/ci/ @ggerganov
/.devops/*.Dockerfile @ngxson
/examples/server/ @ngxson
+/ggml/src/ggml-cuda/fattn* @JohannesGaessler
+/ggml/src/ggml-cuda/mmq.* @JohannesGaessler
+/ggml/src/ggml-cuda/mmv.* @JohannesGaessler
+/ggml/src/ggml-cuda/mmvq.* @JohannesGaessler
+/ggml/src/ggml-opt.cpp @JohannesGaessler
+/ggml/src/gguf.cpp @JohannesGaessler
#define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
#endif
+#include "ggml.h"
+#include "gguf.h"
+
#include "common.h"
#include "log.h"
// Change JSON_ASSERT from assert() to GGML_ASSERT:
#include "ggml.h"
+#include "gguf.h"
+
#include "llama.h"
#include "common.h"
#include "log.h"
+#include "ggml.h"
+#include "gguf.h"
+
#include "arg.h"
#include "common.h"
#include "llama.h"
-#include "ggml.h"
#include "pca.hpp"
#include "mean.hpp"
-#include "arg.h"
-#include "common.h"
#include "ggml.h"
#include "ggml-alloc.h"
+#include "gguf.h"
+
+#include "arg.h"
+#include "common.h"
#include <map>
#include <vector>
#include "ggml.h"
+#include "gguf.h"
#include <cstdlib> /* abort() */
#include <cstddef>
+#include "ggml.h"
+#include "gguf.h"
#include "llama.h"
#include "common.h"
#include <algorithm>
+#include <cinttypes>
+#include <climits>
+#include <cstdio>
#include <cstdlib>
+#include <stdexcept>
+#include <cstring>
#include <fstream>
#include <string>
#include <vector>
-#include <climits>
-
-#include <cstdio>
-#include <cstring>
-#include <stdexcept>
#if defined(_WIN32)
#include <windows.h>
total_size += ggml_nbytes(t);
}
total_size = total_size / 1000 / 1000; // convert to megabytes
- printf("split %05d: n_tensors = %d, total_size = %zuM\n", i_split + 1, gguf_get_n_tensors(ctx_out), total_size);
+ printf("split %05d: n_tensors = %" PRIi64 ", total_size = %zuM\n", i_split + 1, gguf_get_n_tensors(ctx_out), total_size);
i_split++;
}
}
#include "ggml.h"
+#include "gguf.h"
#include <cstdio>
-#include <cinttypes>
#include <string>
#include <sstream>
-#include <fstream>
#include <vector>
#undef MIN
for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name (ctx, i);
+ const size_t size = gguf_get_tensor_size (ctx, i);
const size_t offset = gguf_get_tensor_offset(ctx, i);
- printf("%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset);
+ printf("%s: tensor[%d]: name = %s, size = %zu, offset = %zu\n", __func__, i, name, size, offset);
}
}
for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name (ctx, i);
+ const size_t size = gguf_get_tensor_size (ctx, i);
const size_t offset = gguf_get_tensor_offset(ctx, i);
- printf("%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset);
+ printf("%s: tensor[%d]: name = %s, size = %zu, offset = %zu\n", __func__, i, name, size, offset);
}
}
struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
- printf("%s: tensor[%d]: n_dims = %d, name = %s, data = %p\n", __func__, i, ggml_n_dims(cur), cur->name, cur->data);
+ printf("%s: tensor[%d]: n_dims = %d, ne = (%d, %d, %d, %d), name = %s, data = %p\n",
+ __func__, i, ggml_n_dims(cur), int(cur->ne[0]), int(cur->ne[1]), int(cur->ne[2]), int(cur->ne[3]), cur->name, cur->data);
// print first 10 elements
const float * data = (const float *) cur->data;
const float * data = (const float *) cur->data;
for (int j = 0; j < ggml_nelements(cur); ++j) {
if (data[j] != 100 + i) {
- fprintf(stderr, "%s: tensor[%d]: data[%d] = %f\n", __func__, i, j, data[j]);
+ fprintf(stderr, "%s: tensor[%d], data[%d]: found %f, expected %f\n", __func__, i, j, data[j], float(100 + i));
gguf_free(ctx);
return false;
}
check_data = false;
}
+ srand(123456);
+
const std::string fname(argv[1]);
const std::string mode (argv[2]);
#include "ggml-cpu.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
+#include "gguf.h"
//#ifdef GGML_USE_CUDA
//#include "ggml-cuda.h"
{
const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
int arr_n = gguf_get_arr_n(ctx_gguf, i);
- const void * data = gguf_get_arr_data(ctx_gguf, i);
+ const void * data = arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx_gguf, i);
std::stringstream ss;
ss << "[";
for (int j = 0; j < arr_n; j++) {
total_size_org += orig_size;
total_size_new += new_size;
gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
- gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
+ GGML_ASSERT(gguf_get_tensor_size(ctx_out, gguf_find_tensor(ctx_out, name.c_str())) == new_size);
+ gguf_set_tensor_data(ctx_out, name.c_str(), new_data);
fout.write((const char *)new_data, new_size);
size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size;
for (size_t j = 0; j < pad; ++j) {
include/ggml-metal.h
include/ggml-rpc.h
include/ggml-sycl.h
- include/ggml-vulkan.h)
+ include/ggml-vulkan.h
+ include/gguf.h)
set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")
#if (GGML_METAL)
#include "ggml.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
+#include "gguf.h"
#include <memory>
// Smart pointers for ggml types
#define GGML_ROPE_TYPE_MROPE 8
#define GGML_ROPE_TYPE_VISION 24
-#define GGUF_MAGIC "GGUF"
-
-#define GGUF_VERSION 3
-
-#define GGUF_DEFAULT_ALIGNMENT 32
-
#define GGML_UNUSED(x) (void)(x)
#define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
GGML_PREC_F32,
};
- enum ggml_backend_type {
- GGML_BACKEND_TYPE_CPU = 0,
- GGML_BACKEND_TYPE_GPU = 10,
- GGML_BACKEND_TYPE_GPU_SPLIT = 20,
- };
-
// model file types
enum ggml_ftype {
GGML_FTYPE_UNKNOWN = -1,
struct ggml_tensor {
enum ggml_type type;
- GGML_DEPRECATED(enum ggml_backend_type backend, "use the buffer type to find the storage location of the tensor");
-
struct ggml_backend_buffer * buffer;
int64_t ne[GGML_MAX_DIMS]; // number of elements
int64_t n_per_row,
const float * imatrix);
- //
- // gguf
- //
-
- enum gguf_type {
- GGUF_TYPE_UINT8 = 0,
- GGUF_TYPE_INT8 = 1,
- GGUF_TYPE_UINT16 = 2,
- GGUF_TYPE_INT16 = 3,
- GGUF_TYPE_UINT32 = 4,
- GGUF_TYPE_INT32 = 5,
- GGUF_TYPE_FLOAT32 = 6,
- GGUF_TYPE_BOOL = 7,
- GGUF_TYPE_STRING = 8,
- GGUF_TYPE_ARRAY = 9,
- GGUF_TYPE_UINT64 = 10,
- GGUF_TYPE_INT64 = 11,
- GGUF_TYPE_FLOAT64 = 12,
- GGUF_TYPE_COUNT, // marks the end of the enum
- };
-
- struct gguf_context;
-
- struct gguf_init_params {
- bool no_alloc;
-
- // if not NULL, create a ggml_context and allocate the tensor data in it
- struct ggml_context ** ctx;
- };
-
- GGML_API struct gguf_context * gguf_init_empty(void);
- GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
- //GGML_API struct gguf_context * gguf_init_from_buffer(..);
-
- GGML_API void gguf_free(struct gguf_context * ctx);
-
- GGML_API const char * gguf_type_name(enum gguf_type type);
-
- GGML_API int gguf_get_version (const struct gguf_context * ctx);
- GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
- GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
- GGML_API void * gguf_get_data (const struct gguf_context * ctx);
-
- GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
- GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
- GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
-
- GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
- GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
-
- // will abort if the wrong type is used for the key
- GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
- GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
- GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
- GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
- GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
- GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
- GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
- GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
- GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
- GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
- GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
- GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
- GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
- GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
- GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
- GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
-
- GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
- GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
- GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
- GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
- GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i);
-
- // removes key if it exists
- GGML_API void gguf_remove_key(struct gguf_context * ctx, const char * key);
-
- // overrides existing values or adds a new one
- GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
- GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
- GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
- GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
- GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
- GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
- GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
- GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
- GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
- GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
- GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
- GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
- GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
- GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
-
- // set or add KV pairs from another context
- GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
-
- // manage tensor info
- GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
- GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
- GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
-
- // writing gguf files can be done in 2 ways:
- //
- // - write the entire gguf_context to a binary file in a single pass:
- //
- // gguf_write_to_file(ctx, fname);
- //
- // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
- //
- // FILE * f = fopen(fname, "wb");
- // fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
- // fwrite(f, ...);
- // void * data = gguf_meta_get_meta_data(ctx);
- // fseek(f, 0, SEEK_SET);
- // fwrite(f, data, gguf_get_meta_size(ctx));
- // free(data);
- // fclose(f);
- //
-
- // write the entire context to a binary file
- GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
-
- // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
- GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
- GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
-
#ifdef __cplusplus
// restrict not standard in C++
# if defined(__GNUC__)
--- /dev/null
+// This file contains functionality related to "GGUF" files, the binary file format used by ggml.
+// GGUF files have the following structure:
+//
+// 1. File magic "GGUF" (4 bytes).
+// 2. File version (uint32_t).
+// 3. Number of ggml tensors in file (int64_t).
+// 4. Number of key-value-pairs in file (int64_t).
+// 5. For each KV pair:
+// 1. The key (string).
+// 2. The value type (gguf_type).
+// 3a. If the value type is GGUF_TYPE_ARRAY:
+// 1. The type of the array (gguf_type).
+// 2. The number of elements in the array (uint64_t).
+// 3. The binary representation of each element in the array.
+// 3b. Otherwise:
+// 1. The binary representation of the value.
+// 6. For each ggml tensor:
+// 1. The tensor name (string).
+// 2. The number of dimensions of the tensor (uint32_t).
+// 3. For each dimension:
+// 1. The size of the tensor in the dimension (int64_t).
+// 4. The tensor data type (ggml_type).
+// 5. The tensor data offset in the tensor data binary blob (uint64_t).
+// 7. The tensor data binary blob (optional, aligned).
+//
+// Strings are serialized as the string length (uint64_t) followed by the C string without the null terminator.
+// All enums are stored as int32_t.
+// All bool values are stored as int8_t.
+// If the special key "general.alignment" (uint32_t) is defined it is used for alignment,
+// otherwise GGUF_DEFAULT_ALIGNMENT is used.
+//
+// Module maintainer: Johannes Gäßler (@JohannesGaessler, johannesg@5d6.de)
+
+#pragma once
+
+#include "ggml.h"
+
+#include <stdbool.h>
+#include <stdint.h>
+
+#define GGUF_MAGIC "GGUF"
+#define GGUF_VERSION 3
+
+#define GGUF_KEY_GENERAL_ALIGNMENT "general.alignment"
+
+#define GGUF_DEFAULT_ALIGNMENT 32
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+ // types that can be stored as GGUF KV data
+ enum gguf_type {
+ GGUF_TYPE_UINT8 = 0,
+ GGUF_TYPE_INT8 = 1,
+ GGUF_TYPE_UINT16 = 2,
+ GGUF_TYPE_INT16 = 3,
+ GGUF_TYPE_UINT32 = 4,
+ GGUF_TYPE_INT32 = 5,
+ GGUF_TYPE_FLOAT32 = 6,
+ GGUF_TYPE_BOOL = 7,
+ GGUF_TYPE_STRING = 8,
+ GGUF_TYPE_ARRAY = 9,
+ GGUF_TYPE_UINT64 = 10,
+ GGUF_TYPE_INT64 = 11,
+ GGUF_TYPE_FLOAT64 = 12,
+ GGUF_TYPE_COUNT, // marks the end of the enum
+ };
+
+ struct gguf_context;
+
+ struct gguf_init_params {
+ bool no_alloc;
+
+ // if not NULL, create a ggml_context and allocate the tensor data in it
+ struct ggml_context ** ctx;
+ };
+
+ GGML_API struct gguf_context * gguf_init_empty(void);
+ GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
+ //GGML_API struct gguf_context * gguf_init_from_buffer(..);
+
+ GGML_API void gguf_free(struct gguf_context * ctx);
+
+ GGML_API const char * gguf_type_name(enum gguf_type type);
+
+ GGML_API uint32_t gguf_get_version (const struct gguf_context * ctx);
+ GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
+ GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
+
+ GGML_API int64_t gguf_get_n_kv(const struct gguf_context * ctx);
+ GGML_API int64_t gguf_find_key(const struct gguf_context * ctx, const char * key); // returns -1 if key is not found
+ GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int64_t key_id);
+
+ GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int64_t key_id);
+ GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id);
+
+ // will abort if the wrong type is used for the key
+ GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int64_t key_id);
+ GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int64_t key_id);
+ GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int64_t key_id);
+ GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int64_t key_id);
+ GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int64_t key_id);
+ GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int64_t key_id);
+ GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int64_t key_id);
+ GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int64_t key_id);
+ GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int64_t key_id);
+ GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int64_t key_id);
+ GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int64_t key_id);
+ GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int64_t key_id);
+ GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int64_t key_id);
+ GGML_API size_t gguf_get_arr_n (const struct gguf_context * ctx, int64_t key_id);
+
+ // get raw pointer to the first element of the array with the given key_id
+ // for bool arrays, note that they are always stored as int8 on all platforms (usually this makes no difference)
+ GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id);
+
+ // get ith C string from array with given key_id
+ GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int64_t key_id, size_t i);
+
+ GGML_API int64_t gguf_get_n_tensors (const struct gguf_context * ctx);
+ GGML_API int64_t gguf_find_tensor (const struct gguf_context * ctx, const char * name); // returns -1 if the tensor is not found
+ GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int64_t tensor_id);
+ GGML_API const char * gguf_get_tensor_name (const struct gguf_context * ctx, int64_t tensor_id);
+ GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int64_t tensor_id);
+ GGML_API size_t gguf_get_tensor_size (const struct gguf_context * ctx, int64_t tensor_id);
+
+ // removes key if it exists, returns id that the key had prior to removal (-1 if it didn't exist)
+ GGML_API int64_t gguf_remove_key(struct gguf_context * ctx, const char * key);
+
+ // overrides an existing KV pair or adds a new one, the new KV pair is always at the back
+ GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
+ GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
+ GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
+ GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
+ GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
+ GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
+ GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
+ GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
+ GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
+ GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
+ GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
+ GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
+
+ // creates a new array with n elements of the given type and copies the corresponding number of bytes from data
+ GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, size_t n);
+
+ // creates a new array with n strings and copies the corresponding strings from data
+ GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, size_t n);
+
+ // set or add KV pairs from another context
+ GGML_API void gguf_set_kv(struct gguf_context * ctx, const struct gguf_context * src);
+
+ // add tensor to GGUF context, tensor name must be unique
+ GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
+
+ // after changing a tensor's type, the offsets of all tensors with higher indices are immediately recalculated
+ // in such a way that the tensor data remains as one contiguous block (except for padding)
+ GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
+
+ // assumes that at least gguf_get_tensor_size bytes can be read from data
+ GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data);
+
+ // writing gguf files can be done in 3 ways:
+ //
+ // - write the entire gguf_context to a binary file in a single pass:
+ //
+ // gguf_write_to_file(ctx, fname, /*only_meta =*/ false);
+ //
+ // - write only the meta data to a file, then re-open the file and append the tensor data:
+ //
+ // gguf_write_to_file(ctx, fname, /*only_meta =*/ true);
+ // FILE * f = fopen(fname, "ab");
+ // fwrite(f, ...); // write tensor data
+ // fclose(f);
+ //
+ // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
+ //
+ // FILE * f = fopen(fname, "wb");
+ // const size_t size_meta = gguf_get_meta_size(ctx);
+ // fseek(f, size_meta, SEEK_SET);
+ // fwrite(f, ...); // write tensor data
+ // void * data = malloc(size_meta);
+ // gguf_get_meta_data(ctx, data);
+ // rewind(f);
+ // fwrite(data, 1, data, f);
+ // free(data);
+ // fclose(f);
+ //
+
+ // write the entire context to a binary file
+ GGML_API bool gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
+
+ // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
+ GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
+
+ // writes the meta data to pointer "data"
+ GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
+
+#ifdef __cplusplus
+}
+#endif
../include/ggml-backend.h
../include/ggml-cpp.h
../include/ggml-opt.h
+ ../include/gguf.h
ggml.c
ggml-alloc.c
ggml-backend.cpp
ggml-threading.cpp
ggml-threading.h
ggml-quants.c
- ggml-quants.h)
+ ggml-quants.h
+ gguf.cpp)
target_include_directories(ggml-base PRIVATE .)
// GGML internal header
#include "ggml.h"
+#include "gguf.h"
+
#include <assert.h>
#include <math.h>
#include <stdlib.h> // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/
#define GGML_FP32_TO_BF16(x) ggml_compute_fp32_to_bf16(x)
#define GGML_BF16_TO_FP32(x) ggml_compute_bf16_to_fp32(x)
-// expose GGUF internals for test code
-
-GGML_API size_t gguf_type_size(enum gguf_type type);
-
-GGML_API struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params);
-
-struct gguf_buf {
- void * data;
- size_t size;
- size_t offset;
-};
-GGML_API struct gguf_buf gguf_buf_init(size_t size);
-GGML_API void gguf_buf_free(struct gguf_buf buf);
-
-GGML_API void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta);
-
#ifdef __cplusplus
}
#endif
+
+#ifdef __cplusplus
+#include <vector>
+
+// expose GGUF internals for test code
+GGML_API size_t gguf_type_size(enum gguf_type type);
+GGML_API struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params);
+GGML_API void gguf_write_to_buf(const struct gguf_context * ctx, std::vector<int8_t> & buf, bool only_meta);
+#endif // __cplusplus
struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
-#ifdef __clang__
- // temporary until ggml_tensor::backend is removed
- #pragma clang diagnostic push
- #pragma clang diagnostic ignored "-Wdeprecated-declarations"
-#endif
-
*result = (struct ggml_tensor) {
/*.type =*/ type,
- /*.backend =*/ GGML_BACKEND_TYPE_CPU,
/*.buffer =*/ NULL,
/*.ne =*/ { 1, 1, 1, 1 },
/*.nb =*/ { 0, 0, 0, 0 },
/*.padding =*/ { 0 },
};
-#ifdef __clang__
- #pragma clang diagnostic pop
-#endif
-
// TODO: this should not be needed as long as we don't rely on aligned SIMD loads
//GGML_ASSERT_ALIGNED(result->data);
////////////////////////////////////////////////////////////////////////////////
-struct gguf_str {
- uint64_t n; // GGUFv2
- char * data;
-};
-
-static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
- [GGUF_TYPE_UINT8] = sizeof(uint8_t),
- [GGUF_TYPE_INT8] = sizeof(int8_t),
- [GGUF_TYPE_UINT16] = sizeof(uint16_t),
- [GGUF_TYPE_INT16] = sizeof(int16_t),
- [GGUF_TYPE_UINT32] = sizeof(uint32_t),
- [GGUF_TYPE_INT32] = sizeof(int32_t),
- [GGUF_TYPE_FLOAT32] = sizeof(float),
- [GGUF_TYPE_BOOL] = sizeof(bool),
- [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
- [GGUF_TYPE_UINT64] = sizeof(uint64_t),
- [GGUF_TYPE_INT64] = sizeof(int64_t),
- [GGUF_TYPE_FLOAT64] = sizeof(double),
- [GGUF_TYPE_ARRAY] = 0, // undefined
-};
-static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
-
-static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
- [GGUF_TYPE_UINT8] = "u8",
- [GGUF_TYPE_INT8] = "i8",
- [GGUF_TYPE_UINT16] = "u16",
- [GGUF_TYPE_INT16] = "i16",
- [GGUF_TYPE_UINT32] = "u32",
- [GGUF_TYPE_INT32] = "i32",
- [GGUF_TYPE_FLOAT32] = "f32",
- [GGUF_TYPE_BOOL] = "bool",
- [GGUF_TYPE_STRING] = "str",
- [GGUF_TYPE_ARRAY] = "arr",
- [GGUF_TYPE_UINT64] = "u64",
- [GGUF_TYPE_INT64] = "i64",
- [GGUF_TYPE_FLOAT64] = "f64",
-};
-static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
-
-union gguf_value {
- uint8_t uint8;
- int8_t int8;
- uint16_t uint16;
- int16_t int16;
- uint32_t uint32;
- int32_t int32;
- float float32;
- uint64_t uint64;
- int64_t int64;
- double float64;
- bool bool_;
-
- struct gguf_str str;
-
- struct {
- enum gguf_type type;
-
- uint64_t n; // GGUFv2
- void * data;
- } arr;
-};
-
-struct gguf_kv {
- struct gguf_str key;
-
- enum gguf_type type;
- union gguf_value value;
-};
-
-struct gguf_header {
- char magic[4];
-
- uint32_t version;
- uint64_t n_tensors; // GGUFv2
- uint64_t n_kv; // GGUFv2
-};
-
-struct gguf_tensor_info {
- struct gguf_str name;
-
- uint32_t n_dims;
- uint64_t ne[GGML_MAX_DIMS];
-
- enum ggml_type type;
-
- uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
-
- // for writing API
- const void * data;
- size_t size;
-};
-
-struct gguf_context {
- struct gguf_header header;
-
- struct gguf_kv * kv;
- struct gguf_tensor_info * infos;
-
- size_t alignment;
- size_t offset; // offset of `data` from beginning of file
- size_t size; // size of `data` in bytes
-
- //uint8_t * padding;
- void * data;
-};
-
-size_t gguf_type_size(enum gguf_type type) {
- GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
- return GGUF_TYPE_SIZE[type];
-}
-
-static bool gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
- if (info->n_dims > GGML_MAX_DIMS) {
- fprintf(stderr, "%s: invalid number of dimensions (%" PRIu32 ")\n", __func__, info->n_dims);
- return false;
- }
-
- if (info->type < 0 || info->type >= GGML_TYPE_COUNT) {
- fprintf(stderr, "%s: invalid type (%d)\n", __func__, info->type);
- return false;
- }
-
- if (strlen(info->name.data) >= GGML_MAX_NAME) {
- fprintf(stderr, "%s: tensor '%s' name is too long\n", __func__, info->name.data);
- return false;
- }
-
- for (uint32_t i = 0; i < info->n_dims; ++i) {
- if (info->ne[i] <= 0) {
- fprintf(stderr, "%s: invalid number of elements (%" PRIu64 ")\n", __func__, info->ne[i]);
- return false;
- }
- }
-
- // prevent overflow for total number of elements
- if (INT64_MAX/info->ne[1] <= info->ne[0]) {
- fprintf(stderr, "%s: invalid number of elements (%" PRIu64 ")\n", __func__, info->ne[1]);
- return false;
- }
-
- if (INT64_MAX/info->ne[2] <= info->ne[0]*info->ne[1]) {
- fprintf(stderr, "%s: invalid number of elements (%" PRIu64 ")\n", __func__, info->ne[2]);
- return false;
- }
-
- if (INT64_MAX/info->ne[3] <= info->ne[0]*info->ne[1]*info->ne[2]) {
- fprintf(stderr, "%s: invalid number of elements (%" PRIu64 ")\n", __func__, info->ne[3]);
- return false;
- }
-
- return true;
-}
-
-static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
- const size_t n = fread(dst, 1, size, file);
- *offset += n;
- return n == size;
-}
-
-static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
- p->n = 0;
- p->data = NULL;
-
- bool ok = true;
-
- ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
-
- // early exit if string length is invalid, prevents from integer overflow
- if (p->n == SIZE_MAX) {
- fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
- return false;
- }
-
- p->data = calloc(p->n + 1, 1);
- if (!p->data) {
- fprintf(stderr, "%s: failed to allocate memory for string of length %" PRIu64 "\n", __func__, p->n);
- return false;
- }
-
- ok = ok && gguf_fread_el(file, p->data, p->n, offset);
-
- return ok;
-}
-
-static void gguf_free_kv(struct gguf_kv * kv) {
- if (kv->key.data) {
- GGML_FREE(kv->key.data);
- }
-
- if (kv->type == GGUF_TYPE_STRING) {
- if (kv->value.str.data) {
- GGML_FREE(kv->value.str.data);
- }
- }
-
- if (kv->type == GGUF_TYPE_ARRAY) {
- if (kv->value.arr.data) {
- if (kv->value.arr.type == GGUF_TYPE_STRING) {
- for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
- struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
- if (str->data) {
- GGML_FREE(str->data);
- }
- }
- }
- GGML_FREE(kv->value.arr.data);
- }
- }
-}
-
-struct gguf_context * gguf_init_empty(void) {
- struct gguf_context * ctx = calloc(1, sizeof(struct gguf_context));
- if (!ctx) {
- fprintf(stderr, "%s: failed to allocate memory for context\n", __func__);
- return NULL;
- }
-
- memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
- ctx->header.version = GGUF_VERSION;
- ctx->header.n_tensors = 0;
- ctx->header.n_kv = 0;
-
- ctx->kv = NULL;
- ctx->infos = NULL;
-
- ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
- ctx->offset = 0;
- ctx->size = 0;
-
- ctx->data = NULL;
-
- return ctx;
-}
-
-struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params) {
- // offset from start of file
- size_t offset = 0;
-
- char magic[4];
-
- // check the magic before making allocations
- {
- gguf_fread_el(file, &magic, sizeof(magic), &offset);
-
- for (uint32_t i = 0; i < sizeof(magic); i++) {
- if (magic[i] != GGUF_MAGIC[i]) {
- fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
- return NULL;
- }
- }
- }
-
- bool ok = true;
-
- struct gguf_context * ctx = calloc(1, sizeof(struct gguf_context));
- if (!ctx) {
- fprintf(stderr, "%s: failed to allocate memory for context\n", __func__);
- return NULL;
- }
-
- // read the header
- {
- strncpy(ctx->header.magic, magic, 4);
-
- ctx->kv = NULL;
- ctx->infos = NULL;
- ctx->data = NULL;
-
- ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
- ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
- ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
-
- if (ctx->header.version == 1) {
- fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
- gguf_free(ctx);
- return NULL;
- }
-
- // sanity-checks to prevent from integer/buffer overflows
-
- ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
- ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
- ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
-
- if (!ok) {
- fprintf(stderr, "%s: failed to read header\n", __func__);
- gguf_free(ctx);
- return NULL;
- }
- }
-
- // read the kv pairs
- {
- const uint64_t n_kv = ctx->header.n_kv;
-
- if (n_kv > 0) {
- ctx->kv = calloc(n_kv, sizeof(struct gguf_kv));
- if (!ctx->kv) {
- fprintf(stderr, "%s: failed to allocate memory for kv pairs\n", __func__);
- gguf_free(ctx);
- return NULL;
- }
- }
-
- for (uint64_t i = 0; i < n_kv; ++i) {
- struct gguf_kv * kv = &ctx->kv[i];
-
- //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
-
- ok = ok && gguf_fread_str(file, &kv->key, &offset);
- ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
-
- //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
-
- switch (kv->type) {
- case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
- case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
- case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
- case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
- case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
- case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
- case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
- case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
- case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
- case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
- case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
- case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
- case GGUF_TYPE_ARRAY:
- {
- ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
- ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
-
- switch (kv->value.arr.type) {
- case GGUF_TYPE_UINT8:
- case GGUF_TYPE_INT8:
- case GGUF_TYPE_UINT16:
- case GGUF_TYPE_INT16:
- case GGUF_TYPE_UINT32:
- case GGUF_TYPE_INT32:
- case GGUF_TYPE_FLOAT32:
- case GGUF_TYPE_UINT64:
- case GGUF_TYPE_INT64:
- case GGUF_TYPE_FLOAT64:
- case GGUF_TYPE_BOOL:
- {
- // prevent from integer overflow in the malloc below
- if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
- fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
- gguf_free(ctx);
- return NULL;
- }
-
- kv->value.arr.data = calloc(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
- if (!kv->value.arr.data) {
- fprintf(stderr, "%s: failed to allocate memory for array\n", __func__);
- gguf_free(ctx);
- return NULL;
- }
-
- ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
- } break;
- case GGUF_TYPE_STRING:
- {
- // prevent from integer overflow in the malloc below
- if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
- fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
- gguf_free(ctx);
- return NULL;
- }
-
- kv->value.arr.data = calloc(kv->value.arr.n, sizeof(struct gguf_str));
- if (!kv->value.arr.data) {
- fprintf(stderr, "%s: failed to allocate memory for array\n", __func__);
- gguf_free(ctx);
- return NULL;
- }
-
- for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
- ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
- }
- } break;
- case GGUF_TYPE_ARRAY:
- default:
- {
- fprintf(stderr, "%s: invalid array type %d\n", __func__, kv->value.arr.type);
- ok = false;
- } break;
- }
- } break;
- default:
- {
- fprintf(stderr, "%s: invalid type %d\n", __func__, kv->type);
- ok = false;
- } break;
- }
-
- if (!ok) {
- break;
- }
- }
-
- if (!ok) {
- fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
- gguf_free(ctx);
- return NULL;
- }
- }
-
- // read the tensor infos
- if (ctx->header.n_tensors > 0) {
- ctx->infos = calloc(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
- if (!ctx->infos) {
- fprintf(stderr, "%s: failed to allocate memory for tensor infos\n", __func__);
- gguf_free(ctx);
- return NULL;
- }
-
- for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
- struct gguf_tensor_info * info = &ctx->infos[i];
-
- for (int j = 0; j < GGML_MAX_DIMS; ++j) {
- info->ne[j] = 1;
- }
-
- ok = ok && gguf_fread_str(file, &info->name, &offset);
- ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
-
- ok = ok && (info->n_dims <= GGML_MAX_DIMS);
-
- for (uint32_t j = 0; j < info->n_dims; ++j) {
- ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
- }
-
- ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
- ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
-
- ok = ok && gguf_tensor_info_sanitize(info);
-
- // make sure there is no duplicated tensor names
- for (uint64_t j = 0; j < i && ok; ++j) {
- if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
- fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
- ok = false;
- }
- }
-
- if (!ok) {
- fprintf(stderr, "%s: failed to read tensor info\n", __func__);
- gguf_free(ctx);
- return NULL;
- }
- }
- }
-
- ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
-
- int alignment_idx = gguf_find_key(ctx, "general.alignment");
- if (alignment_idx != -1) {
- ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
- }
-
- // we require the data section to be aligned, so take into account any padding
- {
- const size_t offset_pad = offset % ctx->alignment;
-
- if (offset_pad != 0) {
- offset += ctx->alignment - offset_pad;
- fseek(file, offset, SEEK_SET);
- }
- }
-
- // store the current file offset - this is where the data section starts
- ctx->offset = offset;
-
- // compute the total size of the data section, taking into account the alignment
- {
- ctx->size = 0;
- for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
- struct gguf_tensor_info * info = &ctx->infos[i];
-
- const int64_t ne =
- (int64_t) info->ne[0] *
- (int64_t) info->ne[1] *
- (int64_t) info->ne[2] *
- (int64_t) info->ne[3];
-
- if (ggml_blck_size(info->type) == 0 ) {
- // this tensor type support have been removed:
- fprintf(stderr, "%s: tensor '%s' of type %d: %s\n",
- __func__, info->name.data, (int) info->type, ggml_type_name(info->type));
- gguf_free(ctx);
- return NULL;
- }
-
- if (ne % ggml_blck_size(info->type) != 0) {
- fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%" PRId64 ")\n",
- __func__, info->name.data, (int) info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
- gguf_free(ctx);
- return NULL;
- }
-
- const size_t size_cur = ggml_row_size(info->type, ne);
-
- ctx->size += GGML_PAD(size_cur, ctx->alignment);
- }
- }
-
- // load the tensor data only if requested
- if (params.ctx != NULL) {
- // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
- // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
- // the ggml_tensor structs to the appropriate locations in the binary blob
-
- // compute the exact size needed for the new ggml_context
- const size_t mem_size =
- params.no_alloc ?
- (ctx->header.n_tensors )*ggml_tensor_overhead() :
- (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
-
- struct ggml_init_params pdata = {
- .mem_size = mem_size,
- .mem_buffer = NULL,
- .no_alloc = params.no_alloc,
- };
-
- *params.ctx = ggml_init(pdata);
- if (*params.ctx == NULL) {
- fprintf(stderr, "%s: failed to initialize context\n", __func__);
- gguf_free(ctx);
- return NULL;
- }
-
- struct ggml_context * ctx_data = *params.ctx;
-
- struct ggml_tensor * data = NULL;
-
- if (!params.no_alloc) {
- data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
-
- ok = ok && data != NULL;
-
- // read the binary blob with the tensor data
- ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
-
- if (!ok) {
- fprintf(stderr, "%s: failed to read tensor data\n", __func__);
- ggml_free(ctx_data);
- gguf_free(ctx);
- return NULL;
- }
-
- ctx->data = data->data;
- }
-
- ggml_set_no_alloc(ctx_data, true);
-
- // create the tensors
- for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
- const int64_t ne[GGML_MAX_DIMS] = {
- ctx->infos[i].ne[0],
- ctx->infos[i].ne[1],
- ctx->infos[i].ne[2],
- ctx->infos[i].ne[3],
- };
-
- struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
-
- ok = ok && cur != NULL;
-
- if (!ok) {
- break;
- }
-
- ggml_set_name(cur, ctx->infos[i].name.data);
-
- // point the data member to the appropriate location in the binary blob using the tensor infos
- if (!params.no_alloc) {
- //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
- cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
- }
- }
-
- if (!ok) {
- fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
- ggml_free(ctx_data);
- gguf_free(ctx);
- return NULL;
- }
-
- ggml_set_no_alloc(ctx_data, params.no_alloc);
- }
-
- return ctx;
-}
-
-struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
- FILE * file = ggml_fopen(fname, "rb");
- if (!file) {
- fprintf(stderr, "%s: failed to open '%s': '%s'\n", __func__, fname, strerror(errno));
- return NULL;
- }
-
- struct gguf_context * result = gguf_init_from_file_impl(file, params);
- fclose(file);
- return result;
-}
-
-void gguf_free(struct gguf_context * ctx) {
- if (ctx == NULL) {
- return;
- }
-
- if (ctx->kv) {
- // free string memory - not great..
- for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
- gguf_free_kv(&ctx->kv[i]);
- }
-
- GGML_FREE(ctx->kv);
- }
-
- if (ctx->infos) {
- for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
- struct gguf_tensor_info * info = &ctx->infos[i];
-
- if (info->name.data) {
- GGML_FREE(info->name.data);
- }
- }
-
- GGML_FREE(ctx->infos);
- }
-
- GGML_FREE(ctx);
-}
-
-const char * gguf_type_name(enum gguf_type type) {
- return GGUF_TYPE_NAME[type];
-}
-
-int gguf_get_version(const struct gguf_context * ctx) {
- return ctx->header.version;
-}
-
-size_t gguf_get_alignment(const struct gguf_context * ctx) {
- return ctx->alignment;
-}
-
-size_t gguf_get_data_offset(const struct gguf_context * ctx) {
- return ctx->offset;
-}
-
-void * gguf_get_data(const struct gguf_context * ctx) {
- return ctx->data;
-}
-
-int gguf_get_n_kv(const struct gguf_context * ctx) {
- return ctx->header.n_kv;
-}
-
-int gguf_find_key(const struct gguf_context * ctx, const char * key) {
- // return -1 if key not found
- int keyfound = -1;
-
- const int n_kv = gguf_get_n_kv(ctx);
-
- for (int i = 0; i < n_kv; ++i) {
- if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
- keyfound = i;
- break;
- }
- }
-
- return keyfound;
-}
-
-const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- return ctx->kv[key_id].key.data;
-}
-
-enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- return ctx->kv[key_id].type;
-}
-
-enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
- return ctx->kv[key_id].value.arr.type;
-}
-
-const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
- return ctx->kv[key_id].value.arr.data;
-}
-
-const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
- struct gguf_kv * kv = &ctx->kv[key_id];
- struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
- return str->data;
-}
-
-int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
- return ctx->kv[key_id].value.arr.n;
-}
-
-uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
- return ctx->kv[key_id].value.uint8;
-}
-
-int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
- return ctx->kv[key_id].value.int8;
-}
-
-uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
- return ctx->kv[key_id].value.uint16;
-}
-
-int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
- return ctx->kv[key_id].value.int16;
-}
-
-uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
- return ctx->kv[key_id].value.uint32;
-}
-
-int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
- return ctx->kv[key_id].value.int32;
-}
-
-float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
- return ctx->kv[key_id].value.float32;
-}
-
-uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
- return ctx->kv[key_id].value.uint64;
-}
-
-int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
- return ctx->kv[key_id].value.int64;
-}
-
-double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
- return ctx->kv[key_id].value.float64;
-}
-
-bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
- return ctx->kv[key_id].value.bool_;
-}
-
-const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
- return ctx->kv[key_id].value.str.data;
-}
-
-const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
- GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
- return &ctx->kv[key_id].value;
-}
-
-int gguf_get_n_tensors(const struct gguf_context * ctx) {
- return ctx->header.n_tensors;
-}
-
-int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
- // return -1 if tensor not found
- int tensorfound = -1;
-
- const int n_tensors = gguf_get_n_tensors(ctx);
-
- for (int i = 0; i < n_tensors; ++i) {
- if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
- tensorfound = i;
- break;
- }
- }
-
- return tensorfound;
-}
-
-size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
- return ctx->infos[i].offset;
-}
-
-char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
- return ctx->infos[i].name.data;
-}
-
-enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
- return ctx->infos[i].type;
-}
-
-// returns the index
-static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
- const int idx = gguf_find_key(ctx, key);
- if (idx >= 0) {
- return idx;
- }
-
- const int n_kv = gguf_get_n_kv(ctx);
-
- ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
- ctx->kv[n_kv].key.n = strlen(key);
- ctx->kv[n_kv].key.data = strdup(key);
- ctx->header.n_kv++;
-
- return n_kv;
-}
-
-void gguf_remove_key(struct gguf_context * ctx, const char * key) {
- const int idx = gguf_find_key(ctx, key);
- if (idx >= 0) {
- const int n_kv = gguf_get_n_kv(ctx);
- gguf_free_kv(&ctx->kv[idx]);
- for (int i = idx; i < n_kv-1; ++i) {
- ctx->kv[i] = ctx->kv[i+1];
- }
- ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
- ctx->header.n_kv--;
- }
-}
-
-void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
-
- ctx->kv[idx].type = GGUF_TYPE_UINT8;
- ctx->kv[idx].value.uint8 = val;
-}
-
-void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
-
- ctx->kv[idx].type = GGUF_TYPE_INT8;
- ctx->kv[idx].value.int8 = val;
-}
-
-void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
-
- ctx->kv[idx].type = GGUF_TYPE_UINT16;
- ctx->kv[idx].value.uint16 = val;
-}
-
-void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
-
- ctx->kv[idx].type = GGUF_TYPE_INT16;
- ctx->kv[idx].value.int16 = val;
-}
-
-void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
-
- ctx->kv[idx].type = GGUF_TYPE_UINT32;
- ctx->kv[idx].value.uint32 = val;
-}
-
-void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
-
- ctx->kv[idx].type = GGUF_TYPE_INT32;
- ctx->kv[idx].value.int32 = val;
-}
-
-void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
- const int idx = gguf_get_or_add_key(ctx, key);
-
- ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
- ctx->kv[idx].value.float32 = val;
-}
-
-void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
-
- ctx->kv[idx].type = GGUF_TYPE_UINT64;
- ctx->kv[idx].value.uint64 = val;
-}
-
-void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
-
- ctx->kv[idx].type = GGUF_TYPE_INT64;
- ctx->kv[idx].value.int64 = val;
-}
-
-void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
- const int idx = gguf_get_or_add_key(ctx, key);
-
- ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
- ctx->kv[idx].value.float64 = val;
-}
-
-void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
- const int idx = gguf_get_or_add_key(ctx, key);
-
- ctx->kv[idx].type = GGUF_TYPE_BOOL;
- ctx->kv[idx].value.bool_ = val;
-}
-
-void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
- const int idx = gguf_get_or_add_key(ctx, key);
-
- ctx->kv[idx].type = GGUF_TYPE_STRING;
- ctx->kv[idx].value.str.n = strlen(val);
- ctx->kv[idx].value.str.data = strdup(val);
-}
-
-void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
- const int idx = gguf_get_or_add_key(ctx, key);
-
- ctx->kv[idx].type = GGUF_TYPE_ARRAY;
- ctx->kv[idx].value.arr.type = type;
- ctx->kv[idx].value.arr.n = n;
- ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
- memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
-}
-
-void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
- const int idx = gguf_get_or_add_key(ctx, key);
-
- ctx->kv[idx].type = GGUF_TYPE_ARRAY;
- ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
- ctx->kv[idx].value.arr.n = n;
- ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
- for (int i = 0; i < n; i++) {
- struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
- str->n = strlen(data[i]);
- str->data = strdup(data[i]);
- }
-}
-
-// set or add KV pairs from another context
-void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
- for (uint32_t i = 0; i < src->header.n_kv; i++) {
- switch (src->kv[i].type) {
- case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
- case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
- case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
- case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
- case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
- case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
- case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
- case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
- case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
- case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
- case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
- case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
- case GGUF_TYPE_ARRAY:
- {
- if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
- const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
- for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
- data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
- }
- gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
- GGML_FREE((void *)data);
- } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
- GGML_ABORT("nested arrays not supported");
- } else {
- gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
- }
- } break;
- default: GGML_ABORT("invalid type");
- }
- }
-}
-
-void gguf_add_tensor(
- struct gguf_context * ctx,
- const struct ggml_tensor * tensor) {
- GGML_ASSERT(tensor);
- if (gguf_find_tensor(ctx, tensor->name) != -1) {
- GGML_ABORT("duplicated tensor name");
- }
-
- const int idx = ctx->header.n_tensors;
- ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
-
- ctx->infos[idx].name.n = strlen(tensor->name);
- ctx->infos[idx].name.data = strdup(tensor->name);
-
- for (int i = 0; i < GGML_MAX_DIMS; ++i) {
- ctx->infos[idx].ne[i] = 1;
- }
-
- ctx->infos[idx].n_dims = ggml_n_dims(tensor);
- for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
- ctx->infos[idx].ne[i] = tensor->ne[i];
- }
-
- ctx->infos[idx].type = tensor->type;
- ctx->infos[idx].offset = 0;
- ctx->infos[idx].data = tensor->data;
- ctx->infos[idx].size = ggml_nbytes(tensor);
-
- if (ctx->header.n_tensors > 0) {
- ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
- }
-
- ctx->header.n_tensors++;
-}
-
-void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
- const int idx = gguf_find_tensor(ctx, name);
- if (idx < 0) {
- GGML_ABORT("tensor not found");
- }
-
- ctx->infos[idx].type = type;
-}
-
-void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
- const int idx = gguf_find_tensor(ctx, name);
- if (idx < 0) {
- GGML_ABORT("tensor not found");
- }
-
- ctx->infos[idx].data = data;
- ctx->infos[idx].size = size;
-
- // update offsets
- for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
- ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
- }
-}
-
-//static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
-// fwrite(&val->n, sizeof(val->n), 1, file);
-// fwrite(val->data, sizeof(char), val->n, file);
-//}
-//
-//static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
-// fwrite(val, sizeof(char), size, file);
-//}
-
-struct gguf_buf gguf_buf_init(size_t size) {
- struct gguf_buf buf = {
- /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
- /*buf.size =*/ size,
- /*buf.offset =*/ 0,
- };
-
- return buf;
-}
-
-void gguf_buf_free(struct gguf_buf buf) {
- if (buf.data) {
- GGML_FREE(buf.data);
- }
-}
-
-static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
- if (buf->offset + size > buf->size) {
- buf->size = 1.5*(buf->offset + size);
- if (buf->data) {
- buf->data = realloc(buf->data, buf->size);
- }
- }
-}
-
-static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
- gguf_buf_grow(buf, sizeof(val->n) + val->n);
-
- if (buf->data) {
- memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
- }
- buf->offset += sizeof(val->n);
-
- if (buf->data) {
- memcpy((char *) buf->data + buf->offset, val->data, val->n);
- }
- buf->offset += val->n;
-}
-
-static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
- gguf_buf_grow(buf, el_size);
-
- if (buf->data) {
- memcpy((char *) buf->data + buf->offset, val, el_size);
- }
- buf->offset += el_size;
-}
-
-void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
- // write header
- gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
- gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
- gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
- gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
-
- // write key-value pairs
- for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
- struct gguf_kv * kv = &ctx->kv[i];
-
- gguf_bwrite_str(buf, &kv->key);
- gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
-
- switch (kv->type) {
- case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
- case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
- case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
- case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
- case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
- case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
- case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
- case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
- case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
- case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
- case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
- case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
- case GGUF_TYPE_ARRAY:
- {
- gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
- gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
-
- switch (kv->value.arr.type) {
- case GGUF_TYPE_UINT8:
- case GGUF_TYPE_INT8:
- case GGUF_TYPE_UINT16:
- case GGUF_TYPE_INT16:
- case GGUF_TYPE_UINT32:
- case GGUF_TYPE_INT32:
- case GGUF_TYPE_FLOAT32:
- case GGUF_TYPE_UINT64:
- case GGUF_TYPE_INT64:
- case GGUF_TYPE_FLOAT64:
- case GGUF_TYPE_BOOL:
- {
- gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
- } break;
- case GGUF_TYPE_STRING:
- {
- for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
- gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
- }
- } break;
- case GGUF_TYPE_ARRAY:
- default: GGML_ABORT("invalid type");
- }
- } break;
- default: GGML_ABORT("invalid type");
- }
- }
-
- // write tensor infos
- for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
- struct gguf_tensor_info * info = &ctx->infos[i];
-
- gguf_bwrite_str(buf, &info->name);
- gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
- for (uint32_t j = 0; j < info->n_dims; ++j) {
- gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
- }
- gguf_bwrite_el(buf, &info->type, sizeof(info->type));
- gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
- }
-
- // we require the data section to be aligned, so take into account any padding
- {
- const size_t offset = buf->offset;
- const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
-
- if (offset_pad != offset) {
- uint8_t pad = 0;
- for (size_t i = 0; i < offset_pad - offset; ++i) {
- gguf_bwrite_el(buf, &pad, sizeof(pad));
- }
- }
- }
-
- if (only_meta) {
- return;
- }
-
- size_t offset = 0;
-
- // write tensor data
- for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
- struct gguf_tensor_info * info = &ctx->infos[i];
-
- const size_t size = info->size;
- const size_t size_pad = GGML_PAD(size, ctx->alignment);
-
- gguf_bwrite_el(buf, info->data, size);
-
- if (size_pad != size) {
- uint8_t pad = 0;
- for (size_t j = 0; j < size_pad - size; ++j) {
- gguf_bwrite_el(buf, &pad, sizeof(pad));
- }
- }
-
- GGML_ASSERT(offset == info->offset);
-
- offset += size_pad;
- }
-}
-
-void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
- FILE * file = ggml_fopen(fname, "wb");
- if (!file) {
- GGML_ABORT("failed to open file for writing");
- }
-
- struct gguf_buf buf = gguf_buf_init(16*1024);
-
- gguf_write_to_buf(ctx, &buf, only_meta);
-
- fwrite(buf.data, 1, buf.offset, file);
-
- gguf_buf_free(buf);
-
- fclose(file);
-}
-
-size_t gguf_get_meta_size(const struct gguf_context * ctx) {
- // no allocs - only compute size
- struct gguf_buf buf = gguf_buf_init(0);
-
- gguf_write_to_buf(ctx, &buf, true);
-
- return buf.offset;
-}
-
-void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
- struct gguf_buf buf = gguf_buf_init(16*1024);
-
- gguf_write_to_buf(ctx, &buf, true);
-
- memcpy(data, buf.data, buf.offset);
-
- gguf_buf_free(buf);
-}
-
void ggml_log_set(ggml_log_callback log_callback, void * user_data) {
g_logger_state.log_callback = log_callback ? log_callback : ggml_log_callback_default;
g_logger_state.log_callback_user_data = user_data;
--- /dev/null
+#include "ggml.h"
+#include "ggml-backend.h"
+#include "ggml-impl.h"
+#include "gguf.h"
+
+#include <cinttypes>
+#include <cstddef>
+#include <cstdint>
+#include <cstdio>
+#include <cstdlib>
+#include <cstring>
+#include <map>
+#include <new>
+#include <stdexcept>
+#include <string>
+#include <vector>
+
+template <typename T>
+struct type_to_gguf_type;
+
+template <>
+struct type_to_gguf_type<uint8_t> {
+ static constexpr enum gguf_type value = GGUF_TYPE_UINT8;
+};
+
+template <>
+struct type_to_gguf_type<int8_t> {
+ static constexpr enum gguf_type value = GGUF_TYPE_INT8;
+};
+
+template <>
+struct type_to_gguf_type<uint16_t> {
+ static constexpr enum gguf_type value = GGUF_TYPE_UINT16;
+};
+
+template <>
+struct type_to_gguf_type<int16_t> {
+ static constexpr enum gguf_type value = GGUF_TYPE_INT16;
+};
+
+template <>
+struct type_to_gguf_type<uint32_t> {
+ static constexpr enum gguf_type value = GGUF_TYPE_UINT32;
+};
+
+template <>
+struct type_to_gguf_type<int32_t> {
+ static constexpr enum gguf_type value = GGUF_TYPE_INT32;
+};
+
+template <>
+struct type_to_gguf_type<float> {
+ static constexpr enum gguf_type value = GGUF_TYPE_FLOAT32;
+};
+
+template <>
+struct type_to_gguf_type<bool> {
+ static constexpr enum gguf_type value = GGUF_TYPE_BOOL;
+};
+
+template <>
+struct type_to_gguf_type<std::string> {
+ static constexpr enum gguf_type value = GGUF_TYPE_STRING;
+};
+
+template <>
+struct type_to_gguf_type<uint64_t> {
+ static constexpr enum gguf_type value = GGUF_TYPE_UINT64;
+};
+
+template <>
+struct type_to_gguf_type<int64_t> {
+ static constexpr enum gguf_type value = GGUF_TYPE_INT64;
+};
+
+template <>
+struct type_to_gguf_type<double> {
+ static constexpr enum gguf_type value = GGUF_TYPE_FLOAT64;
+};
+
+static const std::map<gguf_type, size_t> GGUF_TYPE_SIZE = {
+ {GGUF_TYPE_UINT8, sizeof(uint8_t)},
+ {GGUF_TYPE_INT8, sizeof(int8_t)},
+ {GGUF_TYPE_UINT16, sizeof(uint16_t)},
+ {GGUF_TYPE_INT16, sizeof(int16_t)},
+ {GGUF_TYPE_UINT32, sizeof(uint32_t)},
+ {GGUF_TYPE_INT32, sizeof(int32_t)},
+ {GGUF_TYPE_FLOAT32, sizeof(float)},
+ {GGUF_TYPE_BOOL, sizeof(int8_t)},
+ {GGUF_TYPE_STRING, 0}, // undefined
+ {GGUF_TYPE_ARRAY, 0}, // undefined
+ {GGUF_TYPE_UINT64, sizeof(uint64_t)},
+ {GGUF_TYPE_INT64, sizeof(int64_t)},
+ {GGUF_TYPE_FLOAT64, sizeof(double)},
+};
+static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
+
+static const std::map<gguf_type, const char *> GGUF_TYPE_NAME = {
+ {GGUF_TYPE_UINT8, "u8"},
+ {GGUF_TYPE_INT8, "i8"},
+ {GGUF_TYPE_UINT16, "u16"},
+ {GGUF_TYPE_INT16, "i16"},
+ {GGUF_TYPE_UINT32, "u32"},
+ {GGUF_TYPE_INT32, "i32"},
+ {GGUF_TYPE_FLOAT32, "f32"},
+ {GGUF_TYPE_BOOL, "bool"},
+ {GGUF_TYPE_STRING, "str"},
+ {GGUF_TYPE_ARRAY, "arr"},
+ {GGUF_TYPE_UINT64, "u64"},
+ {GGUF_TYPE_INT64, "i64"},
+ {GGUF_TYPE_FLOAT64, "f64"},
+};
+static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
+
+size_t gguf_type_size(enum gguf_type type) {
+ auto it = GGUF_TYPE_SIZE.find(type);
+ return it == GGUF_TYPE_SIZE.end() ? 0 : it->second;
+}
+
+struct gguf_kv {
+ std::string key;
+
+ bool is_array;
+ enum gguf_type type;
+
+ std::vector<int8_t> data;
+ std::vector<std::string> data_string;
+
+ template <typename T>
+ gguf_kv(const std::string & key, const T value)
+ : key(key), is_array(false), type(type_to_gguf_type<T>::value) {
+ GGML_ASSERT(!key.empty());
+ data.resize(sizeof(T));
+ memcpy(data.data(), &value, sizeof(T));
+ }
+
+ template <typename T>
+ gguf_kv(const std::string & key, const std::vector<T> & value)
+ : key(key), is_array(true), type(type_to_gguf_type<T>::value) {
+ GGML_ASSERT(!key.empty());
+ data.resize(value.size()*sizeof(T));
+ for (size_t i = 0; i < value.size(); ++i) {
+ const T tmp = value[i];
+ memcpy(data.data() + i*sizeof(T), &tmp, sizeof(T));
+ }
+ }
+
+ gguf_kv(const std::string & key, const std::string & value)
+ : key(key), is_array(false), type(GGUF_TYPE_STRING) {
+ GGML_ASSERT(!key.empty());
+ data_string.push_back(value);
+ }
+
+ gguf_kv(const std::string & key, const std::vector<std::string> & value)
+ : key(key), is_array(true), type(GGUF_TYPE_STRING) {
+ GGML_ASSERT(!key.empty());
+ data_string = value;
+ }
+
+ const std::string & get_key() const {
+ return key;
+ }
+
+ const enum gguf_type & get_type() const {
+ return type;
+ }
+
+ size_t get_ne() const {
+ if (type == GGUF_TYPE_STRING) {
+ const size_t ne = data_string.size();
+ GGML_ASSERT(is_array || ne == 1);
+ return ne;
+ }
+ const size_t type_size = gguf_type_size(type);
+ GGML_ASSERT(data.size() % type_size == 0);
+ const size_t ne = data.size() / type_size;
+ GGML_ASSERT(is_array || ne == 1);
+ return ne;
+ }
+
+ template <typename T>
+ const T & get_val(const size_t i = 0) const {
+ GGML_ASSERT(type_to_gguf_type<T>::value == type);
+ if constexpr (std::is_same<T, std::string>::value) {
+ GGML_ASSERT(data_string.size() >= i+1);
+ return data_string[i];
+ }
+ const size_t type_size = gguf_type_size(type);
+ GGML_ASSERT(data.size() % type_size == 0);
+ GGML_ASSERT(data.size() >= (i+1)*type_size);
+ return reinterpret_cast<const T *>(data.data())[i];
+ }
+
+ void cast(const enum gguf_type new_type) {
+ const size_t new_type_size = gguf_type_size(new_type);
+ GGML_ASSERT(data.size() % new_type_size == 0);
+ type = new_type;
+ }
+};
+
+struct gguf_tensor_info {
+ struct ggml_tensor t; // for holding the equivalent info
+ uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
+};
+
+struct gguf_context {
+ uint32_t version = GGUF_VERSION;
+
+ std::vector<struct gguf_kv> kv;
+ std::vector<struct gguf_tensor_info> info;
+
+ size_t alignment = GGUF_DEFAULT_ALIGNMENT;
+ size_t offset = 0; // offset of `data` from beginning of file
+ size_t size = 0; // size of `data` in bytes
+
+ void * data = nullptr;
+};
+
+struct gguf_reader {
+ FILE * file;
+
+ gguf_reader(FILE * file) : file(file) {}
+
+ template <typename T>
+ bool read(T & dst) const {
+ return fread(&dst, 1, sizeof(dst), file) == sizeof(dst);
+ }
+
+ template <typename T>
+ bool read(std::vector<T> & dst, const size_t n) const {
+ dst.resize(n);
+ for (size_t i = 0; i < dst.size(); ++i) {
+ if constexpr (std::is_same<T, bool>::value) {
+ bool tmp;
+ if (!read(tmp)) {
+ return false;
+ }
+ dst[i] = tmp;
+ } else {
+ if (!read(dst[i])) {
+ return false;
+ }
+ }
+ }
+ return true;
+ }
+
+ bool read(bool & dst) const {
+ int8_t tmp = -1;
+ if (!read(tmp)) {
+ return false;
+ }
+ dst = tmp != 0;
+ return true;
+ }
+
+ bool read(enum ggml_type & dst) const {
+ int32_t tmp = -1;
+ if (!read(tmp)) {
+ return false;
+ }
+ dst = ggml_type(tmp);
+ return true;
+ }
+
+ bool read(enum gguf_type & dst) const {
+ int32_t tmp = -1;
+ if (!read(tmp)) {
+ return false;
+ }
+ dst = gguf_type(tmp);
+ return true;
+ }
+
+ bool read(std::string & dst) const {
+ uint64_t size = -1;
+ if (!read(size)) {
+ return false;
+ }
+ dst.resize(size);
+ return fread(dst.data(), 1, dst.length(), file) == dst.length();
+ }
+
+ bool read(void * dst, const size_t size) const {
+ return fread(dst, 1, size, file) == size;
+ }
+};
+
+struct gguf_context * gguf_init_empty(void) {
+ return new gguf_context;
+}
+
+template<typename T>
+bool gguf_read_emplace_helper(const struct gguf_reader & gr, std::vector<struct gguf_kv> & kv, const std::string & key, const bool is_array, const size_t n) {
+ if (is_array) {
+ std::vector<T> value;
+ try {
+ if (!gr.read(value, n)) {
+ return false;
+ }
+ } catch (std::length_error &) {
+ fprintf(stderr, "%s: encountered length_error while reading value for key '%s'\n", __func__, key.c_str());
+ return false;
+ } catch (std::bad_alloc &) {
+ fprintf(stderr, "%s: encountered bad_alloc error while reading value for key '%s'\n", __func__, key.c_str());
+ return false;
+ }
+ kv.emplace_back(key, value);
+ } else {
+ T value;
+ if (!gr.read(value)) {
+ return false;
+ }
+ kv.emplace_back(key, value);
+ }
+ return true;
+}
+
+struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params) {
+ const struct gguf_reader gr(file);
+ struct gguf_context * ctx = new gguf_context;
+
+ bool ok = true;
+
+ // file magic
+ {
+ std::vector<char> magic;
+ ok = ok && gr.read(magic, 4);
+
+ if (!ok) {
+ fprintf(stderr, "%s: failed to read magic\n", __func__);
+ gguf_free(ctx);
+ return nullptr;
+ }
+
+ for (uint32_t i = 0; i < magic.size(); i++) {
+ if (magic[i] != GGUF_MAGIC[i]) {
+ fprintf(stderr, "%s: invalid magic characters: '%c%c%c%c', expected 'GGUF'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
+ gguf_free(ctx);
+ return nullptr;
+ }
+ }
+ }
+
+ // header
+ int64_t n_kv = 0;
+ int64_t n_tensors = 0;
+
+ if (ok && gr.read(ctx->version)) {
+ if (ctx->version == 1) {
+ fprintf(stderr, "%s: GGUFv1 is no longer supported, please use a more up-to-date version\n", __func__);
+ ok = false;
+ }
+ if (ctx->version > GGUF_VERSION) {
+ fprintf(stderr, "%s: this GGUF file is version %" PRIu32 " but this software only supports up to version %d\n",
+ __func__, ctx->version, GGUF_VERSION);
+ ok = false;
+ }
+ } else {
+ ok = false;
+ }
+
+ if (ok && gr.read(n_tensors)) {
+ static_assert(sizeof(size_t) <= 8 && sizeof(gguf_tensor_info) >= 2, "int64_t insufficient for indexing");
+ if (n_tensors < 0 || n_tensors > int64_t(SIZE_MAX/sizeof(gguf_tensor_info))) {
+ fprintf(stderr, "%s: number of tensors is %" PRIi64 " but must be in [0, %zu]\n",
+ __func__, n_tensors, SIZE_MAX/sizeof(gguf_tensor_info));
+ ok = false;
+ }
+ } else {
+ ok = false;
+ }
+
+ if (ok && gr.read(n_kv)) {
+ static_assert(sizeof(size_t) <= 8 && sizeof(gguf_tensor_info) >= 2, "int64_t insufficient for indexing");
+ if (n_kv < 0 || n_kv > int64_t(SIZE_MAX/sizeof(gguf_kv))) {
+ fprintf(stderr, "%s: number of key value pairs is %" PRIi64 " but must be in [0, %zu]\n",
+ __func__, n_kv, SIZE_MAX/sizeof(gguf_kv));
+ ok = false;
+ }
+ } else {
+ ok = false;
+ }
+
+ if (!ok) {
+ fprintf(stderr, "%s: failed to read header\n", __func__);
+ gguf_free(ctx);
+ return nullptr;
+ }
+
+ // KV pairs
+ {
+ for (int64_t i = 0; ok && i < n_kv; ++i) {
+ std::string key;
+ gguf_type type = gguf_type(-1);
+ bool is_array = false;
+ uint64_t n = 1;
+
+ try {
+ ok = ok && gr.read(key);
+ } catch (std::length_error &) {
+ fprintf(stderr, "%s: encountered length_error while reading key %" PRIi64 "\n", __func__, i);
+ ok = false;
+ } catch (std::bad_alloc &) {
+ fprintf(stderr, "%s: encountered bad_alloc error while reading key %" PRIi64 "\n", __func__, i);
+ ok = false;
+ }
+ for (size_t j = 0; ok && j < ctx->kv.size(); ++j) {
+ if (key == ctx->kv[j].key) {
+ fprintf(stderr, "%s: duplicate key '%s' for tensors %zu and %" PRIi64 " \n", __func__, key.c_str(), j, i);
+ ok = false;
+ }
+ }
+ if (!ok) {
+ break;
+ }
+
+ ok = ok && gr.read(type);
+ if (type == GGUF_TYPE_ARRAY) {
+ is_array = true;
+ ok = ok && gr.read(type);
+ ok = ok && gr.read(n);
+ }
+ if (!ok) {
+ break;
+ }
+
+ switch (type) {
+ case GGUF_TYPE_UINT8: ok = ok && gguf_read_emplace_helper<uint8_t> (gr, ctx->kv, key, is_array, n); break;
+ case GGUF_TYPE_INT8: ok = ok && gguf_read_emplace_helper<int8_t> (gr, ctx->kv, key, is_array, n); break;
+ case GGUF_TYPE_UINT16: ok = ok && gguf_read_emplace_helper<uint16_t> (gr, ctx->kv, key, is_array, n); break;
+ case GGUF_TYPE_INT16: ok = ok && gguf_read_emplace_helper<int16_t> (gr, ctx->kv, key, is_array, n); break;
+ case GGUF_TYPE_UINT32: ok = ok && gguf_read_emplace_helper<uint32_t> (gr, ctx->kv, key, is_array, n); break;
+ case GGUF_TYPE_INT32: ok = ok && gguf_read_emplace_helper<int32_t> (gr, ctx->kv, key, is_array, n); break;
+ case GGUF_TYPE_FLOAT32: ok = ok && gguf_read_emplace_helper<float> (gr, ctx->kv, key, is_array, n); break;
+ case GGUF_TYPE_BOOL: ok = ok && gguf_read_emplace_helper<bool> (gr, ctx->kv, key, is_array, n); break;
+ case GGUF_TYPE_STRING: ok = ok && gguf_read_emplace_helper<std::string>(gr, ctx->kv, key, is_array, n); break;
+ case GGUF_TYPE_UINT64: ok = ok && gguf_read_emplace_helper<uint64_t> (gr, ctx->kv, key, is_array, n); break;
+ case GGUF_TYPE_INT64: ok = ok && gguf_read_emplace_helper<int64_t> (gr, ctx->kv, key, is_array, n); break;
+ case GGUF_TYPE_FLOAT64: ok = ok && gguf_read_emplace_helper<double> (gr, ctx->kv, key, is_array, n); break;
+ case GGUF_TYPE_ARRAY:
+ default:
+ {
+ fprintf(stderr, "%s: key '%s' has invalid GGUF type %d\n", __func__, key.c_str(), type);
+ ok = false;
+ } break;
+ }
+ }
+
+ if (!ok) {
+ fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
+ gguf_free(ctx);
+ return nullptr;
+ }
+ GGML_ASSERT(int64_t(ctx->kv.size()) == n_kv);
+
+ const int alignment_idx = gguf_find_key(ctx, GGUF_KEY_GENERAL_ALIGNMENT);
+ ctx->alignment = alignment_idx == -1 ? GGUF_DEFAULT_ALIGNMENT : gguf_get_val_u32(ctx, alignment_idx);
+
+ if (ctx->alignment == 0 || (ctx->alignment & (ctx->alignment - 1)) != 0) {
+ fprintf(stderr, "%s: alignment %zu is not a power of 2\n", __func__, ctx->alignment);
+ gguf_free(ctx);
+ return nullptr;
+ }
+ }
+
+ // read the tensor info
+ for (int64_t i = 0; ok && i < n_tensors; ++i) {
+ struct gguf_tensor_info info;
+
+ // tensor name
+ {
+ std::string name;
+ try {
+ ok = ok && gr.read(name);
+ } catch (std::length_error &) {
+ fprintf(stderr, "%s: encountered length_error while reading tensor name %" PRIi64 "\n", __func__, i);
+ ok = false;
+ } catch (std::bad_alloc &) {
+ fprintf(stderr, "%s: encountered bad_alloc error while reading tensor name %" PRIi64 "\n", __func__, i);
+ ok = false;
+ }
+ if (name.length() >= GGML_MAX_NAME) {
+ fprintf(stderr, "%s: tensor name %" PRIi64 " is too long: %zu >= %d\n", __func__, i, name.length(), GGML_MAX_NAME);
+ ok = false;
+ break;
+ }
+ ggml_set_name(&info.t, name.c_str());
+
+ // make sure there are no duplicate tensor names
+ for (int64_t j = 0; ok && j < i; ++j) {
+ if (strcmp(info.t.name, ctx->info[j].t.name) == 0) {
+ fprintf(stderr, "%s: duplicate tensor name '%s' for tensors %" PRIi64 " and %" PRIi64 "\n", __func__, info.t.name, j, i);
+ ok = false;
+ break;
+ }
+ }
+ }
+ if (!ok) {
+ break;
+ }
+
+ // tensor shape
+ {
+ uint32_t n_dims = -1;
+ ok = ok && gr.read(n_dims);
+ if (n_dims > GGML_MAX_DIMS) {
+ fprintf(stderr, "%s: tensor '%s' has invalid number of dimensions: %" PRIu32 " > %" PRIu32 "\n",
+ __func__, info.t.name, n_dims, GGML_MAX_DIMS);
+ ok = false;
+ break;
+ }
+ for (uint32_t j = 0; ok && j < GGML_MAX_DIMS; ++j) {
+ info.t.ne[j] = 1;
+ if (j < n_dims) {
+ ok = ok && gr.read(info.t.ne[j]);
+ }
+
+ // check that all ne are non-negative
+ if (info.t.ne[j] < 0) {
+ fprintf(stderr, "%s: tensor '%s' dimension %" PRIu32 " has invalid number of elements: %" PRIi64 " < 0\n",
+ __func__, info.t.name, j, info.t.ne[j]);
+ ok = false;
+ break;
+ }
+ }
+
+ // check that the total number of elements is representable
+ if (ok && ((INT64_MAX/info.t.ne[1] <= info.t.ne[0]) ||
+ (INT64_MAX/info.t.ne[2] <= info.t.ne[0]*info.t.ne[1]) ||
+ (INT64_MAX/info.t.ne[3] <= info.t.ne[0]*info.t.ne[1]*info.t.ne[2]))) {
+
+ fprintf(stderr, "%s: total number of elements in tensor '%s' with shape "
+ "(%" PRIi64 ", %" PRIi64 ", %" PRIi64 ", %" PRIi64 ") is >= %" PRIi64 "\n",
+ __func__, info.t.name, info.t.ne[0], info.t.ne[1], info.t.ne[2], info.t.ne[3], INT64_MAX);
+ ok = false;
+ break;
+ }
+ }
+ if (!ok) {
+ break;
+ }
+
+ // tensor type
+ {
+ ok = ok && gr.read(info.t.type);
+
+ // check that tensor type is within defined range
+ if (info.t.type < 0 || info.t.type >= GGML_TYPE_COUNT) {
+ fprintf(stderr, "%s: tensor '%s' has invalid ggml type %d (%s)\n",
+ __func__, info.t.name, info.t.type, ggml_type_name(info.t.type));
+ ok = false;
+ break;
+ }
+ const size_t type_size = ggml_type_size(info.t.type);
+ const int64_t blck_size = ggml_blck_size(info.t.type);
+
+ // check that row size is divisible by block size
+ if (blck_size == 0 || info.t.ne[0] % blck_size != 0) {
+ fprintf(stderr, "%s: tensor '%s' of type %d (%s) has %" PRId64 " elements per row, "
+ "not a multiple of block size (%" PRId64 ")\n",
+ __func__, info.t.name, (int) info.t.type, ggml_type_name(info.t.type), info.t.ne[0], blck_size);
+ ok = false;
+ break;
+ }
+
+ // calculate byte offsets given the tensor shape and type
+ info.t.nb[0] = type_size;
+ info.t.nb[1] = info.t.nb[0]*(info.t.ne[0]/blck_size);
+ for (int j = 2; j < GGML_MAX_DIMS; ++j) {
+ info.t.nb[j] = info.t.nb[j - 1]*info.t.ne[j - 1];
+ }
+ }
+ if (!ok) {
+ break;
+ }
+
+ // tensor data offset within buffer
+ ok = ok && gr.read(info.offset);
+
+ ctx->info.push_back(info);
+ }
+
+ if (!ok) {
+ fprintf(stderr, "%s: failed to read tensor info\n", __func__);
+ gguf_free(ctx);
+ return nullptr;
+ }
+ GGML_ASSERT(int64_t(ctx->info.size()) == n_tensors);
+
+ // we require the data section to be aligned, so take into account any padding
+ if (fseek(file, GGML_PAD(ftell(file), ctx->alignment), SEEK_SET) != 0) {
+ fprintf(stderr, "%s: failed to seek to beginning of data section\n", __func__);
+ gguf_free(ctx);
+ return nullptr;
+ }
+
+ // store the current file offset - this is where the data section starts
+ ctx->offset = ftell(file);
+
+ // compute the total size of the data section, taking into account the alignment
+ {
+ ctx->size = 0;
+ for (size_t i = 0; i < ctx->info.size(); ++i) {
+ const gguf_tensor_info & ti = ctx->info[i];
+ if (ti.offset != ctx->size) {
+ fprintf(stderr, "%s: tensor '%s' has offset %" PRIu64 ", expected %zu\n",
+ __func__, ti.t.name, ti.offset, ctx->size);
+ fprintf(stderr, "%s: failed to read tensor data\n", __func__);
+ gguf_free(ctx);
+ return nullptr;
+ }
+ ctx->size += GGML_PAD(ggml_nbytes(&ti.t), ctx->alignment);
+ }
+ }
+
+ // load the tensor data only if requested
+ if (params.ctx != nullptr) {
+ // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
+ // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
+ // the ggml_tensor structs to the appropriate locations in the binary blob
+
+ // compute the exact size needed for the new ggml_context
+ const size_t mem_size =
+ params.no_alloc ?
+ (n_tensors )*ggml_tensor_overhead() :
+ (n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
+
+ struct ggml_init_params pdata = {
+ /*mem_size =*/ mem_size,
+ /*mem_buffer =*/ nullptr,
+ /*no_alloc =*/ params.no_alloc,
+ };
+
+ *params.ctx = ggml_init(pdata);
+ if (*params.ctx == nullptr) {
+ fprintf(stderr, "%s: failed to initialize ggml context for storing tensors\n", __func__);
+ gguf_free(ctx);
+ return nullptr;
+ }
+
+ struct ggml_context * ctx_data = *params.ctx;
+
+ struct ggml_tensor * data = nullptr;
+
+ if (!params.no_alloc) {
+ data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
+
+ ok = ok && data != nullptr;
+
+ // read the binary blob with the tensor data
+ ok = ok && gr.read(data->data, ctx->size);
+
+ if (!ok) {
+ fprintf(stderr, "%s: failed to read tensor data binary blob\n", __func__);
+ ggml_free(ctx_data);
+ *params.ctx = nullptr;
+ gguf_free(ctx);
+ return nullptr;
+ }
+
+ ctx->data = data->data;
+ }
+
+ ggml_set_no_alloc(ctx_data, true);
+
+ // create the tensors
+ for (size_t i = 0; i < ctx->info.size(); ++i) {
+ const struct gguf_tensor_info & info = ctx->info[i];
+
+ struct ggml_tensor * cur = ggml_new_tensor(ctx_data, info.t.type, GGML_MAX_DIMS, info.t.ne);
+
+ ok = ok && cur != nullptr;
+
+ if (!ok) {
+ break;
+ }
+
+ ggml_set_name(cur, info.t.name);
+
+ // point the data member to the appropriate location in the binary blob using the tensor info
+ if (!params.no_alloc) {
+ cur->data = (char *) data->data + info.offset;
+ }
+ }
+
+ if (!ok) {
+ fprintf(stderr, "%s: failed to create tensors\n", __func__);
+ ggml_free(ctx_data);
+ *params.ctx = nullptr;
+ gguf_free(ctx);
+ return nullptr;
+ }
+
+ ggml_set_no_alloc(ctx_data, params.no_alloc);
+ }
+
+ return ctx;
+}
+
+struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
+ FILE * file = ggml_fopen(fname, "rb");
+
+ if (!file) {
+ fprintf(stderr, "%s: failed to open GGUF file '%s'\n", __func__, fname);
+ return nullptr;
+ }
+
+ struct gguf_context * result = gguf_init_from_file_impl(file, params);
+ fclose(file);
+ return result;
+}
+
+void gguf_free(struct gguf_context * ctx) {
+ if (ctx == nullptr) {
+ return;
+ }
+ delete ctx;
+}
+
+const char * gguf_type_name(enum gguf_type type) {
+ auto it = GGUF_TYPE_NAME.find(type);
+ return it == GGUF_TYPE_NAME.end() ? nullptr : it->second;
+}
+
+uint32_t gguf_get_version(const struct gguf_context * ctx) {
+ return ctx->version;
+}
+
+size_t gguf_get_alignment(const struct gguf_context * ctx) {
+ return ctx->alignment;
+}
+
+size_t gguf_get_data_offset(const struct gguf_context * ctx) {
+ return ctx->offset;
+}
+
+int64_t gguf_get_n_kv(const struct gguf_context * ctx) {
+ return ctx->kv.size();
+}
+
+int64_t gguf_find_key(const struct gguf_context * ctx, const char * key) {
+ // return -1 if key not found
+ int64_t keyfound = -1;
+
+ const int64_t n_kv = gguf_get_n_kv(ctx);
+
+ for (int64_t i = 0; i < n_kv; ++i) {
+ if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
+ keyfound = i;
+ break;
+ }
+ }
+
+ return keyfound;
+}
+
+const char * gguf_get_key(const struct gguf_context * ctx, int64_t key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ return ctx->kv[key_id].get_key().c_str();
+}
+
+enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int64_t key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ return ctx->kv[key_id].is_array ? GGUF_TYPE_ARRAY : ctx->kv[key_id].get_type();
+}
+
+enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].is_array);
+ return ctx->kv[key_id].get_type();
+}
+
+const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING);
+ return ctx->kv[key_id].data.data();
+}
+
+const char * gguf_get_arr_str(const struct gguf_context * ctx, int64_t key_id, size_t i) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].get_type() == GGUF_TYPE_STRING);
+ return ctx->kv[key_id].data_string[i].c_str();
+}
+
+size_t gguf_get_arr_n(const struct gguf_context * ctx, int64_t key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+
+ if (ctx->kv[key_id].type == GGUF_TYPE_STRING) {
+ return ctx->kv[key_id].data_string.size();
+ }
+
+ const size_t type_size = gguf_type_size(ctx->kv[key_id].type);
+ GGML_ASSERT(ctx->kv[key_id].data.size() % type_size == 0);
+ return ctx->kv[key_id].data.size() / type_size;
+}
+
+uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int64_t key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
+ return ctx->kv[key_id].get_val<uint8_t>();
+}
+
+int8_t gguf_get_val_i8(const struct gguf_context * ctx, int64_t key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
+ return ctx->kv[key_id].get_val<int8_t>();
+}
+
+uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int64_t key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
+ return ctx->kv[key_id].get_val<uint16_t>();
+}
+
+int16_t gguf_get_val_i16(const struct gguf_context * ctx, int64_t key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
+ return ctx->kv[key_id].get_val<int16_t>();
+}
+
+uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int64_t key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
+ return ctx->kv[key_id].get_val<uint32_t>();
+}
+
+int32_t gguf_get_val_i32(const struct gguf_context * ctx, int64_t key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
+ return ctx->kv[key_id].get_val<int32_t>();
+}
+
+float gguf_get_val_f32(const struct gguf_context * ctx, int64_t key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
+ return ctx->kv[key_id].get_val<float>();
+}
+
+uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int64_t key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
+ return ctx->kv[key_id].get_val<uint64_t>();
+}
+
+int64_t gguf_get_val_i64(const struct gguf_context * ctx, int64_t key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
+ return ctx->kv[key_id].get_val<int64_t>();
+}
+
+double gguf_get_val_f64(const struct gguf_context * ctx, int64_t key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
+ return ctx->kv[key_id].get_val<double>();
+}
+
+bool gguf_get_val_bool(const struct gguf_context * ctx, int64_t key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
+ return ctx->kv[key_id].get_val<bool>();
+}
+
+const char * gguf_get_val_str(const struct gguf_context * ctx, int64_t key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
+ return ctx->kv[key_id].get_val<std::string>().c_str();
+}
+
+const void * gguf_get_val_data(const struct gguf_context * ctx, int64_t key_id) {
+ GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
+ GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
+ GGML_ASSERT(ctx->kv[key_id].get_type() != GGUF_TYPE_STRING);
+ return ctx->kv[key_id].data.data();
+}
+
+int64_t gguf_get_n_tensors(const struct gguf_context * ctx) {
+ return ctx->info.size();
+}
+
+int64_t gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
+ // return -1 if tensor not found
+ int64_t tensor_id = -1;
+
+ const int64_t n_tensors = gguf_get_n_tensors(ctx);
+
+ for (int64_t i = 0; i < n_tensors; ++i) {
+ if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
+ tensor_id = i;
+ break;
+ }
+ }
+
+ return tensor_id;
+}
+
+size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int64_t tensor_id) {
+ GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx));
+ return ctx->info[tensor_id].offset;
+}
+
+const char * gguf_get_tensor_name(const struct gguf_context * ctx, int64_t tensor_id) {
+ GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx));
+ return ctx->info[tensor_id].t.name;
+}
+
+enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int64_t tensor_id) {
+ GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx));
+ return ctx->info[tensor_id].t.type;
+}
+
+size_t gguf_get_tensor_size(const struct gguf_context * ctx, int64_t tensor_id) {
+ GGML_ASSERT(tensor_id >= 0 && tensor_id < gguf_get_n_tensors(ctx));
+ return ggml_nbytes(&ctx->info[tensor_id].t);
+}
+
+int64_t gguf_remove_key(struct gguf_context * ctx, const char * key) {
+ const int64_t key_id = gguf_find_key(ctx, key);
+ if (key_id >= 0) {
+ ctx->kv.erase(ctx->kv.begin() + key_id);
+ }
+ return key_id;
+}
+
+template<typename T>
+static void gguf_check_reserved_keys(const std::string & key, const T val) {
+ if (key == GGUF_KEY_GENERAL_ALIGNMENT) {
+ if constexpr (std::is_same<T, uint32_t>::value) {
+ GGML_ASSERT(val > 0 && (val & (val - 1)) == 0 && GGUF_KEY_GENERAL_ALIGNMENT " must be power of 2");
+ } else {
+ GGML_ABORT(GGUF_KEY_GENERAL_ALIGNMENT " must be type u32");
+ }
+ }
+}
+
+void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
+ gguf_check_reserved_keys(key, val);
+ gguf_remove_key(ctx, key);
+ ctx->kv.emplace_back(key, val);
+}
+
+void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
+ gguf_check_reserved_keys(key, val);
+ gguf_remove_key(ctx, key);
+ ctx->kv.emplace_back(key, val);
+}
+
+void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
+ gguf_check_reserved_keys(key, val);
+ gguf_remove_key(ctx, key);
+ ctx->kv.emplace_back(key, val);
+}
+
+void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
+ gguf_check_reserved_keys(key, val);
+ gguf_remove_key(ctx, key);
+ ctx->kv.emplace_back(key, val);
+}
+
+void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
+ gguf_check_reserved_keys(key, val);
+ gguf_remove_key(ctx, key);
+ ctx->kv.emplace_back(key, val);
+}
+
+void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
+ gguf_check_reserved_keys(key, val);
+ gguf_remove_key(ctx, key);
+ ctx->kv.emplace_back(key, val);
+}
+
+void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
+ gguf_check_reserved_keys(key, val);
+ gguf_remove_key(ctx, key);
+ ctx->kv.emplace_back(key, val);
+}
+
+void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
+ gguf_check_reserved_keys(key, val);
+ gguf_remove_key(ctx, key);
+ ctx->kv.emplace_back(key, val);
+}
+
+void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
+ gguf_check_reserved_keys(key, val);
+ gguf_remove_key(ctx, key);
+ ctx->kv.emplace_back(key, val);
+}
+
+void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
+ gguf_check_reserved_keys(key, val);
+ gguf_remove_key(ctx, key);
+ ctx->kv.emplace_back(key, val);
+}
+
+void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
+ gguf_check_reserved_keys(key, val);
+ gguf_remove_key(ctx, key);
+ ctx->kv.emplace_back(key, val);
+}
+
+void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
+ gguf_check_reserved_keys(key, val);
+ gguf_remove_key(ctx, key);
+ ctx->kv.emplace_back(key, std::string(val));
+}
+
+void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, size_t n) {
+ gguf_check_reserved_keys(key, data);
+ gguf_remove_key(ctx, key);
+
+ const size_t nbytes = n*gguf_type_size(type);
+ std::vector<int8_t> tmp(nbytes);
+ if (!tmp.empty()) {
+ memcpy(tmp.data(), data, nbytes);
+ }
+ ctx->kv.emplace_back(key, tmp);
+ ctx->kv.back().cast(type);
+}
+
+void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, size_t n) {
+ gguf_check_reserved_keys(key, data);
+ gguf_remove_key(ctx, key);
+
+ std::vector<std::string> tmp(n);
+ for (size_t i = 0; i < n; ++i) {
+ tmp[i] = data[i];
+ }
+ ctx->kv.emplace_back(key, tmp);
+}
+
+// set or add KV pairs from another context
+void gguf_set_kv(struct gguf_context * ctx, const struct gguf_context * src) {
+ const int64_t n_kv = gguf_get_n_kv(src);
+ for (int64_t i = 0; i < n_kv; ++i) {
+ const struct gguf_kv & kv = src->kv[i];
+
+ if (!kv.is_array) {
+ switch (kv.get_type()) {
+ case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, kv.get_key().c_str(), kv.get_val<uint8_t>()); break;
+ case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, kv.get_key().c_str(), kv.get_val<int8_t>()); break;
+ case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, kv.get_key().c_str(), kv.get_val<uint16_t>()); break;
+ case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, kv.get_key().c_str(), kv.get_val<int16_t>()); break;
+ case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, kv.get_key().c_str(), kv.get_val<uint32_t>()); break;
+ case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, kv.get_key().c_str(), kv.get_val<int32_t>()); break;
+ case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, kv.get_key().c_str(), kv.get_val<float>()); break;
+ case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, kv.get_key().c_str(), kv.get_val<uint64_t>()); break;
+ case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, kv.get_key().c_str(), kv.get_val<int64_t>()); break;
+ case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, kv.get_key().c_str(), kv.get_val<double>()); break;
+ case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, kv.get_key().c_str(), kv.get_val<bool>()); break;
+ case GGUF_TYPE_STRING: gguf_set_val_str (ctx, kv.get_key().c_str(), kv.get_val<std::string>().c_str()); break;
+ case GGUF_TYPE_ARRAY:
+ default: GGML_ABORT("invalid type");
+ }
+ continue;
+ }
+
+ const size_t ne = kv.get_ne();
+
+ switch (kv.get_type()) {
+ case GGUF_TYPE_UINT8:
+ case GGUF_TYPE_INT8:
+ case GGUF_TYPE_UINT16:
+ case GGUF_TYPE_INT16:
+ case GGUF_TYPE_UINT32:
+ case GGUF_TYPE_INT32:
+ case GGUF_TYPE_FLOAT32:
+ case GGUF_TYPE_UINT64:
+ case GGUF_TYPE_INT64:
+ case GGUF_TYPE_FLOAT64:
+ case GGUF_TYPE_BOOL: {
+ gguf_set_arr_data(ctx, kv.get_key().c_str(), kv.get_type(), kv.data.data(), ne);
+ } break;
+ case GGUF_TYPE_STRING: {
+ std::vector<const char *> tmp(ne);
+ for (size_t j = 0; j < ne; ++j) {
+ tmp[j] = kv.data_string[j].c_str();
+ }
+ gguf_set_arr_str(ctx, kv.get_key().c_str(), tmp.data(), ne);
+ } break;
+ case GGUF_TYPE_ARRAY:
+ default: GGML_ABORT("invalid type");
+ }
+ }
+}
+
+void gguf_add_tensor(
+ struct gguf_context * ctx,
+ const struct ggml_tensor * tensor) {
+ GGML_ASSERT(tensor);
+ if (gguf_find_tensor(ctx, tensor->name) != -1) {
+ GGML_ABORT("duplicate tensor name: %s", tensor->name);
+ }
+
+ struct gguf_tensor_info ti;
+ ti.t = *tensor;
+ ti.offset = ctx->info.empty() ? 0 :
+ ctx->info.back().offset + GGML_PAD(ggml_nbytes(&ctx->info.back().t), ctx->alignment);
+ ctx->info.push_back(ti);
+}
+
+void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
+ const int64_t tensor_id = gguf_find_tensor(ctx, name);
+ if (tensor_id < 0) {
+ GGML_ABORT("tensor not found: %s", name);
+ }
+ struct ggml_tensor * tensor = &ctx->info[tensor_id].t;
+ const size_t type_size = ggml_type_size(type);
+ const int64_t blck_size = ggml_blck_size(type);
+
+ tensor->type = type;
+ GGML_ASSERT(tensor->ne[0] % blck_size == 0 && "tensor row size not divisible by block size of new type");
+
+ tensor->nb[0] = type_size;
+ tensor->nb[1] = tensor->nb[0]*(tensor->ne[0]/blck_size);
+ for (int i = 2; i < GGML_MAX_DIMS; i++) {
+ tensor->nb[i] = tensor->nb[i - 1]*tensor->ne[i - 1];
+ }
+
+ // update offsets
+ const int64_t n_tensors = gguf_get_n_tensors(ctx);
+ for (int64_t i = tensor_id + 1; i < n_tensors; ++i) {
+ ctx->info[i].offset = ctx->info[i - 1].offset + GGML_PAD(ggml_nbytes(&ctx->info[i - 1].t), ctx->alignment);
+ }
+}
+
+void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data) {
+ const int64_t tensor_id = gguf_find_tensor(ctx, name);
+ if (tensor_id < 0) {
+ GGML_ABORT("tensor not found: %s", name);
+ }
+
+ ctx->info[tensor_id].t.data = (void *)(uintptr_t)data; // double cast suppresses warning about casting away const
+}
+
+struct gguf_writer {
+ std::vector<int8_t> & buf;
+
+ gguf_writer(std::vector<int8_t> & buf) : buf(buf) {}
+
+ template <typename T>
+ void write(const T & val) const {
+ for (size_t i = 0; i < sizeof(val); ++i) {
+ buf.push_back(reinterpret_cast<const int8_t *>(&val)[i]);
+ }
+ }
+
+ void write(const std::vector<int8_t> & val) const {
+ buf.insert(buf.end(), val.begin(), val.end());
+ }
+
+ void write(const bool & val) const {
+ const int8_t val8 = val ? 1 : 0;
+ write(val8);
+ }
+
+ void write(const std::string & val) const {
+ {
+ const uint64_t n = val.length();
+ write(n);
+ }
+ for (size_t i = 0; i < val.length(); ++i) {
+ buf.push_back(reinterpret_cast<const int8_t *>(val.data())[i]);
+ }
+ }
+
+ void write(const char * val) const {
+ write(std::string(val));
+ }
+
+ void write(const enum ggml_type & val) const {
+ write(int32_t(val));
+ }
+
+ void write(const enum gguf_type & val) const {
+ write(int32_t(val));
+ }
+
+ void write(const struct gguf_kv & kv) const {
+ const uint64_t ne = kv.get_ne();
+
+ write(kv.get_key());
+
+ if (kv.is_array) {
+ write(GGUF_TYPE_ARRAY);
+ write(kv.get_type());
+ write(ne);
+ } else {
+ write(kv.get_type());
+ }
+
+ switch (kv.get_type()) {
+ case GGUF_TYPE_UINT8:
+ case GGUF_TYPE_INT8:
+ case GGUF_TYPE_UINT16:
+ case GGUF_TYPE_INT16:
+ case GGUF_TYPE_UINT32:
+ case GGUF_TYPE_INT32:
+ case GGUF_TYPE_FLOAT32:
+ case GGUF_TYPE_UINT64:
+ case GGUF_TYPE_INT64:
+ case GGUF_TYPE_FLOAT64: {
+ write(kv.data);
+ } break;
+ case GGUF_TYPE_BOOL: {
+ for (size_t i = 0; i < ne; ++i) {
+ write(kv.get_val<bool>(i));
+ }
+ } break;
+ case GGUF_TYPE_STRING: {
+ for (size_t i = 0; i < ne; ++i) {
+ write(kv.get_val<std::string>(i));
+ }
+ } break;
+ case GGUF_TYPE_ARRAY:
+ default: GGML_ABORT("invalid type");
+ }
+ }
+
+ void write_tensor_meta(const struct gguf_tensor_info & info) const {
+ write(info.t.name);
+
+ const uint32_t n_dims = ggml_n_dims(&info.t);
+ write(n_dims);
+
+ for (uint32_t j = 0; j < n_dims; ++j) {
+ write(info.t.ne[j]);
+ }
+ write(info.t.type);
+ write(info.offset);
+ }
+
+ void pad(const size_t alignment) const {
+ while (buf.size() % alignment != 0) {
+ const int8_t zero = 0;
+ write(zero);
+ }
+ }
+
+ void write_tensor_data(const struct gguf_tensor_info & info, const size_t offset_data, const size_t alignment) const {
+ GGML_ASSERT(buf.size() - offset_data == info.offset);
+
+ GGML_ASSERT(ggml_is_contiguous(&info.t));
+ const size_t offset = buf.size();
+ const size_t nbytes = ggml_nbytes(&info.t);
+
+ buf.resize(offset + nbytes);
+ if (info.t.buffer) {
+ ggml_backend_tensor_get(&info.t, buf.data() + offset, 0, nbytes);
+ } else {
+ GGML_ASSERT(info.t.data);
+ memcpy(buf.data() + offset, info.t.data, nbytes);
+ }
+
+ pad(alignment);
+ }
+};
+
+void gguf_write_to_buf(const struct gguf_context * ctx, std::vector<int8_t> & buf, bool only_meta) {
+ const struct gguf_writer gw(buf);
+
+ const int64_t n_kv = gguf_get_n_kv(ctx);
+ const int64_t n_tensors = gguf_get_n_tensors(ctx);
+
+ // write header
+ gw.write(GGUF_MAGIC[0]);
+ gw.write(GGUF_MAGIC[1]);
+ gw.write(GGUF_MAGIC[2]);
+ gw.write(GGUF_MAGIC[3]);
+ gw.write(ctx->version);
+ gw.write(n_tensors);
+ gw.write(n_kv);
+
+ // write key-value pairs
+ for (int64_t i = 0; i < n_kv; ++i) {
+ gw.write(ctx->kv[i]);
+ }
+
+ // write tensor info
+ for (int64_t i = 0; i < n_tensors; ++i) {
+ gw.write_tensor_meta(ctx->info[i]);
+ }
+
+ // we require the data section to be aligned
+ gw.pad(ctx->alignment);
+
+ if (only_meta) {
+ return;
+ }
+
+ const size_t offset_data = gw.buf.size();
+
+ // write tensor data
+ for (int64_t i = 0; i < n_tensors; ++i) {
+ gw.write_tensor_data(ctx->info[i], offset_data, ctx->alignment);
+ }
+}
+
+bool gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
+ FILE * file = ggml_fopen(fname, "wb");
+
+ if (!file) {
+ fprintf(stderr, "%s: failed to open file '%s' for writing GGUF data\n", __func__, fname);
+ return false;
+ }
+
+ std::vector<int8_t> buf;
+ gguf_write_to_buf(ctx, buf, only_meta);
+ const bool ok = fwrite(buf.data(), 1, buf.size(), file) == buf.size();
+ fclose(file);
+ return ok;
+}
+
+size_t gguf_get_meta_size(const struct gguf_context * ctx) {
+ // only return size
+ std::vector<int8_t> buf;
+ gguf_write_to_buf(ctx, buf, /*only_meta =*/ true);
+ return buf.size();
+}
+
+void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
+ std::vector<int8_t> buf;
+ gguf_write_to_buf(ctx, buf, /*only_meta =*/ true);
+ memcpy(data, buf.data(), buf.size());
+}
#include "llama-impl.h"
+#include "gguf.h"
#include "llama.h"
#include <cinttypes>
{
const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
int arr_n = gguf_get_arr_n(ctx_gguf, i);
- const void * data = gguf_get_arr_data(ctx_gguf, i);
+ const void * data = arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx_gguf, i);
std::stringstream ss;
ss << "[";
for (int j = 0; j < arr_n; j++) {
}
namespace GGUFMeta {
- template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
+ template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int64_t)>
struct GKV_Base_Type {
static constexpr gguf_type gt = gt_;
public:
static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
static ArrayInfo getter(const gguf_context *ctx, const int k) {
+ const enum gguf_type arr_type = gguf_get_arr_type(ctx, k);
return ArrayInfo {
- gguf_get_arr_type(ctx, k),
+ arr_type,
size_t(gguf_get_arr_n(ctx, k)),
- gguf_get_arr_data(ctx, k),
+ arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx, k),
};
}
};
const enum gguf_type type = gguf_get_kv_type(meta.get(), i);
const std::string type_name =
type == GGUF_TYPE_ARRAY
- ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta.get(), i)), gguf_get_arr_n(meta.get(), i))
+ ? format("%s[%s,%zu]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta.get(), i)), gguf_get_arr_n(meta.get(), i))
: gguf_type_name(type);
std::string value = gguf_kv_to_str(meta.get(), i);
// update the gguf meta data as we go
gguf_set_tensor_type(ctx_outs[cur_split].get(), name.c_str(), new_type);
- gguf_set_tensor_data(ctx_outs[cur_split].get(), name.c_str(), new_data, new_size);
+ GGML_ASSERT(gguf_get_tensor_size(ctx_outs[cur_split].get(), gguf_find_tensor(ctx_outs[cur_split].get(), name.c_str())) == new_size);
+ gguf_set_tensor_data(ctx_outs[cur_split].get(), name.c_str(), new_data);
// write tensor data + padding
fout.write((const char *) new_data, new_size);
constexpr int offset_has_data = 3000;
enum handcrafted_file_type {
- HANDCRAFTED_HEADER_BAD_MAGIC = 10,
- HANDCRAFTED_HEADER_BAD_VERSION_1 = 20,
- HANDCRAFTED_HEADER_BAD_VERSION_FUTURE = 30,
- HANDCRAFTED_HEADER_BAD_N_TENSORS = 40,
- HANDCRAFTED_HEADER_BAD_N_KV = 50,
- HANDCRAFTED_HEADER_EMPTY = 800,
-
- HANDCRAFTED_KV_BAD_KEY_SIZE = 10 + offset_has_kv,
- HANDCRAFTED_KV_BAD_TYPE = 20 + offset_has_kv,
- HANDCRAFTED_KV_BAD_VALUE_SIZE = 30 + offset_has_kv,
- HANDCRAFTED_KV_DUPLICATE_KEY = 40 + offset_has_kv,
- HANDCRAFTED_KV_SUCCESS = 800 + offset_has_kv,
-
- HANDCRAFTED_TENSORS_BAD_NAME_SIZE = 10 + offset_has_tensors,
- HANDCRAFTED_TENSORS_BAD_N_DIMS = 20 + offset_has_tensors,
- HANDCRAFTED_TENSORS_BAD_SHAPE = 30 + offset_has_tensors,
- HANDCRAFTED_TENSORS_NE_TOO_BIG = 40 + offset_has_tensors,
- HANDCRAFTED_TENSORS_BAD_TYPE = 50 + offset_has_tensors,
- HANDCRAFTED_TENSORS_BAD_OFFSET = 60 + offset_has_tensors,
- HANDCRAFTED_TENSORS_DUPLICATE_NAME = 70 + offset_has_tensors,
- HANDCRAFTED_TENSORS_BAD_ALIGNMENT = 80 + offset_has_tensors,
- HANDCRAFTED_TENSORS_SUCCESS = 800 + offset_has_tensors,
- HANDCRAFTED_TENSORS_CUSTOM_ALIGN = 810 + offset_has_tensors,
-
- HANDCRAFTED_DATA_NOT_ENOUGH_DATA = 10 + offset_has_data,
- HANDCRAFTED_DATA_BAD_ALIGNMENT = 20 + offset_has_data,
- HANDCRAFTED_DATA_SUCCESS = 800 + offset_has_data,
- HANDCRAFTED_DATA_CUSTOM_ALIGN = 810 + offset_has_data,
+ HANDCRAFTED_HEADER_BAD_MAGIC = 10,
+ HANDCRAFTED_HEADER_BAD_VERSION_1 = 20,
+ HANDCRAFTED_HEADER_BAD_VERSION_FUTURE = 30,
+ HANDCRAFTED_HEADER_BAD_N_TENSORS = 40,
+ HANDCRAFTED_HEADER_BAD_N_KV = 50,
+ HANDCRAFTED_HEADER_EMPTY = 800,
+
+ HANDCRAFTED_KV_BAD_KEY_SIZE = 10 + offset_has_kv,
+ HANDCRAFTED_KV_BAD_TYPE = 20 + offset_has_kv,
+ // HANDCRAFTED_KV_BAD_VALUE_SIZE = 30 + offset_has_kv, // removed because it can result in allocations > 1 TB (default sanitizer limit)
+ HANDCRAFTED_KV_DUPLICATE_KEY = 40 + offset_has_kv,
+ HANDCRAFTED_KV_BAD_ALIGN = 50 + offset_has_kv,
+ HANDCRAFTED_KV_SUCCESS = 800 + offset_has_kv,
+
+ HANDCRAFTED_TENSORS_BAD_NAME_SIZE = 10 + offset_has_tensors,
+ HANDCRAFTED_TENSORS_BAD_N_DIMS = 20 + offset_has_tensors,
+ HANDCRAFTED_TENSORS_BAD_SHAPE = 30 + offset_has_tensors,
+ HANDCRAFTED_TENSORS_NE_TOO_BIG = 40 + offset_has_tensors,
+ HANDCRAFTED_TENSORS_BAD_TYPE = 50 + offset_has_tensors,
+ HANDCRAFTED_TENSORS_BAD_OFFSET = 60 + offset_has_tensors,
+ HANDCRAFTED_TENSORS_DUPLICATE_NAME = 70 + offset_has_tensors,
+ HANDCRAFTED_TENSORS_BAD_ALIGN = 75 + offset_has_tensors,
+ HANDCRAFTED_TENSORS_INCONSISTENT_ALIGN = 80 + offset_has_tensors,
+ HANDCRAFTED_TENSORS_SUCCESS = 800 + offset_has_tensors,
+ HANDCRAFTED_TENSORS_CUSTOM_ALIGN = 810 + offset_has_tensors,
+
+ HANDCRAFTED_DATA_NOT_ENOUGH_DATA = 10 + offset_has_data,
+ HANDCRAFTED_DATA_BAD_ALIGN = 15 + offset_has_data,
+ HANDCRAFTED_DATA_INCONSISTENT_ALIGN = 20 + offset_has_data,
+ HANDCRAFTED_DATA_SUCCESS = 800 + offset_has_data,
+ HANDCRAFTED_DATA_CUSTOM_ALIGN = 810 + offset_has_data,
};
std::string handcrafted_file_type_name(const enum handcrafted_file_type hft) {
switch (hft) {
- case HANDCRAFTED_HEADER_BAD_MAGIC: return "HEADER_BAD_MAGIC";
- case HANDCRAFTED_HEADER_BAD_VERSION_1: return "HEADER_BAD_VERSION_1";
- case HANDCRAFTED_HEADER_BAD_VERSION_FUTURE: return "HEADER_BAD_VERSION_FUTURE";
- case HANDCRAFTED_HEADER_BAD_N_KV: return "HEADER_BAD_N_KV";
- case HANDCRAFTED_HEADER_BAD_N_TENSORS: return "HEADER_BAD_N_TENSORS";
- case HANDCRAFTED_HEADER_EMPTY: return "HEADER_EMPTY";
-
- case HANDCRAFTED_KV_BAD_KEY_SIZE: return "KV_BAD_KEY_SIZE";
- case HANDCRAFTED_KV_BAD_TYPE: return "KV_BAD_TYPE";
- case HANDCRAFTED_KV_BAD_VALUE_SIZE: return "KV_BAD_VALUE_SIZE";
- case HANDCRAFTED_KV_DUPLICATE_KEY: return "KV_DUPLICATE_KEY";
- case HANDCRAFTED_KV_SUCCESS: return "KV_RANDOM_KV";
-
- case HANDCRAFTED_TENSORS_BAD_NAME_SIZE: return "TENSORS_BAD_NAME_SIZE";
- case HANDCRAFTED_TENSORS_BAD_N_DIMS: return "TENSORS_BAD_N_DIMS";
- case HANDCRAFTED_TENSORS_BAD_SHAPE: return "TENSORS_BAD_SHAPE";
- case HANDCRAFTED_TENSORS_NE_TOO_BIG: return "TENSORS_NE_TOO_BIG";
- case HANDCRAFTED_TENSORS_BAD_TYPE: return "TENSORS_BAD_TYPE";
- case HANDCRAFTED_TENSORS_BAD_OFFSET: return "TENSORS_BAD_OFFSET";
- case HANDCRAFTED_TENSORS_DUPLICATE_NAME: return "TENSORS_DUPLICATE_NAME";
- case HANDCRAFTED_TENSORS_BAD_ALIGNMENT: return "TENSORS_BAD_ALIGNMENT";
- case HANDCRAFTED_TENSORS_SUCCESS: return "TENSORS_SUCCESS";
- case HANDCRAFTED_TENSORS_CUSTOM_ALIGN: return "TENSORS_CUSTOM_ALIGN";
-
- case HANDCRAFTED_DATA_NOT_ENOUGH_DATA: return "DATA_NOT_ENOUGH_DATA";
- case HANDCRAFTED_DATA_BAD_ALIGNMENT: return "DATA_BAD_ALIGNMENT";
- case HANDCRAFTED_DATA_SUCCESS: return "DATA_SUCCESS";
- case HANDCRAFTED_DATA_CUSTOM_ALIGN: return "DATA_CUSTOM_ALIGN";
+ case HANDCRAFTED_HEADER_BAD_MAGIC: return "HEADER_BAD_MAGIC";
+ case HANDCRAFTED_HEADER_BAD_VERSION_1: return "HEADER_BAD_VERSION_1";
+ case HANDCRAFTED_HEADER_BAD_VERSION_FUTURE: return "HEADER_BAD_VERSION_FUTURE";
+ case HANDCRAFTED_HEADER_BAD_N_KV: return "HEADER_BAD_N_KV";
+ case HANDCRAFTED_HEADER_BAD_N_TENSORS: return "HEADER_BAD_N_TENSORS";
+ case HANDCRAFTED_HEADER_EMPTY: return "HEADER_EMPTY";
+
+ case HANDCRAFTED_KV_BAD_KEY_SIZE: return "KV_BAD_KEY_SIZE";
+ case HANDCRAFTED_KV_BAD_TYPE: return "KV_BAD_TYPE";
+ case HANDCRAFTED_KV_DUPLICATE_KEY: return "KV_DUPLICATE_KEY";
+ case HANDCRAFTED_KV_BAD_ALIGN: return "KV_BAD_ALIGN";
+ case HANDCRAFTED_KV_SUCCESS: return "KV_RANDOM_KV";
+
+ case HANDCRAFTED_TENSORS_BAD_NAME_SIZE: return "TENSORS_BAD_NAME_SIZE";
+ case HANDCRAFTED_TENSORS_BAD_N_DIMS: return "TENSORS_BAD_N_DIMS";
+ case HANDCRAFTED_TENSORS_BAD_SHAPE: return "TENSORS_BAD_SHAPE";
+ case HANDCRAFTED_TENSORS_NE_TOO_BIG: return "TENSORS_NE_TOO_BIG";
+ case HANDCRAFTED_TENSORS_BAD_TYPE: return "TENSORS_BAD_TYPE";
+ case HANDCRAFTED_TENSORS_BAD_OFFSET: return "TENSORS_BAD_OFFSET";
+ case HANDCRAFTED_TENSORS_DUPLICATE_NAME: return "TENSORS_DUPLICATE_NAME";
+ case HANDCRAFTED_TENSORS_BAD_ALIGN: return "TENSORS_BAD_ALIGN";
+ case HANDCRAFTED_TENSORS_INCONSISTENT_ALIGN: return "TENSORS_INCONSISTENT_ALIGN";
+ case HANDCRAFTED_TENSORS_SUCCESS: return "TENSORS_SUCCESS";
+ case HANDCRAFTED_TENSORS_CUSTOM_ALIGN: return "TENSORS_CUSTOM_ALIGN";
+
+ case HANDCRAFTED_DATA_NOT_ENOUGH_DATA: return "DATA_NOT_ENOUGH_DATA";
+ case HANDCRAFTED_DATA_BAD_ALIGN: return "DATA_BAD_ALIGN";
+ case HANDCRAFTED_DATA_INCONSISTENT_ALIGN: return "DATA_INCONSISTENT_ALIGN";
+ case HANDCRAFTED_DATA_SUCCESS: return "DATA_SUCCESS";
+ case HANDCRAFTED_DATA_CUSTOM_ALIGN: return "DATA_CUSTOM_ALIGN";
}
GGML_ABORT("fatal error");
}
return kv_types;
}
-static void helper_write(const void * data, const size_t nbytes, FILE * file) {
+template <typename T>
+static void helper_write(FILE * file, const T & val) {
+ GGML_ASSERT(fwrite(&val, 1, sizeof(val), file) == sizeof(val));
+}
+
+static void helper_write(FILE * file, const void * data, const size_t nbytes) {
GGML_ASSERT(fwrite(data, 1, nbytes, file) == nbytes);
}
static FILE * get_handcrafted_file(const unsigned int seed, const enum handcrafted_file_type hft, const int extra_bytes = 0) {
FILE * file = tmpfile();
+ if (!file) {
+ return file;
+ }
+
std::mt19937 rng(seed);
+ uint32_t alignment = GGUF_DEFAULT_ALIGNMENT;
if (hft == HANDCRAFTED_HEADER_BAD_MAGIC) {
const char bad_magic[4] = {'F', 'U', 'G', 'G'};
- helper_write(bad_magic, sizeof(bad_magic), file);
+ helper_write(file, bad_magic, sizeof(bad_magic));
} else {
- helper_write(GGUF_MAGIC, 4, file);
+ helper_write(file, GGUF_MAGIC, 4);
}
if (hft == HANDCRAFTED_HEADER_BAD_VERSION_1) {
const uint32_t version = 1;
- helper_write(&version, sizeof(version), file);
+ helper_write(file, version);
} else if (hft == HANDCRAFTED_HEADER_BAD_VERSION_FUTURE) {
const uint32_t version = GGUF_VERSION + 1;
- helper_write(&version, sizeof(version), file);
+ helper_write(file, version);
} else {
const uint32_t version = GGUF_VERSION;
- helper_write(&version, sizeof(version), file);
+ helper_write(file, version);
}
std::vector<tensor_config_t> tensor_configs;
if (hft == HANDCRAFTED_HEADER_BAD_N_TENSORS) {
const uint64_t n_tensors = -1;
- helper_write(&n_tensors, sizeof(n_tensors), file);
+ helper_write(file, n_tensors);
} else {
const uint64_t n_tensors = tensor_configs.size();
- helper_write(&n_tensors, sizeof(n_tensors), file);
+ helper_write(file, n_tensors);
}
std::vector<std::pair<enum gguf_type, enum gguf_type>> kv_types;
}
{
uint64_t n_kv = kv_types.size();
- if (hft == HANDCRAFTED_TENSORS_CUSTOM_ALIGN || hft == HANDCRAFTED_DATA_CUSTOM_ALIGN) {
+ if (hft == HANDCRAFTED_KV_BAD_ALIGN ||
+ hft == HANDCRAFTED_TENSORS_BAD_ALIGN || hft == HANDCRAFTED_TENSORS_CUSTOM_ALIGN ||
+ hft == HANDCRAFTED_DATA_BAD_ALIGN || hft == HANDCRAFTED_DATA_CUSTOM_ALIGN) {
+
n_kv += 1;
} else if (hft == HANDCRAFTED_HEADER_BAD_N_KV) {
n_kv = -1;
}
- helper_write(&n_kv, sizeof(n_kv), file);
+ helper_write(file, n_kv);
}
if (hft < offset_has_kv) {
+ while (ftell(file) % alignment != 0) {
+ const char pad = 0;
+ helper_write(file, pad);
+ }
+
for (int i = 0; i < extra_bytes; ++i) {
const char tmp = 0;
- helper_write(&tmp, sizeof(tmp), file);
+ helper_write(file, tmp);
}
rewind(file);
return file;
}
for (int i = 0; i < int(kv_types.size()); ++i) {
- const enum gguf_type type = gguf_type(hft == HANDCRAFTED_KV_BAD_TYPE ? -1 : kv_types[i].first);
- const enum gguf_type type_arr = gguf_type(hft == HANDCRAFTED_KV_BAD_TYPE ? -1 : kv_types[i].second);
+ const enum gguf_type type = gguf_type(hft == HANDCRAFTED_KV_BAD_TYPE ? GGUF_TYPE_COUNT : kv_types[i].first);
+ const enum gguf_type type_arr = gguf_type(hft == HANDCRAFTED_KV_BAD_TYPE ? GGUF_TYPE_COUNT : kv_types[i].second);
const std::string key = "my_key_" + std::to_string((hft == HANDCRAFTED_KV_DUPLICATE_KEY ? i/2 : i));
if (hft == HANDCRAFTED_KV_BAD_KEY_SIZE) {
const uint64_t n = -1;
- helper_write(&n, sizeof(n), file);
+ helper_write(file, n);
} else {
const uint64_t n = key.length();
- helper_write(&n, sizeof(n), file);
+ helper_write(file, n);
}
- helper_write(key.data(), key.length(), file);
+ helper_write(file, key.data(), key.length());
{
const int32_t type32 = int32_t(type);
- helper_write(&type32, sizeof(type32), file);
+ helper_write(file, type32);
}
uint32_t data[16];
if (type == GGUF_TYPE_STRING) {
const uint64_t n = rng() % sizeof(data);
- helper_write(&n, sizeof(n), file);
- helper_write(data, n, file);
+ helper_write(file, n);
+ helper_write(file, data, n);
continue;
}
if (type == GGUF_TYPE_ARRAY) {
{
const int32_t type32 = int32_t(type_arr);
- helper_write(&type32, sizeof(type32), file);
+ helper_write(file, type32);
}
if (type_arr == GGUF_TYPE_STRING) {
const uint64_t nstr = rng() % (16 + 1);
- helper_write(&nstr, sizeof(nstr), file);
+ helper_write(file, nstr);
for (uint64_t istr = 0; istr < nstr; ++istr) {
const uint64_t n = rng() % (sizeof(uint32_t) + 1);
- helper_write(&n, sizeof(n), file);
- helper_write(&data[istr], n, file);
+ helper_write(file, n);
+ helper_write(file, &data[istr], n);
}
continue;
}
const size_t type_size = gguf_type_size(type_arr);
const uint64_t n = (rng() % sizeof(data)) / type_size;
- helper_write(&n, sizeof(n), file);
- helper_write(&data, n*type_size, file);
+ helper_write(file, n);
+ helper_write(file, &data, n*type_size);
continue;
}
- size_t type_size = hft == HANDCRAFTED_KV_BAD_TYPE ? 1 : gguf_type_size(type);
- if (hft == HANDCRAFTED_KV_BAD_VALUE_SIZE) {
- type_size += rng() % 3;
- }
- helper_write(data, type_size, file);
+ helper_write(file, data, hft == HANDCRAFTED_KV_BAD_TYPE ? 1 : gguf_type_size(type));
}
- if (hft == HANDCRAFTED_TENSORS_CUSTOM_ALIGN || hft == HANDCRAFTED_DATA_CUSTOM_ALIGN) {
- const std::string key = "general.alignment";
- {
- const uint64_t n = key.length();
- helper_write(&n, sizeof(n), file);
- }
- helper_write(key.data(), key.length(), file);
+ if (hft == HANDCRAFTED_KV_BAD_ALIGN ||
+ hft == HANDCRAFTED_TENSORS_BAD_ALIGN || hft == HANDCRAFTED_TENSORS_CUSTOM_ALIGN ||
+ hft == HANDCRAFTED_DATA_BAD_ALIGN || hft == HANDCRAFTED_DATA_CUSTOM_ALIGN) {
+
+ const uint64_t n = strlen(GGUF_KEY_GENERAL_ALIGNMENT);
+ helper_write(file, n);
+ helper_write(file, GGUF_KEY_GENERAL_ALIGNMENT, n);
const int32_t type = gguf_type(GGUF_TYPE_UINT32);
- helper_write(&type, sizeof(type), file);
+ helper_write(file, type);
- const uint32_t alignment = GGUF_DEFAULT_ALIGNMENT + 1;
- helper_write(&alignment, sizeof(alignment), file);
+ alignment = expect_context_not_null(hft) ? 1 : 13;
+ helper_write(file, alignment);
}
if (hft < offset_has_tensors) {
+ while (ftell(file) % alignment != 0) {
+ const char pad = 0;
+ helper_write(file, pad);
+ }
+
for (int i = 0; i < extra_bytes; ++i) {
const char tmp = 0;
- helper_write(&tmp, sizeof(tmp), file);
+ helper_write(file, tmp);
}
rewind(file);
return file;
}
- uint32_t alignment = GGUF_DEFAULT_ALIGNMENT;
- if (hft == HANDCRAFTED_TENSORS_BAD_ALIGNMENT || hft == HANDCRAFTED_DATA_BAD_ALIGNMENT) {
- alignment -= 1;
- } else if (hft == HANDCRAFTED_TENSORS_CUSTOM_ALIGN || hft == HANDCRAFTED_DATA_CUSTOM_ALIGN) {
- alignment += 1;
+ if (hft == HANDCRAFTED_TENSORS_INCONSISTENT_ALIGN || hft == HANDCRAFTED_DATA_INCONSISTENT_ALIGN) {
+ alignment = 1;
}
uint64_t offset = 0;
}
{
const uint64_t n = name.length();
- helper_write(&n, sizeof(n), file);
+ helper_write(file, n);
}
- helper_write(name.data(), name.length(), file);
+ helper_write(file, name.data(), name.length());
uint32_t n_dims = hft == HANDCRAFTED_TENSORS_NE_TOO_BIG ? 2 : 1;
for (int i = GGML_MAX_DIMS-1; i >= 1; --i) {
}
if (hft == HANDCRAFTED_TENSORS_BAD_N_DIMS) {
const uint32_t n_dims_bad = GGML_MAX_DIMS + 1;
- helper_write(&n_dims_bad, sizeof(n_dims_bad), file);
+ helper_write(file, n_dims_bad);
} else {
- helper_write(&n_dims, sizeof(n_dims), file);
+ helper_write(file, n_dims);
}
if (hft == HANDCRAFTED_TENSORS_BAD_SHAPE) {
for (uint32_t j = 0; j < n_dims; ++j) {
const int64_t bad_dim = -1;
- helper_write(&bad_dim, sizeof(bad_dim), file);
+ helper_write(file, bad_dim);
}
} else if (hft == HANDCRAFTED_TENSORS_NE_TOO_BIG){
for (uint32_t j = 0; j < n_dims; ++j) {
const int64_t big_dim = 4*int64_t(INT32_MAX);
- helper_write(&big_dim, sizeof(big_dim), file);
+ helper_write(file, big_dim);
}
} else {
- helper_write(shape.data(), n_dims*sizeof(int64_t), file);
+ helper_write(file, shape.data(), n_dims*sizeof(int64_t));
}
{
- const int32_t type32 = hft == HANDCRAFTED_TENSORS_BAD_TYPE ? -1 : int32_t(type);
- helper_write(&type32, sizeof(type32), file);
+ const int32_t type32 = hft == HANDCRAFTED_TENSORS_BAD_TYPE ? GGML_TYPE_COUNT : int32_t(type);
+ helper_write(file, type32);
}
if (hft == HANDCRAFTED_TENSORS_BAD_OFFSET) {
const uint64_t bad_offset = -1;
- helper_write(&bad_offset, sizeof(bad_offset), file);
+ helper_write(file, bad_offset);
} else {
- helper_write(&offset, sizeof(offset), file);
+ helper_write(file, offset);
}
int64_t ne = shape[0];
offset += GGML_PAD(ggml_row_size(type, ne), alignment);
}
- const uint32_t alignment_overshoot = ftell(file) % alignment;
- if (alignment_overshoot != 0) {
- for (size_t i = alignment_overshoot; i < alignment; ++i) {
- const char pad = 0;
- helper_write(&pad, sizeof(pad), file);
- }
+ while (ftell(file) % alignment != 0) {
+ const char pad = 0;
+ helper_write(file, pad);
}
if (hft >= offset_has_data) {
}
for (uint64_t i = 0; i < nbytes; ++i) {
const uint8_t random_byte = i % 256;
- helper_write(&random_byte, sizeof(random_byte), file);
+ helper_write(file, random_byte);
}
}
for (int i = 0; i < extra_bytes; ++i) {
const char tmp = 0;
- helper_write(&tmp, sizeof(tmp), file);
+ helper_write(file, tmp);
}
rewind(file);
return file;
}
const char * data_gguf = reinterpret_cast<const char *>(gguf_get_arr_data(gguf_ctx, id));
+
+ if (type_arr == GGUF_TYPE_BOOL) {
+ for (size_t arr_i = 0; arr_i < arr_n; ++arr_i) {
+ if (bool(data8[arr_i]) != bool(data_gguf[arr_i])) {
+ ok = false;
+ }
+ }
+ continue;
+ }
+
if (!std::equal(data8, data8 + arr_n*type_size, data_gguf)) {
ok = false;
}
}
const char * data_gguf = reinterpret_cast<const char *>(gguf_get_val_data(gguf_ctx, id));
+
+ if (type == GGUF_TYPE_BOOL) {
+ if (bool(*data8) != bool(*data_gguf)) {
+ ok = false;
+ }
+ continue;
+ }
+
if (!std::equal(data8, data8 + gguf_type_size(type), data_gguf)) {
ok = false;
}
}
- const uint32_t expected_alignment = alignment_defined ? GGUF_DEFAULT_ALIGNMENT + 1 : GGUF_DEFAULT_ALIGNMENT;
+ const uint32_t expected_alignment = alignment_defined ? 1 : GGUF_DEFAULT_ALIGNMENT;
if (gguf_get_alignment(gguf_ctx) != expected_alignment) {
ok = false;
}
bool ok = true;
- const int id_alignment = gguf_find_key(gguf_ctx, "general.alignment");
+ const int id_alignment = gguf_find_key(gguf_ctx, GGUF_KEY_GENERAL_ALIGNMENT);
const uint32_t alignment = id_alignment >= 0 ? gguf_get_val_u32(gguf_ctx, id_alignment) : GGUF_DEFAULT_ALIGNMENT;
uint64_t expected_offset = 0;
std::vector<uint8_t> data(size);
GGML_ASSERT(fseek(file, gguf_get_data_offset(gguf_ctx) + offset, SEEK_SET) == 0);
- GGML_ASSERT(fread(data.data(), 1, size, file) == size);
+ GGML_ASSERT(fread(data.data(), 1, data.size(), file) == data.size());
for (size_t j = 0; j < size; ++j) {
const uint8_t expected_byte = (j + offset) % 256;
const std::vector<handcrafted_file_type> hfts = {
HANDCRAFTED_HEADER_BAD_MAGIC,
HANDCRAFTED_HEADER_BAD_VERSION_1,
- // HANDCRAFTED_FILE_TYPE_BAD_VERSION_FUTURE, // FIXME
+ HANDCRAFTED_HEADER_BAD_VERSION_FUTURE,
HANDCRAFTED_HEADER_BAD_N_KV,
HANDCRAFTED_HEADER_BAD_N_TENSORS,
HANDCRAFTED_HEADER_EMPTY,
HANDCRAFTED_KV_BAD_KEY_SIZE,
HANDCRAFTED_KV_BAD_TYPE,
- // HANDCRAFTED_KV_BAD_VALUE_SIZE, // FIXME sanitizer limit
- // HANDCRAFTED_FILE_TYPE_DUPLICATE_KEY, // FIXME
+ HANDCRAFTED_KV_DUPLICATE_KEY,
+ HANDCRAFTED_KV_BAD_ALIGN,
HANDCRAFTED_KV_SUCCESS,
HANDCRAFTED_TENSORS_BAD_NAME_SIZE,
HANDCRAFTED_TENSORS_BAD_SHAPE,
HANDCRAFTED_TENSORS_NE_TOO_BIG,
HANDCRAFTED_TENSORS_BAD_TYPE,
- // HANDCRAFTED_TENSORS_BAD_OFFSET, // FIXME
+ HANDCRAFTED_TENSORS_BAD_OFFSET,
HANDCRAFTED_TENSORS_DUPLICATE_NAME,
- // HANDCRAFTED_TENSORS_BAD_ALIGNMENT, // FIXME
+ HANDCRAFTED_TENSORS_BAD_ALIGN,
+ HANDCRAFTED_TENSORS_INCONSISTENT_ALIGN,
HANDCRAFTED_TENSORS_SUCCESS,
HANDCRAFTED_TENSORS_CUSTOM_ALIGN,
HANDCRAFTED_DATA_NOT_ENOUGH_DATA,
- // HANDCRAFTED_DATA_BAD_ALIGNMENT, // FIXME
+ HANDCRAFTED_DATA_BAD_ALIGN,
+ HANDCRAFTED_DATA_INCONSISTENT_ALIGN,
HANDCRAFTED_DATA_SUCCESS,
HANDCRAFTED_DATA_CUSTOM_ALIGN,
};
/*no_alloc =*/ false,
/*ctx =*/ hft >= offset_has_data ? &ctx : nullptr,
};
+
struct gguf_context * gguf_ctx = gguf_init_from_file_impl(file, gguf_params);
if (expect_context_not_null(hft)) {
}
ntest++;
- if (false && hft >= offset_has_data && !expect_context_not_null(hft)) { // FIXME
+ if (hft >= offset_has_data && !expect_context_not_null(hft)) {
printf("%s: - no_dangling_ggml_context_pointer: ", __func__);
if (ctx) {
printf("\033[1;31mFAIL\033[0m\n");
ntest++;
}
- if (false && expect_context_not_null(hft)) { // FIXME
- FILE * file_eb = get_handcrafted_file(seed, hft, /*extra_bytes =*/ 1);
- struct gguf_context * gguf_ctx_eb = gguf_init_from_file_impl(file_eb, gguf_params);
-
- printf("%s: - context_null_with_extra_bytes: ", __func__);
- if (gguf_ctx_eb) {
- printf("\033[1;31mFAIL\033[0m\n");
- } else {
- printf("\033[1;32mOK\033[0m\n");
- npass++;
- }
- ntest++;
-
- gguf_free(gguf_ctx_eb);
- fclose(file_eb);
- }
-
const bool alignment_defined = hft == HANDCRAFTED_TENSORS_CUSTOM_ALIGN || hft == HANDCRAFTED_DATA_CUSTOM_ALIGN;
if (expect_context_not_null(hft)) {
ntest++;
}
+ fclose(file);
if (gguf_ctx) {
ggml_free(ctx);
gguf_free(gguf_ctx);
}
- fclose(file);
printf("\n");
}
+
return std::make_pair(npass, ntest);
}
const std::string key = "my_key_" + std::to_string(rng() % 1024);
const enum gguf_type type = gguf_type(rng() % GGUF_TYPE_COUNT);
- if (type == GGUF_TYPE_STRING || type == GGUF_TYPE_ARRAY) {
- continue; // FIXME memory leak
- }
-
switch (type) {
case GGUF_TYPE_UINT8: gguf_set_val_u8 (gguf_ctx, key.c_str(), rng() % (1 << 7)); break;
case GGUF_TYPE_INT8: gguf_set_val_i8 (gguf_ctx, key.c_str(), rng() % (1 << 7) - (1 << 6)); break;
std::vector<uint32_t> random_data((nbytes + sizeof(uint32_t) - 1) / sizeof(uint32_t));
for (size_t j = 0; j < random_data.size(); ++j) {
random_data[j] = rng();
+ if (type_arr == GGUF_TYPE_BOOL) {
+ random_data[j] &= 0x01010101; // the sanitizer complains if booleans are not 0 or 1
+ }
}
gguf_set_arr_data(gguf_ctx, key.c_str(), type_arr, random_data.data(), ne);
} break;
continue;
}
+ if (type_arr == GGUF_TYPE_BOOL) {
+ const int8_t * data = reinterpret_cast<const int8_t *>(gguf_get_arr_data(ctx, id));
+ const int8_t * data_other = reinterpret_cast<const int8_t *>(gguf_get_arr_data(other, idx_other));
+ for (int arr_i = 0; arr_i < arr_n; ++arr_i) {
+ if (bool(data[arr_i]) != bool(data_other[arr_i])) {
+ ok = false;
+ }
+ }
+ continue;
+ }
+
if (type_arr == GGUF_TYPE_STRING) {
for (int arr_i = 0; arr_i < arr_n; ++arr_i) {
const std::string str = gguf_get_arr_str(ctx, id, arr_i);
continue;
}
- const char * data = reinterpret_cast<const char *>(gguf_get_arr_data(ctx, id));
- const char * data_other = reinterpret_cast<const char *>(gguf_get_arr_data(other, idx_other));
+ const int8_t * data = reinterpret_cast<const int8_t *>(gguf_get_arr_data(ctx, id));
+ const int8_t * data_other = reinterpret_cast<const int8_t *>(gguf_get_arr_data(other, idx_other));
if (!std::equal(data, data + arr_n*gguf_type_size(type_arr), data_other)) {
ok = false;
}
}
static std::pair<int, int> test_roundtrip(ggml_backend_dev_t dev, const unsigned int seed, const bool only_meta) {
- FILE * file = tmpfile();
-#ifdef _WIN32
- if (!file) {
- printf("%s: failed to create tmpfile(), needs elevated privileges on Windows");
- printf("%s: skipping tests");
- return std::make_pair(0, 0);
- }
-#else
- GGML_ASSERT(file);
-#endif // _WIN32
-
- if (ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_CPU) {
- return std::make_pair(0, 0); // FIXME
- }
-
ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr);
printf("%s: device=%s, backend=%s, only_meta=%s\n",
__func__, ggml_backend_dev_description(dev), ggml_backend_name(backend), only_meta ? "yes" : "no");
bbuf = result.buffer;
}
- struct gguf_buf gbuf = gguf_buf_init(16 * 1024);
- gguf_write_to_buf(gguf_ctx_0, &gbuf, only_meta);
- helper_write(gbuf.data, gbuf.offset, file);
- rewind(file);
+ FILE * file = tmpfile();
+
+#ifdef _WIN32
+ if (!file) {
+ printf("%s: failed to create tmpfile(), needs elevated privileges on Windows");
+ printf("%s: skipping tests");
+ return std::make_pair(0, 0);
+ }
+#else
+ GGML_ASSERT(file);
+#endif // _WIN32
+
+ {
+ std::vector<int8_t> buf;
+ gguf_write_to_buf(gguf_ctx_0, buf, only_meta);
+ GGML_ASSERT(fwrite(buf.data(), 1, buf.size(), file) == buf.size());
+ rewind(file);
+ }
struct ggml_context * ctx_1 = nullptr;
struct gguf_init_params gguf_params = {
ggml_free(ctx_1);
gguf_free(gguf_ctx_0);
gguf_free(gguf_ctx_1);
- gguf_buf_free(gbuf);
ggml_backend_free(backend);
- GGML_ASSERT(fclose(file) == 0);
+ fclose(file);
printf("\n");
return std::make_pair(npass, ntest);