"Model path must be specified either via --model-path argument or MODEL_PATH environment variable"
)
-config = AutoConfig.from_pretrained(model_path)
+config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
print("Model type: ", config.model_type)
print("Vocab size: ", config.vocab_size)
print("EOS token id: ", config.eos_token_id)
print("Loading model and tokenizer using AutoTokenizer:", model_path)
-tokenizer = AutoTokenizer.from_pretrained(model_path)
-config = AutoConfig.from_pretrained(model_path)
+tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
+config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
if unreleased_model_name:
model_name_lower = unreleased_model_name.lower()
exit(1)
else:
model = AutoModelForCausalLM.from_pretrained(
- model_path, device_map="auto", offload_folder="offload"
+ model_path, device_map="auto", offload_folder="offload", trust_remote_code=True
)
for name, module in model.named_modules():