (args.ne0 - r0 < NR0) ? (args.ne0 - r0) : NR0;
+ const short nr1 = (args.ne1 - r1 < NR1) ? (args.ne1 - r1) : NR1;
// a thread shouldn't load data outside of the matrix
- const short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
- const short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1;
+ const short lr0 = ((short)tiitg/NL0) < nr0 ? ((short)tiitg/NL0) : nr0 - 1; // 0 .. 63
+ const short lr1 = ((short)tiitg/NL1) < nr1 ? ((short)tiitg/NL1) : nr1 - 1; // 0 .. 31
+
+ const short il0 = (tiitg % NL0);
+
+ short il = il0;
+
+ const int i12 = im%args.ne12;
+ const int i13 = im/args.ne12;
+
+ const uint64_t offset0 = (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
+ const short offset1 = il0/nl;
+
+ device const block_q * x = (device const block_q *)(src0 + args.nb01*(r0 + lr0) + offset0) + offset1;
+
+ const short iy = 8*(tiitg % NL1);
+
+ device const T1 * y = (device const T1 *)(src1
+ + args.nb13*i13
+ + args.nb12*i12
+ + args.nb11*(r1 + lr1)
+ + args.nb10*iy);
+#ifndef GGML_METAL_HAS_TENSOR
S0_8x8 ma[4];
S1_8x8 mb[2];
for (short i = 0; i < 8; i++){
mc[i] = make_filled_simdgroup_matrix<float, 8>(0.f);
}
+#else
+ auto tA = tensor<threadgroup S0, dextents<int32_t, 2>, tensor_inline>(sa, dextents<int32_t, 2>(NK, NR0));
+ auto tB = tensor<threadgroup S1, dextents<int32_t, 2>, tensor_inline>(sb, dextents<int32_t, 2>(NR1, NK ));
- short il = (tiitg % THREAD_PER_ROW);
+ mpp::tensor_ops::matmul2d<
+ mpp::tensor_ops::matmul2d_descriptor(NR1, NR0, NK, false, true, false, mpp::tensor_ops::matmul2d_descriptor::mode::multiply_accumulate),
+ execution_simdgroups<4>> mm;
- const int i12 = im%args.ne12;
- const int i13 = im/args.ne12;
+ auto cT = mm.get_destination_cooperative_tensor<decltype(tA), decltype(tB), float>();
+#endif
- const uint64_t offset0 = (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
- const short offset1 = il/nl;
+ for (int loop_k = 0; loop_k < args.ne00; loop_k += NK) {
+#ifndef GGML_METAL_HAS_TENSOR
+ // load data and store to threadgroup memory
+ if (is_same<T0_4x4, block_q>::value && FC_mul_mm_bc_inp) {
+ threadgroup_barrier(mem_flags::mem_threadgroup);
- device const block_q * x = (device const block_q *)(src0
- + args.nb01*(r0*BLOCK_SIZE_M + thread_row) + offset0) + offset1;
+ // no need for dequantization
+ for (short i = 0; i < 16; i++) {
+ const short sx = 2*il0 + i/8;
+ const short sy = (tiitg/NL0)/8;
- const short iy = (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL));
+ //const short lx = i%8;
+ //const short ly = (tiitg/NL0)%8;
+ const short lx = (tiitg/NL0)%8;
+ const short ly = i%8;
- device const T1 * y = (device const T1 *)(src1
- + args.nb13*i13
- + args.nb12*i12
- + args.nb11*(r1*BLOCK_SIZE_N + thread_col)
- + args.nb10*iy);
+ const short ib = 8*sx + sy;
+
+ *(sa + 64*ib + 8*ly + lx) = loop_k + 16*il + i < args.ne00 ? *((device T0 *) x + i) : 0;
+ }
+ } else {
+ S0_4x4 temp_a;
+ dequantize_func(x, il, temp_a);
+
+ threadgroup_barrier(mem_flags::mem_threadgroup);
- for (int loop_k = 0; loop_k < args.ne00; loop_k += BLOCK_SIZE_K) {
+ FOR_UNROLL (short i = 0; i < 16; i++) {
+ const short sx = 2*il0 + i/8;
+ const short sy = (tiitg/NL0)/8;
+
+ //const short lx = i%8;
+ //const short ly = (tiitg/NL0)%8;
+ const short lx = (tiitg/NL0)%8;
+ const short ly = i%8;
+
+ const short ib = 8*sx + sy;
+
+ // NOTE: this is massively slower.. WTF?
+ //sa[64*ib + 8*ly + lx] = temp_a[i/4][i%4];
+
+ *(sa + 64*ib + 8*ly + lx) = temp_a[i/4][i%4];
+ }
+ }
+
+ if (FC_mul_mm_bc_inp) {
+ for (short i = 0; i < 8; ++i) {
+ const short sx = (tiitg%NL1);
+ const short sy = (tiitg/NL1)/8;
+
+ const short lx = i;
+ const short ly = (tiitg/NL1)%8;
+ //const short lx = (tiitg/NL1)%8;
+ //const short ly = i;
+
+ const short ib = 4*sx + sy;
+
+ *(sb + 64*ib + 8*ly + lx) = loop_k + iy + i < args.ne00 ? (S1) *((device T1 *) y + i) : 0;
+ }
+ } else {
+ const short sx = (tiitg%NL1);
+ const short sy = (tiitg/NL1)/8;
+
+ const short dx = sx;
+ const short dy = sy;
+
+ const short ly = (tiitg/NL1)%8;
+
+ const short ib = 4*sx + sy;
+
+ *(threadgroup S1_2x4 *)(sb + 64*ib + 8*ly) = (S1_2x4)(*((device T1_2x4 *) y));
+ }
+#else
// load data and store to threadgroup memory
if (is_same<T0_4x4, block_q>::value && FC_mul_mm_bc_inp) {
threadgroup_barrier(mem_flags::mem_threadgroup);
// no need for dequantization
for (short i = 0; i < 16; i++) {
- *(sa + SG_MAT_SIZE * ((tiitg/THREAD_PER_ROW/8) \
- + (tiitg%THREAD_PER_ROW)*16 + (i/8)*8) \
- + (tiitg/THREAD_PER_ROW)%8 + (i&7)*8) = loop_k + 16*il + i < args.ne00 ? ((device T0 *) x)[i] : 0;
+ const short sx = 2*il0 + i/8;
+ const short sy = (tiitg/NL0)/8;
+
+ const short lx = i%8;
+ const short ly = (tiitg/NL0)%8;
+ //const short lx = (tiitg/NL0)%8;
+ //const short ly = i%8;
+
+ *(sa + NK*(8*sy + ly) + 8*sx + lx) = loop_k + 16*il + i < args.ne00 ? *((device T0 *) x + i) : 0;
}
} else {
S0_4x4 temp_a;
threadgroup_barrier(mem_flags::mem_threadgroup);
FOR_UNROLL (short i = 0; i < 16; i++) {
- *(sa + SG_MAT_SIZE * ((tiitg/THREAD_PER_ROW/8) \
- + (tiitg%THREAD_PER_ROW)*16 + (i/8)*8) \
- + (tiitg/THREAD_PER_ROW)%8 + (i&7)*8) = temp_a[i/4][i%4];
+ const short sx = 2*il0 + i/8;
+ const short sy = (tiitg/NL0)/8;
+
+ const short lx = i%8;
+ const short ly = (tiitg/NL0)%8;
+ //const short lx = (tiitg/NL0)%8;
+ //const short ly = i%8;
+
+ *(sa + NK*(8*sy + ly) + 8*sx + lx) = temp_a[i/4][i%4];
}
}
if (FC_mul_mm_bc_inp) {
for (short i = 0; i < 8; ++i) {
- sb[32*8*(tiitg%THREAD_PER_COL) + 8*(tiitg/THREAD_PER_COL) + i] = loop_k + iy + i < args.ne00 ? (S1) ((device T1 *) y)[i] : 0;
+ const short sx = (tiitg%NL1);
+ const short sy = (tiitg/NL1)/8;
+
+ const short lx = i;
+ const short ly = (tiitg/NL1)%8;
+ //const short lx = (tiitg/NL1)%8;
+ //const short ly = i;
+
+ *(sb + NK*(8*sy + ly) + 8*sx + lx) = loop_k + iy + i < args.ne00 ? (S1) *((device T1 *) y + i) : 0;
}
} else {
- *(threadgroup S1_2x4 *)(sb + 32*8*(tiitg%THREAD_PER_COL) + 8*(tiitg/THREAD_PER_COL)) = (S1_2x4)(*((device T1_2x4 *) y));
+ const short sx = (tiitg%NL1);
+ const short sy = (tiitg/NL1)/8;
+
+ //const short lx = i;
+ const short ly = (tiitg/NL1)%8;
+ //const short lx = (tiitg/NL1)%8;
+ //const short ly = i;
+
+ *(threadgroup S1_2x4 *)(sb + NK*(8*sy + ly) + 8*sx) = (S1_2x4)(*((device T1_2x4 *) y));
}
+#endif
il = (il + 2 < nl) ? il + 2 : il % 2;
x = (il < 2) ? x + (2 + nl - 1)/nl : x;
- y += BLOCK_SIZE_K;
+
+ y += NK;
threadgroup_barrier(mem_flags::mem_threadgroup);
+#ifndef GGML_METAL_HAS_TENSOR
// load matrices from threadgroup memory and conduct outer products
- threadgroup const S0 * lsma = (sa + THREAD_MAT_M*SG_MAT_SIZE*(sgitg%2));
- threadgroup const S1 * lsmb = (sb + THREAD_MAT_N*SG_MAT_SIZE*(sgitg/2));
+ threadgroup const S0 * lsma = (sa + 4*64*(sgitg%2));
+ threadgroup const S1 * lsmb = (sb + 2*64*(sgitg/2));
- #pragma unroll(4)
- for (short ik = 0; ik < BLOCK_SIZE_K/8; ik++) {
+ FOR_UNROLL (short ik = 0; ik < NK/8; ik++) {
simdgroup_barrier(mem_flags::mem_none);
- #pragma unroll(4)
- for (short i = 0; i < 4; i++) {
- simdgroup_load(ma[i], lsma + SG_MAT_SIZE * i);
+ FOR_UNROLL (short i = 0; i < 4; i++) {
+ simdgroup_load(ma[i], lsma + 64*i, 8, 0, false);
}
- #pragma unroll(2)
- for (short i = 0; i < 2; i++) {
- simdgroup_load(mb[i], lsmb + SG_MAT_SIZE * i);
+ simdgroup_barrier(mem_flags::mem_none);
+
+ FOR_UNROLL (short i = 0; i < 2; i++) {
+ simdgroup_load(mb[i], lsmb + 64*i, 8, 0, false);
}
simdgroup_barrier(mem_flags::mem_none);
- #pragma unroll(8)
- for (short i = 0; i < 8; i++){
+ FOR_UNROLL (short i = 0; i < 8; i++){
simdgroup_multiply_accumulate(mc[i], mb[i/4], ma[i%4], mc[i]);
}
- lsma += (BLOCK_SIZE_M/SG_MAT_ROW)*SG_MAT_SIZE;
- lsmb += (BLOCK_SIZE_N/SG_MAT_ROW)*SG_MAT_SIZE;
+ lsma += 8*64;
+ lsmb += 4*64;
}
+#else
+ auto sA = tA.slice(0, 0);
+ auto sB = tB.slice(0, 0);
+
+ mm.run(sB, sA, cT);
+#endif
}
- if (!FC_mul_mm_bc_out || ((r0 + 1) * BLOCK_SIZE_M <= args.ne0 && (r1 + 1) * BLOCK_SIZE_N <= args.ne1)) {
+ if (!FC_mul_mm_bc_out || (r0 + NR0 <= args.ne0 && r1 + NR1 <= args.ne1)) {
// if no bounds checks on the output are needed, we can directly write to device memory
+#ifdef GGML_METAL_HAS_TENSOR
+ device float * C = (device float *) dst +
+ r0 + \
+ r1 * args.ne0 + im*args.ne1*args.ne0;
+
+ auto tC = tensor<device float, dextents<int32_t, 2>, tensor_inline>(C, dextents<int32_t, 2>(args.ne0, NR1));
+ cT.store(tC);
+#else
device float * C = (device float *) dst +
- (BLOCK_SIZE_M * r0 + 32*(sgitg & 1)) + \
- (BLOCK_SIZE_N * r1 + 16*(sgitg >> 1)) * args.ne0 + im*args.ne1*args.ne0;
+ (r0 + 32*(sgitg & 1)) + \
+ (r1 + 16*(sgitg >> 1)) * args.ne0 + im*args.ne1*args.ne0;
for (short i = 0; i < 8; i++) {
- simdgroup_store(mc[i], C + 8 * (i%4) + 8 * args.ne0 * (i/4), args.ne0);
+ simdgroup_store(mc[i], C + 8*(i%4) + 8*args.ne0*(i/4), args.ne0, 0, false);
}
+#endif
} else {
// block is smaller than 64x32, we should avoid writing data outside of the matrix
threadgroup_barrier(mem_flags::mem_threadgroup);
- threadgroup float * temp_str = ((threadgroup float *) shmem) \
- + 32*(sgitg&1) + (16*(sgitg >> 1))*BLOCK_SIZE_M;
+
+ threadgroup float * temp_str = ((threadgroup float *) shmem) + 32*(sgitg&1) + (16*(sgitg >> 1))*NR0;
+
+#ifdef GGML_METAL_HAS_TENSOR
+ auto tC = tensor<threadgroup float, dextents<int32_t, 2>, tensor_inline>(sc, dextents<int32_t, 2>(NR0, NR1));
+ cT.store(tC);
+#else
for (short i = 0; i < 8; i++) {
- simdgroup_store(mc[i], temp_str + 8*(i%4) + 8*BLOCK_SIZE_M*(i/4), BLOCK_SIZE_M);
+ simdgroup_store(mc[i], temp_str + 8*(i%4) + 8*NR0*(i/4), NR0, 0, false);
}
+#endif
threadgroup_barrier(mem_flags::mem_threadgroup);
if (sgitg == 0) {
- for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) {
- device float * D = (device float *) dst + (r0*BLOCK_SIZE_M) + (r1*BLOCK_SIZE_N + j)*args.ne0 + im*args.ne1*args.ne0;
+ for (int j = tiitg; j < nr1; j += NR1) {
+ device float * D = (device float *) dst + r0 + (r1 + j)*args.ne0 + im*args.ne1*args.ne0;
device float4 * D4 = (device float4 *) D;
- threadgroup float * C = temp_str + (j*BLOCK_SIZE_M);
+ threadgroup float * C = temp_str + (j*NR0);
threadgroup float4 * C4 = (threadgroup float4 *) C;
int i = 0;
- for (; i < n_rows/4; i++) {
+ for (; i < nr0/4; i++) {
*(D4 + i) = *(C4 + i);
}
i *= 4;
- for (; i < n_rows; i++) {
+ for (; i < nr0; i++) {
*(D + i) = *(C + i);
}
}
ushort tiitg[[thread_index_in_threadgroup]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
-
threadgroup S0 * sa = (threadgroup S0 *)(shmem);
threadgroup S1 * sb = (threadgroup S1 *)(shmem + 4096);
- const int r0 = tgpig.y;
- const int r1 = tgpig.x;
+ threadgroup float * sc = (threadgroup float *)(shmem);
+
+ constexpr int NR0 = 64;
+ constexpr int NR1 = 32;
+
+ constexpr int NK = 32;
+ constexpr int NL0 = NK/16;
+ constexpr int NL1 = NK/8;
+
const int im = tgpig.z; // expert
+ const int r0 = tgpig.y*NR0;
+ const int r1 = tgpig.x*NR1;
device const uint32_t * tpe_u32 = (device const uint32_t *) (htpe);
device const int32_t * ids_i32 = (device const int32_t *) (hids);
const int32_t neh1 = tpe_u32[im];
- if (r1*BLOCK_SIZE_N >= neh1) {
+ if (r1 >= neh1) {
return;
}
// if this block is of 64x32 shape or smaller
- const short n_rows = (args.ne0 - r0*BLOCK_SIZE_M < BLOCK_SIZE_M) ? (args.ne0 - r0*BLOCK_SIZE_M) : BLOCK_SIZE_M;
- const short n_cols = ( neh1 - r1*BLOCK_SIZE_N < BLOCK_SIZE_N) ? ( neh1 - r1*BLOCK_SIZE_N) : BLOCK_SIZE_N;
+ const short nr0 = (args.ne0 - r0 < NR0) ? (args.ne0 - r0) : NR0;
+ const short nr1 = ( neh1 - r1 < NR1) ? ( neh1 - r1) : NR1;
// a thread shouldn't load data outside of the matrix
- const short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
- const short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1;
+ const short lr0 = ((short)tiitg/NL0) < nr0 ? ((short)tiitg/NL0) : nr0 - 1; // 0 .. 63
+ const short lr1 = ((short)tiitg/NL1) < nr1 ? ((short)tiitg/NL1) : nr1 - 1; // 0 .. 31
- S0_8x8 ma[4];
- S1_8x8 mb[2];
+ const short il0 = (tiitg % NL0);
- simdgroup_float8x8 mc[8];
+ short il = il0;
- for (short i = 0; i < 8; i++){
- mc[i] = make_filled_simdgroup_matrix<float, 8>(0.f);
- }
-
- short il = (tiitg % THREAD_PER_ROW);
-
- const int id = ids_i32[im*args.ne21 + r1*BLOCK_SIZE_N + thread_col];
+ const int id = ids_i32[im*args.ne21 + r1 + lr1];
const short i11 = (id % args.ne20) % args.ne11;
const short i12 = (id / args.ne20);
const short i13 = 0;
const uint64_t offset0 = im*args.nb02 + i13*args.nb03;
- const short offset1 = il/nl;
+ const short offset1 = il0/nl;
- device const block_q * x = (device const block_q *)(src0
- + args.nb01*(r0*BLOCK_SIZE_M + thread_row) + offset0) + offset1;
+ device const block_q * x = (device const block_q *)(src0 + args.nb01*(r0 + lr0) + offset0) + offset1;
- const short iy = (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL));
+ const short iy = 8*(tiitg % NL1);
device const T1 * y = (device const T1 *)(src1
+ args.nb13*i13
+ args.nb11*i11
+ args.nb10*iy);
- for (int loop_k = 0; loop_k < args.ne00; loop_k += BLOCK_SIZE_K) {
+#ifndef GGML_METAL_HAS_TENSOR
+ S0_8x8 ma[4];
+ S1_8x8 mb[2];
+
+ simdgroup_float8x8 mc[8];
+
+ for (short i = 0; i < 8; i++){
+ mc[i] = make_filled_simdgroup_matrix<float, 8>(0.f);
+ }
+#else
+ auto tA = tensor<threadgroup S0, dextents<int32_t, 2>, tensor_inline>(sa, dextents<int32_t, 2>(NK, NR0));
+ auto tB = tensor<threadgroup S1, dextents<int32_t, 2>, tensor_inline>(sb, dextents<int32_t, 2>(NR1, NK ));
+
+ mpp::tensor_ops::matmul2d<
+ mpp::tensor_ops::matmul2d_descriptor(NR1, NR0, NK, false, true, false, mpp::tensor_ops::matmul2d_descriptor::mode::multiply_accumulate),
+ execution_simdgroups<4>> mm;
+
+ auto cT = mm.get_destination_cooperative_tensor<decltype(tA), decltype(tB), float>();
+#endif
+
+ for (int loop_k = 0; loop_k < args.ne00; loop_k += NK) {
+#ifndef GGML_METAL_HAS_TENSOR
+ // load data and store to threadgroup memory
+ if (is_same<T0_4x4, block_q>::value && FC_mul_mm_bc_inp) {
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+
+ // no need for dequantization
+ for (short i = 0; i < 16; i++) {
+ const short sx = 2*il0 + i/8;
+ const short sy = (tiitg/NL0)/8;
+
+ //const short lx = i%8;
+ //const short ly = (tiitg/NL0)%8;
+ const short lx = (tiitg/NL0)%8;
+ const short ly = i%8;
+
+ const short ib = 8*sx + sy;
+
+ *(sa + 64*ib + 8*ly + lx) = loop_k + 16*il + i < args.ne00 ? *((device T0 *) x + i) : 0;
+ }
+ } else {
+ S0_4x4 temp_a;
+ dequantize_func(x, il, temp_a);
+
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+
+ FOR_UNROLL (short i = 0; i < 16; i++) {
+ const short sx = 2*il0 + i/8;
+ const short sy = (tiitg/NL0)/8;
+
+ //const short lx = i%8;
+ //const short ly = (tiitg/NL0)%8;
+ const short lx = (tiitg/NL0)%8;
+ const short ly = i%8;
+
+ const short ib = 8*sx + sy;
+
+ // NOTE: this is massively slower.. WTF?
+ //sa[64*ib + 8*ly + lx] = temp_a[i/4][i%4];
+
+ *(sa + 64*ib + 8*ly + lx) = temp_a[i/4][i%4];
+ }
+ }
+
+ if (FC_mul_mm_bc_inp) {
+ for (short i = 0; i < 8; ++i) {
+ const short sx = (tiitg%NL1);
+ const short sy = (tiitg/NL1)/8;
+
+ const short lx = i;
+ const short ly = (tiitg/NL1)%8;
+ //const short lx = (tiitg/NL1)%8;
+ //const short ly = i;
+
+ const short ib = 4*sx + sy;
+
+ *(sb + 64*ib + 8*ly + lx) = loop_k + iy + i < args.ne00 ? (S1) *((device T1 *) y + i) : 0;
+ }
+ } else {
+ const short sx = (tiitg%NL1);
+ const short sy = (tiitg/NL1)/8;
+
+ const short dx = sx;
+ const short dy = sy;
+
+ const short ly = (tiitg/NL1)%8;
+
+ const short ib = 4*sx + sy;
+
+ *(threadgroup S1_2x4 *)(sb + 64*ib + 8*ly) = (S1_2x4)(*((device T1_2x4 *) y));
+ }
+#else
// load data and store to threadgroup memory
if (is_same<T0_4x4, block_q>::value && FC_mul_mm_bc_inp) {
threadgroup_barrier(mem_flags::mem_threadgroup);
// no need for dequantization
for (short i = 0; i < 16; i++) {
- *(sa + SG_MAT_SIZE * ((tiitg/THREAD_PER_ROW/8) \
- + (tiitg%THREAD_PER_ROW)*16 + (i/8)*8) \
- + (tiitg/THREAD_PER_ROW)%8 + (i&7)*8) = loop_k + 16*il + i < args.ne00 ? ((device T0 *) x)[i] : 0;
+ const short sx = 2*il0 + i/8;
+ const short sy = (tiitg/NL0)/8;
+
+ const short lx = i%8;
+ const short ly = (tiitg/NL0)%8;
+ //const short lx = (tiitg/NL0)%8;
+ //const short ly = i%8;
+
+ *(sa + NK*(8*sy + ly) + 8*sx + lx) = loop_k + 16*il + i < args.ne00 ? *((device T0 *) x + i) : 0;
}
} else {
S0_4x4 temp_a;
threadgroup_barrier(mem_flags::mem_threadgroup);
FOR_UNROLL (short i = 0; i < 16; i++) {
- *(sa + SG_MAT_SIZE * ((tiitg/THREAD_PER_ROW/8) \
- + (tiitg%THREAD_PER_ROW)*16 + (i/8)*8) \
- + (tiitg/THREAD_PER_ROW)%8 + (i&7)*8) = temp_a[i/4][i%4];
+ const short sx = 2*il0 + i/8;
+ const short sy = (tiitg/NL0)/8;
+
+ const short lx = i%8;
+ const short ly = (tiitg/NL0)%8;
+ //const short lx = (tiitg/NL0)%8;
+ //const short ly = i%8;
+
+ *(sa + NK*(8*sy + ly) + 8*sx + lx) = temp_a[i/4][i%4];
}
}
if (FC_mul_mm_bc_inp) {
for (short i = 0; i < 8; ++i) {
- sb[32*8*(tiitg%THREAD_PER_COL) + 8*(tiitg/THREAD_PER_COL) + i] = loop_k + iy + i < args.ne00 ? (S1) ((device T1 *) y)[i] : 0;
+ const short sx = (tiitg%NL1);
+ const short sy = (tiitg/NL1)/8;
+
+ const short lx = i;
+ const short ly = (tiitg/NL1)%8;
+ //const short lx = (tiitg/NL1)%8;
+ //const short ly = i;
+
+ *(sb + NK*(8*sy + ly) + 8*sx + lx) = loop_k + iy + i < args.ne00 ? (S1) *((device T1 *) y + i) : 0;
}
} else {
- *(threadgroup S1_2x4 *)(sb + 32*8*(tiitg%THREAD_PER_COL) + 8*(tiitg/THREAD_PER_COL)) = (S1_2x4)(*((device T1_2x4 *) y));
+ const short sx = (tiitg%NL1);
+ const short sy = (tiitg/NL1)/8;
+
+ //const short lx = i;
+ const short ly = (tiitg/NL1)%8;
+ //const short lx = (tiitg/NL1)%8;
+ //const short ly = i;
+
+ *(threadgroup S1_2x4 *)(sb + NK*(8*sy + ly) + 8*sx) = (S1_2x4)(*((device T1_2x4 *) y));
}
+#endif
il = (il + 2 < nl) ? il + 2 : il % 2;
x = (il < 2) ? x + (2 + nl - 1)/nl : x;
- y += BLOCK_SIZE_K;
+
+ y += NK;
threadgroup_barrier(mem_flags::mem_threadgroup);
+#ifndef GGML_METAL_HAS_TENSOR
// load matrices from threadgroup memory and conduct outer products
- threadgroup const S0 * lsma = (sa + THREAD_MAT_M*SG_MAT_SIZE*(sgitg%2));
- threadgroup const S1 * lsmb = (sb + THREAD_MAT_N*SG_MAT_SIZE*(sgitg/2));
-
- #pragma unroll(4)
- for (short ik = 0; ik < BLOCK_SIZE_K/8; ik++) {
- #pragma unroll(4)
- for (short i = 0; i < 4; i++) {
- simdgroup_load(ma[i], lsma + SG_MAT_SIZE * i);
+ threadgroup const S0 * lsma = (sa + 4*64*(sgitg%2));
+ threadgroup const S1 * lsmb = (sb + 2*64*(sgitg/2));
+
+ FOR_UNROLL (short ik = 0; ik < NK/8; ik++) {
+ simdgroup_barrier(mem_flags::mem_none);
+
+ FOR_UNROLL (short i = 0; i < 4; i++) {
+ simdgroup_load(ma[i], lsma + 64*i, 8, 0, false);
}
simdgroup_barrier(mem_flags::mem_none);
- #pragma unroll(2)
- for (short i = 0; i < 2; i++) {
- simdgroup_load(mb[i], lsmb + SG_MAT_SIZE * i);
+ FOR_UNROLL (short i = 0; i < 2; i++) {
+ simdgroup_load(mb[i], lsmb + 64*i, 8, 0, false);
}
- #pragma unroll(8)
- for (short i = 0; i < 8; i++){
+ simdgroup_barrier(mem_flags::mem_none);
+
+ FOR_UNROLL (short i = 0; i < 8; i++){
simdgroup_multiply_accumulate(mc[i], mb[i/4], ma[i%4], mc[i]);
}
- lsma += (BLOCK_SIZE_M/SG_MAT_ROW)*SG_MAT_SIZE;
- lsmb += (BLOCK_SIZE_N/SG_MAT_ROW)*SG_MAT_SIZE;
+ lsma += 8*64;
+ lsmb += 4*64;
}
+#else
+ auto sA = tA.slice(0, 0);
+ auto sB = tB.slice(0, 0);
+
+ mm.run(sB, sA, cT);
+#endif
}
+ // block is smaller than 64x32, we should avoid writing data outside of the matrix
threadgroup_barrier(mem_flags::mem_threadgroup);
- threadgroup float * temp_str = ((threadgroup float *) shmem) \
- + 32*(sgitg&1) + (16*(sgitg >> 1))*BLOCK_SIZE_M;
+#ifdef GGML_METAL_HAS_TENSOR
+ auto tC = tensor<threadgroup float, dextents<int32_t, 2>, tensor_inline>(sc, dextents<int32_t, 2>(NR0, NR1));
+ cT.store(tC);
+#else
+ threadgroup float * temp_str = ((threadgroup float *) shmem) + 32*(sgitg&1) + (16*(sgitg >> 1))*NR0;
- #pragma unroll(8)
for (short i = 0; i < 8; i++) {
- simdgroup_store(mc[i], temp_str + 8*(i%4) + 8*BLOCK_SIZE_M*(i/4), BLOCK_SIZE_M);
+ simdgroup_store(mc[i], temp_str + 8*(i%4) + 8*NR0*(i/4), NR0, 0, false);
}
+#endif
threadgroup_barrier(mem_flags::mem_threadgroup);
- for (short j = sgitg; j < n_cols; j += 4) {
- const int id = ids_i32[im*args.ne21 + r1*BLOCK_SIZE_N + j];
+ for (short j = sgitg; j < nr1; j += 4) {
+ const int id = ids_i32[im*args.ne21 + r1 + j];
const short ide = id % args.ne20;
const short idt = id / args.ne20;
- device float * D = (device float *) dst + (r0*BLOCK_SIZE_M) + ide*args.ne0 + idt*args.ne1*args.ne0;
+ device float * D = (device float *) dst + r0 + ide*args.ne0 + idt*args.ne1*args.ne0;
device float4 * D4 = (device float4 *) D;
- threadgroup float * C = (threadgroup float *) shmem + (j*BLOCK_SIZE_M);
+ threadgroup float * C = (threadgroup float *) shmem + j*NR0;
threadgroup float4 * C4 = (threadgroup float4 *) C;
int i = tiisg;
- for (; i < n_rows/4; i += 32) {
+ for (; i < nr0/4; i += 32) {
*(D4 + i) = *(C4 + i);
}
- i = (4*(n_rows/4)) + tiisg;
- for (; i < n_rows; i += 32) {
+ i = (4*(nr0/4)) + tiisg;
+ for (; i < nr0; i += 32) {
*(D + i) = *(C + i);
}
}