#include <stdio.h>
#include <stdlib.h>
#include <string.h>
-#include <string>
-#include <vector>
#include <algorithm>
+#include <vector>
#ifdef __APPLE__
#include <sys/types.h>
static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
struct ggml_backend_sched_split * splits = sched->splits;
+ ggml_tensor * prev_ids_tensor = nullptr;
+ std::vector<int32_t> ids;
+ std::vector<ggml_bitset_t> used_ids;
+
for (int i = 0; i < sched->n_splits; i++) {
struct ggml_backend_sched_split * split = &splits[i];
int split_backend_id = split->backend_id;
} else {
ggml_backend_synchronize(split_backend);
}
- // try async copy, but if not possible, we can still use a sync copy without synchronizing the dst backend, since we handle the synchronization here with multiple copies and events
- // TODO: add public function to facilitate this, since applications do not have direct access to the backend interface
- if (!split_backend->iface.cpy_tensor_async || !split_backend->iface.cpy_tensor_async(input_backend, split_backend, input, input_cpy)) {
+
+ // when offloading MoE weights, we can reduce the amount of data copied by copying only the experts that are used
+ ggml_tensor * node = split->graph.nodes[0];
+ if (split->graph.n_nodes > 0 &&
+ ggml_backend_buffer_get_usage(input->buffer) == GGML_BACKEND_BUFFER_USAGE_WEIGHTS &&
+ ggml_backend_buffer_is_host(input->buffer) && (
+ (node->src[0] == input_cpy && node->op == GGML_OP_MUL_MAT_ID)
+ //|| (node->src[1] == input_cpy && node->op == GGML_OP_ADD_ID) /* GGML_OP_ADD_ID weights are small and not worth splitting */
+ )) {
+
+ const int64_t n_expert = node->op == GGML_OP_MUL_MAT_ID ? input->ne[2] : input->ne[1];
+ const size_t expert_size = node->op == GGML_OP_MUL_MAT_ID ? input->nb[2] : input->nb[1];
+
ggml_backend_synchronize(input_backend);
- if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
- ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
- } else {
+
+ // get the ids
+ ggml_tensor * ids_tensor = node->src[2];
+ if (ids_tensor != prev_ids_tensor) {
+ ids.resize(ggml_nbytes(ids_tensor) / sizeof(int32_t));
+ ggml_backend_tensor_get_async(split_backend, ids_tensor, ids.data(), 0, ggml_nbytes(ids_tensor));
ggml_backend_synchronize(split_backend);
+
+ // find the used experts
+ used_ids.clear();
+ used_ids.resize(ggml_bitset_size(n_expert));
+ for (int64_t i1 = 0; i1 < ids_tensor->ne[1]; i1++) {
+ for (int64_t i0 = 0; i0 < ids_tensor->ne[0]; i0++) {
+ int32_t id = ids[i1 * ids_tensor->nb[1]/sizeof(int32_t) + i0 * ids_tensor->nb[0]/sizeof(int32_t)];
+ ggml_bitset_set(used_ids.data(), id);
+ }
+ }
+
+ prev_ids_tensor = ids_tensor;
+ }
+
+ // group consecutive experts and copy them together
+ auto copy_experts = [&](int32_t first_id, int32_t last_id) {
+ const size_t expert_offset = first_id * expert_size;
+ const size_t expert_size_copy = (last_id - first_id + 1) * expert_size;
+ const size_t padding = std::min<size_t>(expert_size, 512);
+ const size_t padding_end = last_id < n_expert - 1 ? padding : 0;
+
+ ggml_backend_tensor_set_async(split_backend,
+ input_cpy,
+ (const uint8_t *)input->data + expert_offset, expert_offset,
+ // copy a bit extra at the to ensure there are no NaNs in the padding of the last expert
+ // this is necessary for MMQ in the CUDA backend
+ expert_size_copy + padding_end);
+ };
+
+ int id = 0;
+ while (!ggml_bitset_get(used_ids.data(), id)) {
+ id++;
+ }
+ int32_t first_id = id;
+ int32_t last_id = first_id;
+
+ for (++id; id < n_expert; ++id) {
+ if (!ggml_bitset_get(used_ids.data(), id)) {
+ continue;
+ }
+
+ if (id == last_id + 1) {
+ last_id = id;
+ continue;
+ }
+
+ copy_experts(first_id, last_id);
+
+ first_id = id;
+ last_id = id;
+ }
+ copy_experts(first_id, last_id);
+ } else {
+ // try async copy, but if not possible, we can still use a sync copy without synchronizing the dst backend, since we handle the synchronization here with multiple copies and events
+ // TODO: add public function to facilitate this, since applications do not have direct access to the backend interface
+ if (!split_backend->iface.cpy_tensor_async || !split_backend->iface.cpy_tensor_async(input_backend, split_backend, input, input_cpy)) {
+ ggml_backend_synchronize(input_backend);
+ if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
+ ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
+ } else {
+ ggml_backend_synchronize(split_backend);
+ }
+ ggml_backend_tensor_copy(input, input_cpy);
}
- ggml_backend_tensor_copy(input, input_cpy);
}
}
}