--- /dev/null
+import inspect
+import json
+from copy import copy
+from inspect import isclass, getdoc
+from types import NoneType
+
+from pydantic import BaseModel, create_model, Field
+from typing import Any, Type, List, get_args, get_origin, Tuple, Union, Optional, _GenericAlias
+from enum import Enum
+from typing import get_type_hints, Callable
+import re
+
+
+class PydanticDataType(Enum):
+ """
+ Defines the data types supported by the grammar_generator.
+
+ Attributes:
+ STRING (str): Represents a string data type.
+ BOOLEAN (str): Represents a boolean data type.
+ INTEGER (str): Represents an integer data type.
+ FLOAT (str): Represents a float data type.
+ OBJECT (str): Represents an object data type.
+ ARRAY (str): Represents an array data type.
+ ENUM (str): Represents an enum data type.
+ CUSTOM_CLASS (str): Represents a custom class data type.
+ """
+ STRING = "string"
+ TRIPLE_QUOTED_STRING = "triple_quoted_string"
+ MARKDOWN_STRING = "markdown_string"
+ BOOLEAN = "boolean"
+ INTEGER = "integer"
+ FLOAT = "float"
+ OBJECT = "object"
+ ARRAY = "array"
+ ENUM = "enum"
+ ANY = "any"
+ NULL = "null"
+ CUSTOM_CLASS = "custom-class"
+ CUSTOM_DICT = "custom-dict"
+ SET = "set"
+
+
+def map_pydantic_type_to_gbnf(pydantic_type: Type[Any]) -> str:
+ if isclass(pydantic_type) and issubclass(pydantic_type, str):
+ return PydanticDataType.STRING.value
+ elif isclass(pydantic_type) and issubclass(pydantic_type, bool):
+ return PydanticDataType.BOOLEAN.value
+ elif isclass(pydantic_type) and issubclass(pydantic_type, int):
+ return PydanticDataType.INTEGER.value
+ elif isclass(pydantic_type) and issubclass(pydantic_type, float):
+ return PydanticDataType.FLOAT.value
+ elif isclass(pydantic_type) and issubclass(pydantic_type, Enum):
+ return PydanticDataType.ENUM.value
+
+ elif isclass(pydantic_type) and issubclass(pydantic_type, BaseModel):
+ return format_model_and_field_name(pydantic_type.__name__)
+ elif get_origin(pydantic_type) == list:
+ element_type = get_args(pydantic_type)[0]
+ return f"{map_pydantic_type_to_gbnf(element_type)}-list"
+ elif get_origin(pydantic_type) == set:
+ element_type = get_args(pydantic_type)[0]
+ return f"{map_pydantic_type_to_gbnf(element_type)}-set"
+ elif get_origin(pydantic_type) == Union:
+ union_types = get_args(pydantic_type)
+ union_rules = [map_pydantic_type_to_gbnf(ut) for ut in union_types]
+ return f"union-{'-or-'.join(union_rules)}"
+ elif get_origin(pydantic_type) == Optional:
+ element_type = get_args(pydantic_type)[0]
+ return f"optional-{map_pydantic_type_to_gbnf(element_type)}"
+ elif isclass(pydantic_type):
+ return f"{PydanticDataType.CUSTOM_CLASS.value}-{format_model_and_field_name(pydantic_type.__name__)}"
+ elif get_origin(pydantic_type) == dict:
+ key_type, value_type = get_args(pydantic_type)
+ return f"custom-dict-key-type-{format_model_and_field_name(map_pydantic_type_to_gbnf(key_type))}-value-type-{format_model_and_field_name(map_pydantic_type_to_gbnf(value_type))}"
+ else:
+ return "unknown"
+
+
+def format_model_and_field_name(model_name: str) -> str:
+ parts = re.findall('[A-Z][^A-Z]*', model_name)
+ if not parts: # Check if the list is empty
+ return model_name.lower().replace("_", "-")
+ return '-'.join(part.lower().replace("_", "-") for part in parts)
+
+
+def generate_list_rule(element_type):
+ """
+ Generate a GBNF rule for a list of a given element type.
+
+ :param element_type: The type of the elements in the list (e.g., 'string').
+ :return: A string representing the GBNF rule for a list of the given type.
+ """
+ rule_name = f"{map_pydantic_type_to_gbnf(element_type)}-list"
+ element_rule = map_pydantic_type_to_gbnf(element_type)
+ list_rule = fr'{rule_name} ::= "[" {element_rule} ("," {element_rule})* "]"'
+ return list_rule
+
+
+def get_members_structure(cls, rule_name):
+ if issubclass(cls, Enum):
+ # Handle Enum types
+ members = [f'\"\\\"{member.value}\\\"\"' for name, member in cls.__members__.items()]
+ return f"{cls.__name__.lower()} ::= " + " | ".join(members)
+ if cls.__annotations__ and cls.__annotations__ != {}:
+ result = f'{rule_name} ::= "{{"'
+ type_list_rules = []
+ # Modify this comprehension
+ members = [f' \"\\\"{name}\\\"\" ":" {map_pydantic_type_to_gbnf(param_type)}'
+ for name, param_type in cls.__annotations__.items()
+ if name != 'self']
+
+ result += '"," '.join(members)
+ result += ' "}"'
+ return result, type_list_rules
+ elif rule_name == "custom-class-any":
+ result = f'{rule_name} ::= '
+ result += 'value'
+ type_list_rules = []
+ return result, type_list_rules
+ else:
+ init_signature = inspect.signature(cls.__init__)
+ parameters = init_signature.parameters
+ result = f'{rule_name} ::= "{{"'
+ type_list_rules = []
+ # Modify this comprehension too
+ members = [f' \"\\\"{name}\\\"\" ":" {map_pydantic_type_to_gbnf(param.annotation)}'
+ for name, param in parameters.items()
+ if name != 'self' and param.annotation != inspect.Parameter.empty]
+
+ result += '", "'.join(members)
+ result += ' "}"'
+ return result, type_list_rules
+
+
+def regex_to_gbnf(regex_pattern: str) -> str:
+ """
+ Translate a basic regex pattern to a GBNF rule.
+ Note: This function handles only a subset of simple regex patterns.
+ """
+ gbnf_rule = regex_pattern
+
+ # Translate common regex components to GBNF
+ gbnf_rule = gbnf_rule.replace('\\d', '[0-9]')
+ gbnf_rule = gbnf_rule.replace('\\s', '[ \t\n]')
+
+ # Handle quantifiers and other regex syntax that is similar in GBNF
+ # (e.g., '*', '+', '?', character classes)
+
+ return gbnf_rule
+
+
+def generate_gbnf_integer_rules(max_digit=None, min_digit=None):
+ """
+
+ Generate GBNF Integer Rules
+
+ Generates GBNF (Generalized Backus-Naur Form) rules for integers based on the given maximum and minimum digits.
+
+ Parameters:
+ max_digit (int): The maximum number of digits for the integer. Default is None.
+ min_digit (int): The minimum number of digits for the integer. Default is None.
+
+ Returns:
+ integer_rule (str): The identifier for the integer rule generated.
+ additional_rules (list): A list of additional rules generated based on the given maximum and minimum digits.
+
+ """
+ additional_rules = []
+
+ # Define the rule identifier based on max_digit and min_digit
+ integer_rule = "integer-part"
+ if max_digit is not None:
+ integer_rule += f"-max{max_digit}"
+ if min_digit is not None:
+ integer_rule += f"-min{min_digit}"
+
+ # Handling Integer Rules
+ if max_digit is not None or min_digit is not None:
+ # Start with an empty rule part
+ integer_rule_part = ''
+
+ # Add mandatory digits as per min_digit
+ if min_digit is not None:
+ integer_rule_part += '[0-9] ' * min_digit
+
+ # Add optional digits up to max_digit
+ if max_digit is not None:
+ optional_digits = max_digit - (min_digit if min_digit is not None else 0)
+ integer_rule_part += ''.join(['[0-9]? ' for _ in range(optional_digits)])
+
+ # Trim the rule part and append it to additional rules
+ integer_rule_part = integer_rule_part.strip()
+ if integer_rule_part:
+ additional_rules.append(f'{integer_rule} ::= {integer_rule_part}')
+
+ return integer_rule, additional_rules
+
+
+def generate_gbnf_float_rules(max_digit=None, min_digit=None, max_precision=None, min_precision=None):
+ """
+ Generate GBNF float rules based on the given constraints.
+
+ :param max_digit: Maximum number of digits in the integer part (default: None)
+ :param min_digit: Minimum number of digits in the integer part (default: None)
+ :param max_precision: Maximum number of digits in the fractional part (default: None)
+ :param min_precision: Minimum number of digits in the fractional part (default: None)
+ :return: A tuple containing the float rule and additional rules as a list
+
+ Example Usage:
+ max_digit = 3
+ min_digit = 1
+ max_precision = 2
+ min_precision = 1
+ generate_gbnf_float_rules(max_digit, min_digit, max_precision, min_precision)
+
+ Output:
+ ('float-3-1-2-1', ['integer-part-max3-min1 ::= [0-9] [0-9] [0-9]?', 'fractional-part-max2-min1 ::= [0-9] [0-9]?', 'float-3-1-2-1 ::= integer-part-max3-min1 "." fractional-part-max2-min
+ *1'])
+
+ Note:
+ GBNF stands for Generalized Backus-Naur Form, which is a notation technique to specify the syntax of programming languages or other formal grammars.
+ """
+ additional_rules = []
+
+ # Define the integer part rule
+ integer_part_rule = "integer-part" + (f"-max{max_digit}" if max_digit is not None else "") + (
+ f"-min{min_digit}" if min_digit is not None else "")
+
+ # Define the fractional part rule based on precision constraints
+ fractional_part_rule = "fractional-part"
+ fractional_rule_part = ''
+ if max_precision is not None or min_precision is not None:
+ fractional_part_rule += (f"-max{max_precision}" if max_precision is not None else "") + (
+ f"-min{min_precision}" if min_precision is not None else "")
+ # Minimum number of digits
+ fractional_rule_part = '[0-9]' * (min_precision if min_precision is not None else 1)
+ # Optional additional digits
+ fractional_rule_part += ''.join([' [0-9]?'] * (
+ (max_precision - (min_precision if min_precision is not None else 1)) if max_precision is not None else 0))
+ additional_rules.append(f'{fractional_part_rule} ::= {fractional_rule_part}')
+
+ # Define the float rule
+ float_rule = f"float-{max_digit if max_digit is not None else 'X'}-{min_digit if min_digit is not None else 'X'}-{max_precision if max_precision is not None else 'X'}-{min_precision if min_precision is not None else 'X'}"
+ additional_rules.append(f'{float_rule} ::= {integer_part_rule} "." {fractional_part_rule}')
+
+ # Generating the integer part rule definition, if necessary
+ if max_digit is not None or min_digit is not None:
+ integer_rule_part = '[0-9]'
+ if min_digit is not None and min_digit > 1:
+ integer_rule_part += ' [0-9]' * (min_digit - 1)
+ if max_digit is not None:
+ integer_rule_part += ''.join([' [0-9]?'] * (max_digit - (min_digit if min_digit is not None else 1)))
+ additional_rules.append(f'{integer_part_rule} ::= {integer_rule_part.strip()}')
+
+ return float_rule, additional_rules
+
+
+def generate_gbnf_rule_for_type(model_name, field_name,
+ field_type, is_optional, processed_models, created_rules,
+ field_info=None) -> \
+ Tuple[str, list]:
+ """
+ Generate GBNF rule for a given field type.
+
+ :param model_name: Name of the model.
+
+ :param field_name: Name of the field.
+ :param field_type: Type of the field.
+ :param is_optional: Whether the field is optional.
+ :param processed_models: List of processed models.
+ :param created_rules: List of created rules.
+ :param field_info: Additional information about the field (optional).
+
+ :return: Tuple containing the GBNF type and a list of additional rules.
+ :rtype: Tuple[str, list]
+ """
+ rules = []
+
+ field_name = format_model_and_field_name(field_name)
+ gbnf_type = map_pydantic_type_to_gbnf(field_type)
+
+ if isclass(field_type) and issubclass(field_type, BaseModel):
+ nested_model_name = format_model_and_field_name(field_type.__name__)
+ nested_model_rules = generate_gbnf_grammar(field_type, processed_models, created_rules)
+ rules.extend(nested_model_rules)
+ gbnf_type, rules = nested_model_name, rules
+ elif isclass(field_type) and issubclass(field_type, Enum):
+ enum_values = [f'\"\\\"{e.value}\\\"\"' for e in field_type] # Adding escaped quotes
+ enum_rule = f"{model_name}-{field_name} ::= {' | '.join(enum_values)}"
+ rules.append(enum_rule)
+ gbnf_type, rules = model_name + "-" + field_name, rules
+ elif get_origin(field_type) == list or field_type == list: # Array
+ element_type = get_args(field_type)[0]
+ element_rule_name, additional_rules = generate_gbnf_rule_for_type(model_name,
+ f"{field_name}-element",
+ element_type, is_optional, processed_models,
+ created_rules)
+ rules.extend(additional_rules)
+ array_rule = f"""{model_name}-{field_name} ::= "[" ws {element_rule_name} ("," ws {element_rule_name})* "]" """
+ rules.append(array_rule)
+ gbnf_type, rules = model_name + "-" + field_name, rules
+
+ elif get_origin(field_type) == set or field_type == set: # Array
+ element_type = get_args(field_type)[0]
+ element_rule_name, additional_rules = generate_gbnf_rule_for_type(model_name,
+ f"{field_name}-element",
+ element_type, is_optional, processed_models,
+ created_rules)
+ rules.extend(additional_rules)
+ array_rule = f"""{model_name}-{field_name} ::= "[" ws {element_rule_name} ("," ws {element_rule_name})* "]" """
+ rules.append(array_rule)
+ gbnf_type, rules = model_name + "-" + field_name, rules
+
+ elif gbnf_type.startswith("custom-class-"):
+ nested_model_rules, field_types = get_members_structure(field_type, gbnf_type)
+ rules.append(nested_model_rules)
+ elif gbnf_type.startswith("custom-dict-"):
+ key_type, value_type = get_args(field_type)
+
+ additional_key_type, additional_key_rules = generate_gbnf_rule_for_type(model_name,
+ f"{field_name}-key-type",
+ key_type, is_optional, processed_models,
+ created_rules)
+ additional_value_type, additional_value_rules = generate_gbnf_rule_for_type(model_name,
+ f"{field_name}-value-type",
+ value_type, is_optional,
+ processed_models, created_rules)
+ gbnf_type = fr'{gbnf_type} ::= "{{" ( {additional_key_type} ":" {additional_value_type} ("," {additional_key_type} ":" {additional_value_type})* )? "}}" '
+
+ rules.extend(additional_key_rules)
+ rules.extend(additional_value_rules)
+ elif gbnf_type.startswith("union-"):
+ union_types = get_args(field_type)
+ union_rules = []
+
+ for union_type in union_types:
+ if isinstance(union_type, _GenericAlias):
+ union_gbnf_type, union_rules_list = generate_gbnf_rule_for_type(model_name,
+ field_name, union_type,
+ False,
+ processed_models, created_rules)
+ union_rules.append(union_gbnf_type)
+ rules.extend(union_rules_list)
+
+
+ elif not issubclass(union_type, NoneType):
+ union_gbnf_type, union_rules_list = generate_gbnf_rule_for_type(model_name,
+ field_name, union_type,
+ False,
+ processed_models, created_rules)
+ union_rules.append(union_gbnf_type)
+ rules.extend(union_rules_list)
+
+ # Defining the union grammar rule separately
+ if len(union_rules) == 1:
+ union_grammar_rule = f"{model_name}-{field_name}-optional ::= {' | '.join(union_rules)} | null"
+ else:
+ union_grammar_rule = f"{model_name}-{field_name}-union ::= {' | '.join(union_rules)}"
+ rules.append(union_grammar_rule)
+ if len(union_rules) == 1:
+ gbnf_type = f"{model_name}-{field_name}-optional"
+ else:
+ gbnf_type = f"{model_name}-{field_name}-union"
+ elif isclass(field_type) and issubclass(field_type, str):
+ if field_info and hasattr(field_info, 'json_schema_extra') and field_info.json_schema_extra is not None:
+
+ triple_quoted_string = field_info.json_schema_extra.get('triple_quoted_string', False)
+ markdown_string = field_info.json_schema_extra.get('markdown_string', False)
+
+ gbnf_type = PydanticDataType.TRIPLE_QUOTED_STRING.value if triple_quoted_string else PydanticDataType.STRING.value
+ gbnf_type = PydanticDataType.MARKDOWN_STRING.value if markdown_string else gbnf_type
+
+ elif field_info and hasattr(field_info, 'pattern'):
+ # Convert regex pattern to grammar rule
+ regex_pattern = field_info.regex.pattern
+ gbnf_type = f"pattern-{field_name} ::= {regex_to_gbnf(regex_pattern)}"
+ else:
+ gbnf_type = PydanticDataType.STRING.value
+
+ elif isclass(field_type) and issubclass(field_type, float) and field_info and hasattr(field_info,
+ 'json_schema_extra') and field_info.json_schema_extra is not None:
+ # Retrieve precision attributes for floats
+ max_precision = field_info.json_schema_extra.get('max_precision') if field_info and hasattr(field_info,
+ 'json_schema_extra') else None
+ min_precision = field_info.json_schema_extra.get('min_precision') if field_info and hasattr(field_info,
+ 'json_schema_extra') else None
+ max_digits = field_info.json_schema_extra.get('max_digit') if field_info and hasattr(field_info,
+ 'json_schema_extra') else None
+ min_digits = field_info.json_schema_extra.get('min_digit') if field_info and hasattr(field_info,
+ 'json_schema_extra') else None
+
+ # Generate GBNF rule for float with given attributes
+ gbnf_type, rules = generate_gbnf_float_rules(max_digit=max_digits, min_digit=min_digits,
+ max_precision=max_precision,
+ min_precision=min_precision)
+
+ elif isclass(field_type) and issubclass(field_type, int) and field_info and hasattr(field_info,
+ 'json_schema_extra') and field_info.json_schema_extra is not None:
+ # Retrieve digit attributes for integers
+ max_digits = field_info.json_schema_extra.get('max_digit') if field_info and hasattr(field_info,
+ 'json_schema_extra') else None
+ min_digits = field_info.json_schema_extra.get('min_digit') if field_info and hasattr(field_info,
+ 'json_schema_extra') else None
+
+ # Generate GBNF rule for integer with given attributes
+ gbnf_type, rules = generate_gbnf_integer_rules(max_digit=max_digits, min_digit=min_digits)
+ else:
+ gbnf_type, rules = gbnf_type, []
+
+ if gbnf_type not in created_rules:
+ return gbnf_type, rules
+ else:
+ if gbnf_type in created_rules:
+ return gbnf_type, rules
+
+
+def generate_gbnf_grammar(model: Type[BaseModel], processed_models: set, created_rules: dict) -> (list, bool, bool):
+ """
+
+ Generate GBnF Grammar
+
+ Generates a GBnF grammar for a given model.
+
+ :param model: A Pydantic model class to generate the grammar for. Must be a subclass of BaseModel.
+ :param processed_models: A set of already processed models to prevent infinite recursion.
+ :param created_rules: A dict containing already created rules to prevent duplicates.
+ :return: A list of GBnF grammar rules in string format. And two booleans indicating if an extra markdown or triple quoted string is in the grammar.
+ Example Usage:
+ ```
+ model = MyModel
+ processed_models = set()
+ created_rules = dict()
+
+ gbnf_grammar = generate_gbnf_grammar(model, processed_models, created_rules)
+ ```
+ """
+ if model in processed_models:
+ return []
+
+ processed_models.add(model)
+ model_name = format_model_and_field_name(model.__name__)
+
+ if not issubclass(model, BaseModel):
+ # For non-Pydantic classes, generate model_fields from __annotations__ or __init__
+ if hasattr(model, '__annotations__') and model.__annotations__:
+ model_fields = {name: (typ, ...) for name, typ in model.__annotations__.items()}
+ else:
+ init_signature = inspect.signature(model.__init__)
+ parameters = init_signature.parameters
+ model_fields = {name: (param.annotation, param.default) for name, param in parameters.items()
+ if name != 'self'}
+ else:
+ # For Pydantic models, use model_fields and check for ellipsis (required fields)
+ model_fields = model.__annotations__
+
+ model_rule_parts = []
+ nested_rules = []
+ has_markdown_code_block = False
+ has_triple_quoted_string = False
+ look_for_markdown_code_block = False
+ look_for_triple_quoted_string = False
+ for field_name, field_info in model_fields.items():
+ if not issubclass(model, BaseModel):
+ field_type, default_value = field_info
+ # Check if the field is optional (not required)
+ is_optional = (default_value is not inspect.Parameter.empty) and (default_value is not Ellipsis)
+ else:
+ field_type = field_info
+ field_info = model.model_fields[field_name]
+ is_optional = field_info.is_required is False and get_origin(field_type) is Optional
+ rule_name, additional_rules = generate_gbnf_rule_for_type(model_name,
+ format_model_and_field_name(field_name),
+ field_type, is_optional,
+ processed_models, created_rules, field_info)
+ look_for_markdown_code_block = True if rule_name == "markdown_string" else False
+ look_for_triple_quoted_string = True if rule_name == "triple_quoted_string" else False
+ if not look_for_markdown_code_block and not look_for_triple_quoted_string:
+ if rule_name not in created_rules:
+ created_rules[rule_name] = additional_rules
+ model_rule_parts.append(f' ws \"\\\"{field_name}\\\"\" ": " {rule_name}') # Adding escaped quotes
+ nested_rules.extend(additional_rules)
+ else:
+ has_triple_quoted_string = look_for_markdown_code_block
+ has_markdown_code_block = look_for_triple_quoted_string
+
+ fields_joined = r' "," "\n" '.join(model_rule_parts)
+ model_rule = fr'{model_name} ::= "{{" "\n" {fields_joined} "\n" ws "}}"'
+
+ if look_for_markdown_code_block or look_for_triple_quoted_string:
+ model_rule += ' ws "}"'
+
+ if has_triple_quoted_string:
+ model_rule += '"\\n" triple-quoted-string'
+ if has_markdown_code_block:
+ model_rule += '"\\n" markdown-code-block'
+ all_rules = [model_rule] + nested_rules
+
+ return all_rules, has_markdown_code_block, has_triple_quoted_string
+
+
+def generate_gbnf_grammar_from_pydantic_models(models: List[Type[BaseModel]], outer_object_name: str = None,
+ outer_object_content: str = None, list_of_outputs: bool = False) -> str:
+ """
+ Generate GBNF Grammar from Pydantic Models.
+
+ This method takes a list of Pydantic models and uses them to generate a GBNF grammar string. The generated grammar string can be used for parsing and validating data using the generated
+ * grammar.
+
+ Parameters:
+ models (List[Type[BaseModel]]): A list of Pydantic models to generate the grammar from.
+ outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling.
+ outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling.
+ list_of_outputs (str, optional): Allows a list of output objects
+ Returns:
+ str: The generated GBNF grammar string.
+
+ Examples:
+ models = [UserModel, PostModel]
+ grammar = generate_gbnf_grammar_from_pydantic(models)
+ print(grammar)
+ # Output:
+ # root ::= UserModel | PostModel
+ # ...
+ """
+ processed_models = set()
+ all_rules = []
+ created_rules = {}
+ if outer_object_name is None:
+
+ for model in models:
+ model_rules, _, _ = generate_gbnf_grammar(model,
+ processed_models, created_rules)
+ all_rules.extend(model_rules)
+
+ if list_of_outputs:
+ root_rule = r'root ::= ws "[" grammar-models ("," grammar-models)* "]"' + "\n"
+ else:
+ root_rule = r'root ::= ws grammar-models' + "\n"
+ root_rule += "grammar-models ::= " + " | ".join(
+ [format_model_and_field_name(model.__name__) for model in models])
+ all_rules.insert(0, root_rule)
+ return "\n".join(all_rules)
+ elif outer_object_name is not None:
+ if list_of_outputs:
+ root_rule = fr'root ::= ws "[" {format_model_and_field_name(outer_object_name)} ("," {format_model_and_field_name(outer_object_name)})* "]"' + "\n"
+ else:
+ root_rule = f"root ::= {format_model_and_field_name(outer_object_name)}\n"
+
+ model_rule = fr'{format_model_and_field_name(outer_object_name)} ::= ws "{{" ws "\"{outer_object_name}\"" ": " grammar-models'
+
+ fields_joined = " | ".join(
+ [fr'{format_model_and_field_name(model.__name__)}-grammar-model' for model in models])
+
+ grammar_model_rules = f'\ngrammar-models ::= {fields_joined}'
+ mod_rules = []
+ for model in models:
+ mod_rule = fr'{format_model_and_field_name(model.__name__)}-grammar-model ::= ws'
+ mod_rule += fr'"\"{format_model_and_field_name(model.__name__)}\"" "," ws "\"{outer_object_content}\"" ws ":" ws {format_model_and_field_name(model.__name__)}' + '\n'
+ mod_rules.append(mod_rule)
+ grammar_model_rules += "\n" + "\n".join(mod_rules)
+ look_for_markdown_code_block = False
+ look_for_triple_quoted_string = False
+ for model in models:
+ model_rules, markdown_block, triple_quoted_string = generate_gbnf_grammar(model,
+ processed_models, created_rules)
+ all_rules.extend(model_rules)
+ if markdown_block:
+ look_for_markdown_code_block = True
+
+ if triple_quoted_string:
+ look_for_triple_quoted_string = True
+
+ if not look_for_markdown_code_block and not look_for_triple_quoted_string:
+ model_rule += ' ws "}"'
+ all_rules.insert(0, root_rule + model_rule + grammar_model_rules)
+ return "\n".join(all_rules)
+
+
+def get_primitive_grammar(grammar):
+ """
+ Returns the needed GBNF primitive grammar for a given GBNF grammar string.
+
+ Args:
+ grammar (str): The string containing the GBNF grammar.
+
+ Returns:
+ str: GBNF primitive grammar string.
+ """
+ type_list = []
+ if "string-list" in grammar:
+ type_list.append(str)
+ if "boolean-list" in grammar:
+ type_list.append(bool)
+ if "integer-list" in grammar:
+ type_list.append(int)
+ if "float-list" in grammar:
+ type_list.append(float)
+ additional_grammar = [generate_list_rule(t) for t in type_list]
+ primitive_grammar = r"""
+boolean ::= "true" | "false"
+null ::= "null"
+string ::= "\"" (
+ [^"\\] |
+ "\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])
+ )* "\"" ws
+ws ::= ([ \t\n] ws)?
+float ::= ("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? ws
+
+integer ::= [0-9]+"""
+
+ any_block = ""
+ if "custom-class-any" in grammar:
+ any_block = '''
+value ::= object | array | string | number | boolean | null
+
+object ::=
+ "{" ws (
+ string ":" ws value
+ ("," ws string ":" ws value)*
+ )? "}" ws
+
+array ::=
+ "[" ws (
+ value
+ ("," ws value)*
+ )? "]" ws
+
+number ::= integer | float'''
+
+ markdown_code_block_grammar = ""
+ if "markdown-code-block" in grammar:
+ markdown_code_block_grammar = r'''
+markdown-code-block ::= opening-triple-ticks markdown-code-block-content closing-triple-ticks
+markdown-code-block-content ::= ( [^`] | "`" [^`] | "`" "`" [^`] )*
+opening-triple-ticks ::= "```" "python" "\n" | "```" "c" "\n" | "```" "cpp" "\n" | "```" "txt" "\n" | "```" "text" "\n" | "```" "json" "\n" | "```" "javascript" "\n" | "```" "css" "\n" | "```" "html" "\n" | "```" "markdown" "\n"
+closing-triple-ticks ::= "```" "\n"'''
+
+ if "triple-quoted-string" in grammar:
+ markdown_code_block_grammar = r"""
+triple-quoted-string ::= triple-quotes triple-quoted-string-content triple-quotes
+triple-quoted-string-content ::= ( [^'] | "'" [^'] | "'" "'" [^'] )*
+triple-quotes ::= "'''" """
+ return "\n" + '\n'.join(additional_grammar) + any_block + primitive_grammar + markdown_code_block_grammar
+
+
+def generate_field_markdown(field_name: str, field_type: Type[Any], model: Type[BaseModel], depth=1) -> str:
+ indent = ' ' * depth
+ field_markdown = f"{indent}- **{field_name}** (`{field_type.__name__}`): "
+
+ # Extracting field description from Pydantic Field using __model_fields__
+ field_info = model.model_fields.get(field_name)
+ field_description = field_info.description if field_info and field_info.description else "No description available."
+
+ field_markdown += field_description + '\n'
+
+ # Handling nested BaseModel fields
+ if isclass(field_type) and issubclass(field_type, BaseModel):
+ field_markdown += f"{indent} - Details:\n"
+ for name, type_ in field_type.__annotations__.items():
+ field_markdown += generate_field_markdown(name, type_, field_type, depth + 2)
+
+ return field_markdown
+
+
+def generate_markdown_report(pydantic_models: List[Type[BaseModel]]) -> str:
+ markdown = ""
+ for model in pydantic_models:
+ markdown += f"### {format_model_and_field_name(model.__name__)}\n"
+
+ # Check if the model's docstring is different from BaseModel's docstring
+ class_doc = getdoc(model)
+ base_class_doc = getdoc(BaseModel)
+ class_description = class_doc if class_doc and class_doc != base_class_doc else "No specific description available."
+
+ markdown += f"{class_description}\n\n"
+ markdown += "#### Fields\n"
+
+ if isclass(model) and issubclass(model, BaseModel):
+ for name, field_type in model.__annotations__.items():
+ markdown += generate_field_markdown(format_model_and_field_name(name), field_type, model)
+ markdown += "\n"
+
+ return markdown
+
+
+def format_json_example(example: dict, depth: int) -> str:
+ """
+ Format a JSON example into a readable string with indentation.
+
+ Args:
+ example (dict): JSON example to be formatted.
+ depth (int): Indentation depth.
+
+ Returns:
+ str: Formatted JSON example string.
+ """
+ indent = ' ' * depth
+ formatted_example = '{\n'
+ for key, value in example.items():
+ value_text = f"'{value}'" if isinstance(value, str) else value
+ formatted_example += f"{indent}{key}: {value_text},\n"
+ formatted_example = formatted_example.rstrip(',\n') + '\n' + indent + '}'
+ return formatted_example
+
+
+def generate_text_documentation(pydantic_models: List[Type[BaseModel]], model_prefix="Model",
+ fields_prefix="Fields", documentation_with_field_description=True) -> str:
+ """
+ Generate text documentation for a list of Pydantic models.
+
+ Args:
+ pydantic_models (List[Type[BaseModel]]): List of Pydantic model classes.
+ model_prefix (str): Prefix for the model section.
+ fields_prefix (str): Prefix for the fields section.
+ documentation_with_field_description (bool): Include field descriptions in the documentation.
+
+ Returns:
+ str: Generated text documentation.
+ """
+ documentation = ""
+ pyd_models = [(model, True) for model in pydantic_models]
+ for model, add_prefix in pyd_models:
+ if add_prefix:
+ documentation += f"{model_prefix}: {format_model_and_field_name(model.__name__)}\n"
+ else:
+ documentation += f"Model: {format_model_and_field_name(model.__name__)}\n"
+
+ # Handling multi-line model description with proper indentation
+
+ class_doc = getdoc(model)
+ base_class_doc = getdoc(BaseModel)
+ class_description = class_doc if class_doc and class_doc != base_class_doc else ""
+ if class_description != "":
+ documentation += " Description: "
+ documentation += "\n" + format_multiline_description(class_description, 2) + "\n"
+
+ if add_prefix:
+ # Indenting the fields section
+ documentation += f" {fields_prefix}:\n"
+ else:
+ documentation += f" Fields:\n"
+ if isclass(model) and issubclass(model, BaseModel):
+ for name, field_type in model.__annotations__.items():
+ # if name == "markdown_code_block":
+ # continue
+ if get_origin(field_type) == list:
+ element_type = get_args(field_type)[0]
+ if isclass(element_type) and issubclass(element_type, BaseModel):
+ pyd_models.append((element_type, False))
+ if get_origin(field_type) == Union:
+ element_types = get_args(field_type)
+ for element_type in element_types:
+ if isclass(element_type) and issubclass(element_type, BaseModel):
+ pyd_models.append((element_type, False))
+ documentation += generate_field_text(name, field_type, model,
+ documentation_with_field_description=documentation_with_field_description)
+ documentation += "\n"
+
+ if hasattr(model, 'Config') and hasattr(model.Config,
+ 'json_schema_extra') and 'example' in model.Config.json_schema_extra:
+ documentation += f" Expected Example Output for {format_model_and_field_name(model.__name__)}:\n"
+ json_example = json.dumps(model.Config.json_schema_extra['example'])
+ documentation += format_multiline_description(json_example, 2) + "\n"
+
+ return documentation
+
+
+def generate_field_text(field_name: str, field_type: Type[Any], model: Type[BaseModel], depth=1,
+ documentation_with_field_description=True) -> str:
+ """
+ Generate text documentation for a Pydantic model field.
+
+ Args:
+ field_name (str): Name of the field.
+ field_type (Type[Any]): Type of the field.
+ model (Type[BaseModel]): Pydantic model class.
+ depth (int): Indentation depth in the documentation.
+ documentation_with_field_description (bool): Include field descriptions in the documentation.
+
+ Returns:
+ str: Generated text documentation for the field.
+ """
+ indent = ' ' * depth
+
+ field_info = model.model_fields.get(field_name)
+ field_description = field_info.description if field_info and field_info.description else ""
+
+ if get_origin(field_type) == list:
+ element_type = get_args(field_type)[0]
+ field_text = f"{indent}{field_name} ({format_model_and_field_name(field_type.__name__)} of {format_model_and_field_name(element_type.__name__)})"
+ if field_description != "":
+ field_text += ":\n"
+ else:
+ field_text += "\n"
+ elif get_origin(field_type) == Union:
+ element_types = get_args(field_type)
+ types = []
+ for element_type in element_types:
+ types.append(format_model_and_field_name(element_type.__name__))
+ field_text = f"{indent}{field_name} ({' or '.join(types)})"
+ if field_description != "":
+ field_text += ":\n"
+ else:
+ field_text += "\n"
+ else:
+ field_text = f"{indent}{field_name} ({format_model_and_field_name(field_type.__name__)})"
+ if field_description != "":
+ field_text += ":\n"
+ else:
+ field_text += "\n"
+
+ if not documentation_with_field_description:
+ return field_text
+
+ if field_description != "":
+ field_text += f"{indent} Description: " + field_description + "\n"
+
+ # Check for and include field-specific examples if available
+ if hasattr(model, 'Config') and hasattr(model.Config,
+ 'json_schema_extra') and 'example' in model.Config.json_schema_extra:
+ field_example = model.Config.json_schema_extra['example'].get(field_name)
+ if field_example is not None:
+ example_text = f"'{field_example}'" if isinstance(field_example, str) else field_example
+ field_text += f"{indent} Example: {example_text}\n"
+
+ if isclass(field_type) and issubclass(field_type, BaseModel):
+ field_text += f"{indent} Details:\n"
+ for name, type_ in field_type.__annotations__.items():
+ field_text += generate_field_text(name, type_, field_type, depth + 2)
+
+ return field_text
+
+
+def format_multiline_description(description: str, indent_level: int) -> str:
+ """
+ Format a multiline description with proper indentation.
+
+ Args:
+ description (str): Multiline description.
+ indent_level (int): Indentation level.
+
+ Returns:
+ str: Formatted multiline description.
+ """
+ indent = ' ' * indent_level
+ return indent + description.replace('\n', '\n' + indent)
+
+
+def save_gbnf_grammar_and_documentation(grammar, documentation, grammar_file_path="./grammar.gbnf",
+ documentation_file_path="./grammar_documentation.md"):
+ """
+ Save GBNF grammar and documentation to specified files.
+
+ Args:
+ grammar (str): GBNF grammar string.
+ documentation (str): Documentation string.
+ grammar_file_path (str): File path to save the GBNF grammar.
+ documentation_file_path (str): File path to save the documentation.
+
+ Returns:
+ None
+ """
+ try:
+ with open(grammar_file_path, 'w') as file:
+ file.write(grammar + get_primitive_grammar(grammar))
+ print(f"Grammar successfully saved to {grammar_file_path}")
+ except IOError as e:
+ print(f"An error occurred while saving the grammar file: {e}")
+
+ try:
+ with open(documentation_file_path, 'w') as file:
+ file.write(documentation)
+ print(f"Documentation successfully saved to {documentation_file_path}")
+ except IOError as e:
+ print(f"An error occurred while saving the documentation file: {e}")
+
+
+def remove_empty_lines(string):
+ """
+ Remove empty lines from a string.
+
+ Args:
+ string (str): Input string.
+
+ Returns:
+ str: String with empty lines removed.
+ """
+ lines = string.splitlines()
+ non_empty_lines = [line for line in lines if line.strip() != ""]
+ string_no_empty_lines = "\n".join(non_empty_lines)
+ return string_no_empty_lines
+
+
+def generate_and_save_gbnf_grammar_and_documentation(pydantic_model_list,
+ grammar_file_path="./generated_grammar.gbnf",
+ documentation_file_path="./generated_grammar_documentation.md",
+ outer_object_name: str = None,
+ outer_object_content: str = None,
+ model_prefix: str = "Output Model",
+ fields_prefix: str = "Output Fields",
+ list_of_outputs: bool = False,
+ documentation_with_field_description=True):
+ """
+ Generate GBNF grammar and documentation, and save them to specified files.
+
+ Args:
+ pydantic_model_list: List of Pydantic model classes.
+ grammar_file_path (str): File path to save the generated GBNF grammar.
+ documentation_file_path (str): File path to save the generated documentation.
+ outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling.
+ outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling.
+ model_prefix (str): Prefix for the model section in the documentation.
+ fields_prefix (str): Prefix for the fields section in the documentation.
+ list_of_outputs (bool): Whether the output is a list of items.
+ documentation_with_field_description (bool): Include field descriptions in the documentation.
+
+ Returns:
+ None
+ """
+ documentation = generate_text_documentation(pydantic_model_list, model_prefix, fields_prefix,
+ documentation_with_field_description=documentation_with_field_description)
+ grammar = generate_gbnf_grammar_from_pydantic_models(pydantic_model_list, outer_object_name,
+ outer_object_content, list_of_outputs)
+ grammar = remove_empty_lines(grammar)
+ save_gbnf_grammar_and_documentation(grammar, documentation, grammar_file_path, documentation_file_path)
+
+
+def generate_gbnf_grammar_and_documentation(pydantic_model_list, outer_object_name: str = None,
+ outer_object_content: str = None,
+ model_prefix: str = "Output Model",
+ fields_prefix: str = "Output Fields", list_of_outputs: bool = False,
+ documentation_with_field_description=True):
+ """
+ Generate GBNF grammar and documentation for a list of Pydantic models.
+
+ Args:
+ pydantic_model_list: List of Pydantic model classes.
+ outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling.
+ outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling.
+ model_prefix (str): Prefix for the model section in the documentation.
+ fields_prefix (str): Prefix for the fields section in the documentation.
+ list_of_outputs (bool): Whether the output is a list of items.
+ documentation_with_field_description (bool): Include field descriptions in the documentation.
+
+ Returns:
+ tuple: GBNF grammar string, documentation string.
+ """
+ documentation = generate_text_documentation(copy(pydantic_model_list), model_prefix, fields_prefix,
+ documentation_with_field_description=documentation_with_field_description)
+ grammar = generate_gbnf_grammar_from_pydantic_models(pydantic_model_list, outer_object_name,
+ outer_object_content, list_of_outputs)
+ grammar = remove_empty_lines(grammar + get_primitive_grammar(grammar))
+ return grammar, documentation
+
+
+def generate_gbnf_grammar_and_documentation_from_dictionaries(dictionaries: List[dict],
+ outer_object_name: str = None,
+ outer_object_content: str = None,
+ model_prefix: str = "Output Model",
+ fields_prefix: str = "Output Fields",
+ list_of_outputs: bool = False,
+ documentation_with_field_description=True):
+ """
+ Generate GBNF grammar and documentation from a list of dictionaries.
+
+ Args:
+ dictionaries (List[dict]): List of dictionaries representing Pydantic models.
+ outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling.
+ outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling.
+ model_prefix (str): Prefix for the model section in the documentation.
+ fields_prefix (str): Prefix for the fields section in the documentation.
+ list_of_outputs (bool): Whether the output is a list of items.
+ documentation_with_field_description (bool): Include field descriptions in the documentation.
+
+ Returns:
+ tuple: GBNF grammar string, documentation string.
+ """
+ pydantic_model_list = create_dynamic_models_from_dictionaries(dictionaries)
+ documentation = generate_text_documentation(copy(pydantic_model_list), model_prefix, fields_prefix,
+ documentation_with_field_description=documentation_with_field_description)
+ grammar = generate_gbnf_grammar_from_pydantic_models(pydantic_model_list, outer_object_name,
+ outer_object_content, list_of_outputs)
+ grammar = remove_empty_lines(grammar + get_primitive_grammar(grammar))
+ return grammar, documentation
+
+
+def create_dynamic_model_from_function(func: Callable):
+ """
+ Creates a dynamic Pydantic model from a given function's type hints and adds the function as a 'run' method.
+
+ Args:
+ func (Callable): A function with type hints from which to create the model.
+
+ Returns:
+ A dynamic Pydantic model class with the provided function as a 'run' method.
+ """
+ # Extracting type hints from the provided function
+ type_hints = get_type_hints(func)
+ type_hints.pop('return', None)
+
+ # Handling default values and annotations
+ dynamic_fields = {}
+ defaults = getattr(func, '__defaults__', ()) or ()
+ defaults_index = len(type_hints) - len(defaults)
+
+ for index, (name, typ) in enumerate(type_hints.items()):
+ if index >= defaults_index:
+ default_value = defaults[index - defaults_index]
+ dynamic_fields[name] = (typ, default_value)
+ else:
+ dynamic_fields[name] = (typ, ...)
+
+ # Creating the dynamic model
+ dynamicModel = create_model(f'{func.__name__}', **dynamic_fields)
+
+ dynamicModel.__doc__ = getdoc(func)
+
+ # Wrapping the original function to handle instance 'self'
+ def run_method_wrapper(self):
+ func_args = {name: getattr(self, name) for name in type_hints}
+ return func(**func_args)
+
+ # Adding the wrapped function as a 'run' method
+ setattr(dynamicModel, 'run', run_method_wrapper)
+
+ return dynamicModel
+
+
+def add_run_method_to_dynamic_model(model: Type[BaseModel], func: Callable):
+ """
+ Add a 'run' method to a dynamic Pydantic model, using the provided function.
+
+ Args:
+ - model (Type[BaseModel]): Dynamic Pydantic model class.
+ - func (Callable): Function to be added as a 'run' method to the model.
+
+ Returns:
+ - Type[BaseModel]: Pydantic model class with the added 'run' method.
+ """
+
+ def run_method_wrapper(self):
+ func_args = {name: getattr(self, name) for name in model.model_fields}
+ return func(**func_args)
+
+ # Adding the wrapped function as a 'run' method
+ setattr(model, 'run', run_method_wrapper)
+
+ return model
+
+
+def create_dynamic_models_from_dictionaries(dictionaries: List[dict]):
+ """
+ Create a list of dynamic Pydantic model classes from a list of dictionaries.
+
+ Args:
+ - dictionaries (List[dict]): List of dictionaries representing model structures.
+
+ Returns:
+ - List[Type[BaseModel]]: List of generated dynamic Pydantic model classes.
+ """
+ dynamic_models = []
+ for func in dictionaries:
+ model_name = format_model_and_field_name(func.get("name", ""))
+ dyn_model = convert_dictionary_to_to_pydantic_model(func, model_name)
+ dynamic_models.append(dyn_model)
+ return dynamic_models
+
+
+def map_grammar_names_to_pydantic_model_class(pydantic_model_list):
+ output = {}
+ for model in pydantic_model_list:
+ output[format_model_and_field_name(model.__name__)] = model
+
+ return output
+
+
+from enum import Enum
+
+
+def json_schema_to_python_types(schema):
+ type_map = {
+ 'any': Any,
+ 'string': str,
+ 'number': float,
+ 'integer': int,
+ 'boolean': bool,
+ 'array': list,
+ }
+ return type_map[schema]
+
+
+def list_to_enum(enum_name, values):
+ return Enum(enum_name, {value: value for value in values})
+
+
+def convert_dictionary_to_to_pydantic_model(dictionary: dict, model_name: str = 'CustomModel') -> Type[BaseModel]:
+ """
+ Convert a dictionary to a Pydantic model class.
+
+ Args:
+ - dictionary (dict): Dictionary representing the model structure.
+ - model_name (str): Name of the generated Pydantic model.
+
+ Returns:
+ - Type[BaseModel]: Generated Pydantic model class.
+ """
+ fields = {}
+
+ if "properties" in dictionary:
+ for field_name, field_data in dictionary.get("properties", {}).items():
+ if field_data == 'object':
+ submodel = convert_dictionary_to_to_pydantic_model(dictionary, f'{model_name}_{field_name}')
+ fields[field_name] = (submodel, ...)
+ else:
+ field_type = field_data.get('type', 'str')
+
+ if field_data.get("enum", []):
+ fields[field_name] = (list_to_enum(field_name, field_data.get("enum", [])), ...)
+ if field_type == "array":
+ items = field_data.get("items", {})
+ if items != {}:
+ array = {"properties": items}
+ array_type = convert_dictionary_to_to_pydantic_model(array, f'{model_name}_{field_name}_items')
+ fields[field_name] = (List[array_type], ...)
+ else:
+ fields[field_name] = (list, ...)
+ elif field_type == 'object':
+ submodel = convert_dictionary_to_to_pydantic_model(field_data, f'{model_name}_{field_name}')
+ fields[field_name] = (submodel, ...)
+ else:
+ field_type = json_schema_to_python_types(field_type)
+ fields[field_name] = (field_type, ...)
+ if "function" in dictionary:
+
+ for field_name, field_data in dictionary.get("function", {}).items():
+ if field_name == "name":
+ model_name = field_data
+ elif field_name == "description":
+ fields["__doc__"] = field_data
+ elif field_name == "parameters":
+ return convert_dictionary_to_to_pydantic_model(field_data, f'{model_name}')
+ if "parameters" in dictionary:
+ field_data = {"function": dictionary}
+ return convert_dictionary_to_to_pydantic_model(field_data, f'{model_name}')
+
+ custom_model = create_model(model_name, **fields)
+ return custom_model
+
+
+