]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
llama : add `gemma` model (#5631)
authorpostmasters <redacted>
Wed, 21 Feb 2024 13:08:22 +0000 (05:08 -0800)
committerGitHub <redacted>
Wed, 21 Feb 2024 13:08:22 +0000 (15:08 +0200)
There are couple things in this architecture:

1. Shared input and output embedding parameters.
2. Key length and value length are not derived from `n_embd`.

More information about the models can be found at
https://ai.google.dev/gemma. GGUFs can be downloaded from
https://huggingface.co/google.

README.md
gguf-py/gguf/constants.py
llama.cpp

index 747d2e98b5a944dadfb3b78a4a423512efcf8e36..225db8e49ce39fefcfa25790329670eaef2b5725 100644 (file)
--- a/README.md
+++ b/README.md
@@ -107,6 +107,7 @@ Typically finetunes of the base models below are supported as well.
 - [x] [Orion 14B](https://github.com/ggerganov/llama.cpp/pull/5118)
 - [x] [InternLM2](https://huggingface.co/models?search=internlm2)
 - [x] [CodeShell](https://github.com/WisdomShell/codeshell)
+- [x] [Gemma](https://ai.google.dev/gemma)
 
 **Multimodal models:**
 
index 114a9a9743081b4e8760a294b43eec07f1b7bb79..8f9139d1b7eca8a93b292c5eace3f4da0926cb45 100644 (file)
@@ -111,6 +111,7 @@ class MODEL_ARCH(IntEnum):
     ORION      = auto()
     INTERNLM2  = auto()
     MINICPM    = auto()
+    GEMMA      = auto()
 
 
 class MODEL_TENSOR(IntEnum):
@@ -167,6 +168,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
     MODEL_ARCH.ORION:          "orion",
     MODEL_ARCH.INTERNLM2:      "internlm2",
     MODEL_ARCH.MINICPM:        "minicpm",
+    MODEL_ARCH.GEMMA:          "gemma",
 }
 
 TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
@@ -511,6 +513,19 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
         MODEL_TENSOR.FFN_DOWN_EXP,
         MODEL_TENSOR.FFN_UP_EXP,
     ],
+    MODEL_ARCH.GEMMA: [
+        MODEL_TENSOR.TOKEN_EMBD,
+        MODEL_TENSOR.OUTPUT_NORM,
+        MODEL_TENSOR.ATTN_NORM,
+        MODEL_TENSOR.ATTN_Q,
+        MODEL_TENSOR.ATTN_K,
+        MODEL_TENSOR.ATTN_V,
+        MODEL_TENSOR.ATTN_OUT,
+        MODEL_TENSOR.FFN_GATE,
+        MODEL_TENSOR.FFN_DOWN,
+        MODEL_TENSOR.FFN_UP,
+        MODEL_TENSOR.FFN_NORM,
+    ],
     # TODO
 }
 
index 3748d5eac8a5081ede4baa76ded13145049f3956..3a226c4260c0b1841dad490e9d81c1a061bdf836 100644 (file)
--- a/llama.cpp
+++ b/llama.cpp
@@ -208,6 +208,7 @@ enum llm_arch {
     LLM_ARCH_ORION,
     LLM_ARCH_INTERNLM2,
     LLM_ARCH_MINICPM,
+    LLM_ARCH_GEMMA,
     LLM_ARCH_UNKNOWN,
 };
 
@@ -234,6 +235,7 @@ static std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
     { LLM_ARCH_ORION,           "orion"      },
     { LLM_ARCH_INTERNLM2,       "internlm2"  },
     { LLM_ARCH_MINICPM,         "minicpm"    },
+    { LLM_ARCH_GEMMA,           "gemma"      },
 };
 
 enum llm_kv {
@@ -760,6 +762,22 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
             { LLM_TENSOR_FFN_UP_EXP,      "blk.%d.ffn_up.%d" },
         },
     },
+    {
+        LLM_ARCH_GEMMA,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
+            { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
+            { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
+            { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
+            { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
+            { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
+            { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
+            { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
+        },
+    },
     {
         LLM_ARCH_UNKNOWN,
         {
@@ -3243,6 +3261,16 @@ static void llm_load_hparams(
                     default: model.type = e_model::MODEL_UNKNOWN;
                 }
             } break;
+        case LLM_ARCH_GEMMA:
+            {
+                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
+                switch (hparams.n_layer) {
+                    case 18: model.type = e_model::MODEL_2B; break;
+                    case 28: model.type = e_model::MODEL_7B; break;
+                    default: model.type = e_model::MODEL_UNKNOWN;
+               }
+            } break;
         default: (void)0;
     }
 
@@ -4360,6 +4388,37 @@ static bool llm_load_tensors(
                         layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
                     }
                 } break;
+            case LLM_ARCH_GEMMA:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+
+                    const int64_t n_ff          = hparams.n_ff;
+                    const int64_t n_embd_head_k = hparams.n_embd_head_k;
+                    const int64_t n_embd_k_gqa  = hparams.n_embd_k_gqa();
+                    const int64_t n_embd_v_gqa  = hparams.n_embd_v_gqa();
+
+                    for (uint32_t i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
+                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa});
+                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa});
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
+
+                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
+                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
+                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
+                    }
+                } break;
             default:
                 throw std::runtime_error("unknown architecture");
         }
@@ -7366,6 +7425,113 @@ struct llm_build_context {
 
         return gf;
     }
+
+    struct ggml_cgraph * build_gemma() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head_k = hparams.n_embd_head_k;
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
+        cb(inpL, "inp_embd", -1);
+        inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
+        cb(inpL, "inp_scaled", -1);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
+        cb(inp_pos, "inp_pos", -1);
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
+        cb(KQ_mask, "KQ_mask", -1);
+
+        // shift the entire K-cache if needed
+        if (do_rope_shift) {
+            llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb);
+        }
+
+        for (int il = 0; il < n_layer; ++il) {
+
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                // compute Q and K and RoPE them
+                struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+
+                struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+
+                struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+
+                Qcur = ggml_rope_custom(
+                        ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head,    n_tokens), inp_pos,
+                        n_embd_head_k, 2, 0, n_orig_ctx, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow);
+                cb(Qcur, "Qcur", il);
+                Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
+                cb(Qcur, "Qcur_scaled", il);
+
+                Kcur = ggml_rope_custom(
+                        ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos,
+                        n_embd_head_k, 2, 0, n_orig_ctx, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow);
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
+                        model.layers[il].wo, NULL,
+                        Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
+                cb(cur, "kqv_out", il);
+            }
+            struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
+            cb(sa_out, "sa_out", il);
+
+            cur = llm_build_norm(ctx0, sa_out, hparams,
+                    model.layers[il].ffn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "ffn_norm", il);
+
+            // feed-forward network
+            {
+                cur = llm_build_ffn(ctx0, cur,
+                        model.layers[il].ffn_up, NULL,
+                        model.layers[il].ffn_gate, NULL,
+                        model.layers[il].ffn_down, NULL,
+                        NULL,
+                        LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
+                cb(cur, "ffn_out", il);
+            }
+
+            cur = ggml_add(ctx0, cur, sa_out);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = ggml_mul_mat(ctx0, model.tok_embd, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
 };
 
 static struct ggml_cgraph * llama_build_graph(
@@ -7474,6 +7640,10 @@ static struct ggml_cgraph * llama_build_graph(
             {
                 result = llm.build_minicpm();
             } break;
+        case LLM_ARCH_GEMMA:
+            {
+                result = llm.build_gemma();
+            } break;
         default:
             GGML_ASSERT(false);
     }