}
#ifdef USE_CUDA_GRAPH
-static bool check_node_graph_compatibility(ggml_cgraph * cgraph,
- bool use_cuda_graph) {
+static bool ggml_cuda_graph_check_compability(ggml_cgraph * cgraph) {
+ bool use_cuda_graph = true;
// Loop over nodes in GGML graph to obtain info needed for CUDA graph
const std::string gemma3n_per_layer_proj_src0_name = "inp_per_layer_selected";
return use_cuda_graph;
}
-static void set_ggml_graph_node_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
- graph_node_properties->node_address = node->data;
- graph_node_properties->node_op = node->op;
+static void ggml_cuda_graph_node_set_properties(ggml_cuda_graph_node_properties * props, ggml_tensor * node) {
+ props->node_address = node->data;
+ props->node_op = node->op;
for (int i = 0; i < GGML_MAX_DIMS; i++) {
- graph_node_properties->ne[i] = node->ne[i];
- graph_node_properties->nb[i] = node->nb[i];
+ props->ne[i] = node->ne[i];
+ props->nb[i] = node->nb[i];
}
for (int i = 0; i < GGML_MAX_SRC; i++) {
- graph_node_properties->src_address[i] = node->src[i] ? node->src[i]->data : nullptr;
+ props->src_address[i] = node->src[i] ? node->src[i]->data : nullptr;
}
- memcpy(graph_node_properties->op_params, node->op_params, GGML_MAX_OP_PARAMS);
+ memcpy(props->op_params, node->op_params, GGML_MAX_OP_PARAMS);
}
-static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
- if (node->data != graph_node_properties->node_address &&
+static bool ggml_cuda_graph_node_properties_match(ggml_tensor * node, ggml_cuda_graph_node_properties * props) {
+ if (node->data != props->node_address &&
node->op != GGML_OP_VIEW) {
return false;
}
- if (node->op != graph_node_properties->node_op) {
+ if (node->op != props->node_op) {
return false;
}
for (int i = 0; i < GGML_MAX_DIMS; i++) {
- if (node->ne[i] != graph_node_properties->ne[i]) {
+ if (node->ne[i] != props->ne[i]) {
return false;
}
- if (node->nb[i] != graph_node_properties->nb[i]) {
+ if (node->nb[i] != props->nb[i]) {
return false;
}
}
for (int i = 0; i < GGML_MAX_SRC; i++) {
if (node->src[i] &&
- node->src[i]->data != graph_node_properties->src_address[i] &&
+ node->src[i]->data != props->src_address[i] &&
node->op != GGML_OP_VIEW
) {
return false;
}
if ((node->op == GGML_OP_SCALE || node->op == GGML_OP_GLU) &&
- memcmp(graph_node_properties->op_params, node->op_params, GGML_MAX_OP_PARAMS) != 0) {
+ memcmp(props->op_params, node->op_params, GGML_MAX_OP_PARAMS) != 0) {
return false;
}
return true;
}
-static bool is_cuda_graph_update_required(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph) {
+static bool ggml_cuda_graph_update_required(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph) {
- bool cuda_graph_update_required = false;
+ bool res = false;
if (cuda_ctx->cuda_graph->instance == nullptr) {
- cuda_graph_update_required = true;
+ res = true;
}
// Check if the graph size has changed
- if (cuda_ctx->cuda_graph->ggml_graph_properties.size() != (size_t)cgraph->n_nodes + cgraph->n_leafs) {
- cuda_graph_update_required = true;
- cuda_ctx->cuda_graph->ggml_graph_properties.resize(cgraph->n_nodes + cgraph->n_leafs);
+ if (cuda_ctx->cuda_graph->props.size() != (size_t)cgraph->n_nodes + cgraph->n_leafs) {
+ res = true;
+ cuda_ctx->cuda_graph->props.resize(cgraph->n_nodes + cgraph->n_leafs);
}
// Loop over nodes in GGML graph to determine if CUDA graph update is required
// and store properties to allow this comparison for the next token
for (int i = 0; i < cgraph->n_nodes; i++) {
- bool has_matching_properties = true;
-
- if (!cuda_graph_update_required) {
- has_matching_properties = ggml_graph_node_has_matching_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
+ bool props_match = true;
+ if (!res) {
+ props_match = ggml_cuda_graph_node_properties_match(cgraph->nodes[i], &cuda_ctx->cuda_graph->props[i]);
}
- if (!has_matching_properties) {
- cuda_graph_update_required = true;
+ if (!props_match) {
+ res = true;
}
- set_ggml_graph_node_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
+ ggml_cuda_graph_node_set_properties(&cuda_ctx->cuda_graph->props[i], cgraph->nodes[i]);
}
for (int i = 0; i < cgraph->n_leafs; i++) {
- bool has_matching_properties = true;
- if (!cuda_graph_update_required) {
- has_matching_properties = ggml_graph_node_has_matching_properties(cgraph->leafs[i], &cuda_ctx->cuda_graph->ggml_graph_properties[cgraph->n_nodes + i]);
+ bool props_match= true;
+ if (!res) {
+ props_match = ggml_cuda_graph_node_properties_match(cgraph->leafs[i], &cuda_ctx->cuda_graph->props[cgraph->n_nodes + i]);
}
- if (!has_matching_properties) {
- cuda_graph_update_required = true;
+ if (!props_match) {
+ res = true;
}
- set_ggml_graph_node_properties(cgraph->leafs[i], &cuda_ctx->cuda_graph->ggml_graph_properties[cgraph->n_nodes + i]);
+ ggml_cuda_graph_node_set_properties(&cuda_ctx->cuda_graph->props[cgraph->n_nodes + i], cgraph->leafs[i]);
}
- return cuda_graph_update_required;
+ return res;
}
-static void update_cuda_graph_executable(ggml_backend_cuda_context * cuda_ctx) {
+static void ggml_cuda_graph_update_executable(ggml_backend_cuda_context * cuda_ctx) {
#if CUDART_VERSION >= 12000
cudaGraphExecUpdateResultInfo result_info;
return false;
}
-static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
- bool & graph_evaluated_or_captured, bool & use_cuda_graph, bool & cuda_graph_update_required) {
+static void ggml_cuda_graph_evaluate_and_capture(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph, const bool use_cuda_graph, const bool cuda_graph_update_required) {
+ bool graph_evaluated_or_captured = false;
+
// flag used to determine whether it is an integrated_gpu
- const bool integrated = ggml_cuda_info().devices[cuda_ctx->device].integrated;
+ const bool integrated = ggml_cuda_info().devices[cuda_ctx->device].integrated;
ggml_cuda_stream_context & stream_ctx = cuda_ctx->stream_context();
bool is_concurrent_event_active = false;
CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
}
if (cuda_graph_update_required) { // Update graph executable
- update_cuda_graph_executable(cuda_ctx);
+ ggml_cuda_graph_update_executable(cuda_ctx);
}
// Launch graph
CUDA_CHECK(cudaGraphLaunch(cuda_ctx->cuda_graph->instance, cuda_ctx->stream()));
}
}
-static bool ggml_cuda_set_cuda_graph_enabled(ggml_backend_cuda_context * cuda_ctx) {
+static bool ggml_cuda_graph_set_enabled(ggml_backend_cuda_context * cuda_ctx) {
#ifdef USE_CUDA_GRAPH
- static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr);
- // Objects required for CUDA Graph
if (cuda_ctx->cuda_graph == nullptr) {
cuda_ctx->cuda_graph.reset(new ggml_cuda_graph());
}
- bool use_cuda_graph = true;
-
if (cuda_ctx->cuda_graph->graph == nullptr) {
if (ggml_cuda_info().devices[cuda_ctx->device].cc < GGML_CUDA_CC_AMPERE) {
cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true;
-#ifndef NDEBUG
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to GPU architecture\n", __func__);
-#endif
}
}
- // Disable CUDA graphs in presence of env var, old GPU, use-case which is changing too rapidly,
- // or previous graph capture failure.
- // Also disable for multi-gpu for now. TO DO investigate
- if (disable_cuda_graphs_due_to_env
- || cuda_ctx->cuda_graph->disable_due_to_gpu_arch
- || cuda_ctx->cuda_graph->disable_due_to_too_many_updates
- || cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture) {
- use_cuda_graph = false;
- }
-
- cuda_ctx->cuda_graph->cuda_graphs_enabled = use_cuda_graph;
+ return cuda_ctx->cuda_graph->is_enabled();
#else
- bool use_cuda_graph = false;
+ return false;
#endif // USE_CUDA_GRAPH
-
- return use_cuda_graph;
}
static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
bool use_cuda_graph = false;
bool cuda_graph_update_required = false;
- // graph_optimize calls set_cuda_graph_enabled, in-case it not called (i.e. graph_compute is directly called)
- // we call it here instead.
#ifdef USE_CUDA_GRAPH
- use_cuda_graph = ggml_cuda_set_cuda_graph_enabled(cuda_ctx);
-
- if (use_cuda_graph) {
- cuda_graph_update_required = is_cuda_graph_update_required(cuda_ctx, cgraph);
-
- use_cuda_graph = check_node_graph_compatibility(cgraph, use_cuda_graph);
+ use_cuda_graph = ggml_cuda_graph_set_enabled(cuda_ctx);
- // Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates.
- if (use_cuda_graph && cuda_graph_update_required) {
- cuda_ctx->cuda_graph->number_consecutive_updates++;
- } else {
- cuda_ctx->cuda_graph->number_consecutive_updates = 0;
- }
+ if (cuda_ctx->cuda_graph->is_enabled()) {
+ cuda_graph_update_required = ggml_cuda_graph_update_required(cuda_ctx, cgraph);
+ use_cuda_graph = ggml_cuda_graph_check_compability(cgraph);
- if (cuda_ctx->cuda_graph->number_consecutive_updates >= 4) {
- cuda_ctx->cuda_graph->disable_due_to_too_many_updates = true;
- cuda_ctx->cuda_graph->cuda_graphs_enabled = false;
-#ifndef NDEBUG
- GGML_LOG_DEBUG("%s: disabling CUDA graphs due to too many consecutive updates\n", __func__);
-#endif
- }
+ cuda_ctx->cuda_graph->record_update(use_cuda_graph, cuda_graph_update_required);
}
#endif // USE_CUDA_GRAPH
CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
}
- bool graph_evaluated_or_captured = false;
-
- evaluate_and_capture_cuda_graph(cuda_ctx, cgraph, graph_evaluated_or_captured, use_cuda_graph, cuda_graph_update_required);
+ ggml_cuda_graph_evaluate_and_capture(cuda_ctx, cgraph, use_cuda_graph, cuda_graph_update_required);
return GGML_STATUS_SUCCESS;
}
static void ggml_backend_cuda_graph_optimize(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *) backend->context;
- const bool use_cuda_graph = ggml_cuda_set_cuda_graph_enabled(cuda_ctx);
+ const bool use_cuda_graph = ggml_cuda_graph_set_enabled(cuda_ctx);
static bool enable_graph_optimization = [] {
const char * env = getenv("GGML_CUDA_GRAPH_OPT");