from transformers import WhisperForConditionalGeneration
-conv_map = {'self_attn_layer_norm': 'attn_ln',
- 'encoder_attn.k_proj': 'attn.key',
- 'self_attn.out_proj': 'attn.out',
- 'encoder_attn.out_proj': 'cross_attn.out',
- 'self_attn.q_proj': 'attn.query',
- 'encoder_attn.q_proj': 'cross_attn.query',
- 'self_attn.v_proj': 'attn.value',
- 'encoder_attn.v_proj': 'cross_attn.value',
- 'encoder_attn_layer_norm': 'cross_attn_ln',
- 'fc1': 'mlp.0',
- 'fc2': 'mlp.2',
- 'final_layer_norm': 'mlp_ln',
- 'encoder.layer_norm.bias': 'encoder.ln_post.bias',
- 'encoder.layer_norm.weight': 'encoder.ln_post.weight',
- 'encoder.embed_positions.weight': 'encoder.positional_embedding',
- 'decoder.layer_norm.bias': 'decoder.ln.bias',
- 'decoder.layer_norm.weight': 'decoder.ln.weight',
- 'decoder.embed_positions.weight': 'decoder.positional_embedding',
- 'decoder.embed_tokens.weight': 'decoder.token_embedding.weight',
- 'proj_out.weight': 'decoder.proj.weight',
-}
+conv_map = {
+ 'self_attn.k_proj' : 'attn.key',
+ 'self_attn.q_proj' : 'attn.query',
+ 'self_attn.v_proj' : 'attn.value',
+ 'self_attn.out_proj' : 'attn.out',
+ 'self_attn_layer_norm' : 'attn_ln',
+ 'encoder_attn.q_proj' : 'cross_attn.query',
+ 'encoder_attn.v_proj' : 'cross_attn.value',
+ 'encoder_attn.out_proj' : 'cross_attn.out',
+ 'encoder_attn_layer_norm' : 'cross_attn_ln',
+ 'fc1' : 'mlp.0',
+ 'fc2' : 'mlp.2',
+ 'final_layer_norm' : 'mlp_ln',
+ 'encoder.layer_norm.bias' : 'encoder.ln_post.bias',
+ 'encoder.layer_norm.weight' : 'encoder.ln_post.weight',
+ 'encoder.embed_positions.weight': 'encoder.positional_embedding',
+ 'decoder.layer_norm.bias' : 'decoder.ln.bias',
+ 'decoder.layer_norm.weight' : 'decoder.ln.weight',
+ 'decoder.embed_positions.weight': 'decoder.positional_embedding',
+ 'decoder.embed_tokens.weight' : 'decoder.token_embedding.weight',
+ 'proj_out.weight' : 'decoder.proj.weight',
+ }
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
def bytes_to_unicode():
fout.write(struct.pack("i", hparams["vocab_size"]))
fout.write(struct.pack("i", hparams["max_source_positions"]))
fout.write(struct.pack("i", hparams["d_model"]))
-fout.write(struct.pack("i", hparams["decoder_attention_heads"]))
-fout.write(struct.pack("i", hparams["decoder_layers"]))
-fout.write(struct.pack("i", hparams["max_length"]))
-fout.write(struct.pack("i", hparams["d_model"]))
fout.write(struct.pack("i", hparams["encoder_attention_heads"]))
fout.write(struct.pack("i", hparams["encoder_layers"]))
+fout.write(struct.pack("i", hparams["max_length"]))
+fout.write(struct.pack("i", hparams["d_model"]))
+fout.write(struct.pack("i", hparams["decoder_attention_heads"]))
+fout.write(struct.pack("i", hparams["decoder_layers"]))
fout.write(struct.pack("i", hparams["num_mel_bins"]))
fout.write(struct.pack("i", use_f16))
if nn[1] == "layers":
nn[1] = "blocks"
- if ".".join(nn[3:-1]) == "self_attn.k_proj":
+ if ".".join(nn[3:-1]) == "encoder_attn.k_proj":
mapped = "attn.key" if nn[0] == "encoder" else "cross_attn.key"
else:
mapped = conv_map[".".join(nn[3:-1])]