self.gguf_writer.add_head_count(0)
+@ModelBase.register("MaincoderForCausalLM")
+class MaincoderModel(TextModel):
+ model_arch = gguf.MODEL_ARCH.MAINCODER
+
+ def set_gguf_parameters(self):
+ super().set_gguf_parameters()
+
+ if (head_dim := self.hparams.get("head_dim")) is not None:
+ self.gguf_writer.add_rope_dimension_count(head_dim)
+
+
@ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
class MambaModel(TextModel):
model_arch = gguf.MODEL_ARCH.MAMBA
MISTRAL3 = auto()
MIMO2 = auto()
LLAMA_EMBED = auto()
+ MAINCODER = auto()
class VISION_PROJECTOR_TYPE(IntEnum):
MODEL_ARCH.MISTRAL3: "mistral3",
MODEL_ARCH.MIMO2: "mimo2",
MODEL_ARCH.LLAMA_EMBED: "llama-embed",
+ MODEL_ARCH.MAINCODER: "maincoder",
}
VISION_PROJECTOR_TYPE_NAMES: dict[VISION_PROJECTOR_TYPE, str] = {
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
],
+ MODEL_ARCH.MAINCODER: [
+ MODEL_TENSOR.TOKEN_EMBD,
+ MODEL_TENSOR.OUTPUT_NORM,
+ MODEL_TENSOR.OUTPUT,
+ MODEL_TENSOR.ATTN_NORM,
+ MODEL_TENSOR.ATTN_Q,
+ MODEL_TENSOR.ATTN_Q_NORM,
+ MODEL_TENSOR.ATTN_K,
+ MODEL_TENSOR.ATTN_K_NORM,
+ MODEL_TENSOR.ATTN_V,
+ MODEL_TENSOR.ATTN_OUT,
+ MODEL_TENSOR.FFN_NORM,
+ MODEL_TENSOR.FFN_GATE,
+ MODEL_TENSOR.FFN_DOWN,
+ MODEL_TENSOR.FFN_UP,
+ ],
# TODO
}
models/llada.cpp
models/llama-iswa.cpp
models/llama.cpp
+ models/maincoder.cpp
models/mamba.cpp
models/mimo2-iswa.cpp
models/minicpm3.cpp
{ LLM_ARCH_MISTRAL3, "mistral3" },
{ LLM_ARCH_MIMO2, "mimo2" },
{ LLM_ARCH_LLAMA_EMBED, "llama-embed" },
+ { LLM_ARCH_MAINCODER, "maincoder" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
return {
LLM_TENSOR_TOKEN_EMBD,
};
+ case LLM_ARCH_MAINCODER:
+ return {
+ LLM_TENSOR_TOKEN_EMBD,
+ LLM_TENSOR_OUTPUT_NORM,
+ LLM_TENSOR_OUTPUT,
+ LLM_TENSOR_ATTN_NORM,
+ LLM_TENSOR_ATTN_Q,
+ LLM_TENSOR_ATTN_Q_NORM,
+ LLM_TENSOR_ATTN_K,
+ LLM_TENSOR_ATTN_K_NORM,
+ LLM_TENSOR_ATTN_V,
+ LLM_TENSOR_ATTN_OUT,
+ LLM_TENSOR_FFN_NORM,
+ LLM_TENSOR_FFN_GATE,
+ LLM_TENSOR_FFN_DOWN,
+ LLM_TENSOR_FFN_UP,
+ };
default:
GGML_ABORT("unknown architecture for tensor mapping");
}
LLM_ARCH_MISTRAL3,
LLM_ARCH_MIMO2,
LLM_ARCH_LLAMA_EMBED,
+ LLM_ARCH_MAINCODER,
LLM_ARCH_UNKNOWN,
};
default: type = LLM_TYPE_UNKNOWN;
}
} break;
+ case LLM_ARCH_MAINCODER:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+ switch (hparams.n_layer) {
+ case 32: type = LLM_TYPE_1B; break;
+ default: type = LLM_TYPE_UNKNOWN;
+ }
+ } break;
case LLM_ARCH_QWEN3VL:
{
ml.get_key(LLM_KV_NUM_DEEPSTACK_LAYERS, hparams.n_deepstack_layers, false);
layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
}
} break;
+ case LLM_ARCH_MAINCODER:
+ {
+ tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
+
+ // output
+ output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
+ output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
+ // if output is NULL, init from the input tok embed
+ if (output == NULL) {
+ output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ auto & layer = layers[i];
+
+ layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
+
+ layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
+ layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
+ layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
+ layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
+
+ layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
+ layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
+
+ layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
+ layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
+ }
+ } break;
default:
throw std::runtime_error("unknown architecture");
}
{
llm = std::make_unique<llm_build_llama<true>>(*this, params);
} break;
+ case LLM_ARCH_MAINCODER:
+ {
+ llm = std::make_unique<llm_build_maincoder>(*this, params);
+ } break;
case LLM_ARCH_DECI:
{
llm = std::make_unique<llm_build_deci>(*this, params);
case LLM_ARCH_ERNIE4_5_MOE:
case LLM_ARCH_MISTRAL3:
case LLM_ARCH_LLAMA_EMBED:
+ case LLM_ARCH_MAINCODER:
return LLAMA_ROPE_TYPE_NORM;
// the pairs of head values are offset by n_rot/2
--- /dev/null
+#include "models.h"
+
+llm_build_maincoder::llm_build_maincoder(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ ggml_tensor * cur;
+ ggml_tensor * inpL;
+
+ inpL = build_inp_embd(model.tok_embd);
+
+ // inp_pos - contains the positions
+ ggml_tensor * inp_pos = build_inp_pos();
+
+ auto * inp_attn = build_attn_inp_kv();
+
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
+
+ for (int il = 0; il < n_layer; ++il) {
+ ggml_tensor * inpSA = inpL;
+
+ // norm
+ cur = build_norm(inpL,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ // compute Q and K and RoPE them
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
+
+ Qcur = ggml_rope_ext(
+ ctx0, Qcur, inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+
+ Kcur = ggml_rope_ext(
+ ctx0, Kcur, inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+
+ Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
+ cb(Qcur, "Qcur_normed", il);
+
+ Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
+ cb(Kcur, "Kcur_normed", il);
+
+ cb(Qcur, "Qcur", il);
+ cb(Kcur, "Kcur", il);
+ cb(Vcur, "Vcur", il);
+
+ cur = build_attn(inp_attn,
+ model.layers[il].wo, model.layers[il].bo,
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
+ }
+ if (il == n_layer - 1 && inp_out_ids) {
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed-forward network
+ cur = build_norm(ffn_inp,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = build_ffn(cur,
+ model.layers[il].ffn_up, NULL, NULL,
+ model.layers[il].ffn_gate, NULL, NULL,
+ model.layers[il].ffn_down, NULL, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
+ cb(cur, "ffn_out", il);
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+
+ cur = build_cvec(cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+ cur = inpL;
+
+ cur = build_norm(cur,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, -1);
+
+ cb(cur, "result_norm", -1);
+ res->t_embd = cur;
+
+ // lm_head
+ cur = build_lora_mm(model.output, cur);
+
+ cb(cur, "result_output", -1);
+ res->t_logits = cur;
+
+ ggml_build_forward_expand(gf, cur);
+}
llm_build_llama_iswa(const llama_model & model, const llm_graph_params & params);
};
+struct llm_build_maincoder : public llm_graph_context {
+ llm_build_maincoder(const llama_model & model, const llm_graph_params & params);
+};
+
struct llm_build_mamba : public llm_graph_context_mamba {
llm_build_mamba(const llama_model & model, const llm_graph_params & params);
};