#include "binbcast.hpp"
-#include <array>
#include <cstddef>
#include <cstdint>
#include <sycl/sycl.hpp>
-#include "dpct/helper.hpp"
#include "ggml.h"
-template <float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
-static __dpct_inline__ void k_bin_bcast_contiguous(const src0_t * __restrict__ src0, const src1_t * __restrict__ src1,
- dst_t * dst, std::size_t num_elements, const sycl::nd_item<1> & it) {
- auto element_id = it.get_global_id(0);
- auto global_range = it.get_global_range(0);
- for (; element_id < num_elements; element_id += global_range) {
- auto src0_float_val = sycl::vec(src0[element_id]).template convert<float, sycl::rounding_mode::rte>();
- auto src1_float_val = sycl::vec(src1[element_id]).template convert<float, sycl::rounding_mode::rte>();
- float dst_val = bin_op(src0_float_val[0], src1_float_val[0]);
- auto val_to_store = sycl::vec(dst_val).template convert<dst_t, sycl::rounding_mode::rte>();
- dst[element_id] = val_to_store;
+template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
+static void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
+ int ne0, int ne1, int ne2, int ne3,
+ int ne10, int ne11, int ne12, int ne13,
+ /*int s0, */ int s1, int s2, int s3,
+ /*int s00,*/ int s01, int s02, int s03,
+ /*int s10,*/ int s11, int s12, int s13,
+ const sycl::nd_item<3> &item_ct1) {
+ const int i0s = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2);
+ const int i1 = (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+ item_ct1.get_local_id(1));
+ const int i2 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
+ item_ct1.get_local_id(0)) /
+ ne3;
+ const int i3 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
+ item_ct1.get_local_id(0)) %
+ ne3;
+
+ if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
+ return;
+ }
+
+ const int i11 = i1 % ne11;
+ const int i12 = i2 % ne12;
+ const int i13 = i3 % ne13;
+
+ const size_t i_src0 = i3*s03 + i2*s02 + i1*s01;
+ const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
+ const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
+
+ const src0_t * src0_row = src0 + i_src0;
+ const src1_t * src1_row = src1 + i_src1;
+ dst_t * dst_row = dst + i_dst;
+
+ for (int i0 = i0s; i0 < ne0;
+ i0 += item_ct1.get_local_range(2) * item_ct1.get_group_range(2)) {
+ const int i10 = i0 % ne10;
+ dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
}
}
-template <float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
-static __dpct_inline__ void k_bin_bcast(const src0_t * __restrict__ src0, const src1_t * __restrict__ src1, dst_t * dst,
- int ne0, int ne1, int ne2, int ne3, int ne10, int ne11, int ne12, int ne13,
- int s0, int s1, int s2, int s3, int s00, int s01, int s02, int s03, int s10,
- int s11, int s12, int s13, std::size_t num_dst_elements,
- const sycl::nd_item<1> & item_ct1) {
- auto calculate_logical_index =
- [](const std::array<int, 4> & dims, std::size_t element_id) __attribute__((always_inline))->std::array<int, 4> {
- std::array<int, 4> logical_index;
-#pragma unroll(4)
- for (int i = 3; i >= 0; i--) {
- logical_index[i] = element_id % dims[i];
- element_id /= dims[i];
- }
- return logical_index;
- };
-
- auto calculate_index = [](const std::array<int, 4> & dims, const std::array<int, 4> & strides,
- const std::array<int, 4> & indices) __attribute__((always_inline))
- ->std::size_t {
- std::size_t index = 0;
-#pragma unroll(4)
- for (int i = 0; i < 4; i++) {
- auto index_i = indices[i];
- if (indices[i] >= dims[i]) {
- index_i = indices[i] % dims[i];
- }
- index += strides[i] * index_i;
- }
- return index;
- };
-
- auto element_id = item_ct1.get_global_id(0);
- for (; element_id < num_dst_elements; element_id += item_ct1.get_global_range(0)) {
- auto logical_index = calculate_logical_index({ ne3, ne2, ne1, ne0 }, element_id);
- auto src_0_index = calculate_index({ ne3, ne2, ne1, ne0 }, { s03, s02, s01, s00 }, logical_index);
- auto src_1_index = calculate_index({ ne13, ne12, ne11, ne10 }, { s13, s12, s11, s10 }, logical_index);
- auto dst_index = calculate_index({ ne3, ne2, ne1, ne0 }, { s3, s2, s1, s0 }, logical_index);
- auto src0_float_val = sycl::vec(src0[src_0_index]).template convert<float, sycl::rounding_mode::rte>();
- auto src1_float_val = sycl::vec(src1[src_1_index]).template convert<float, sycl::rounding_mode::rte>();
- float dst_val = bin_op(src0_float_val[0], src1_float_val[0]);
- auto val_to_store = sycl::vec(dst_val).template convert<dst_t, sycl::rounding_mode::rte>();
- dst[dst_index] = val_to_store;
+template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
+static void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
+ int ne0, int ne1, int ne2, int ne3,
+ int ne10, int ne11, int ne12, int ne13,
+ /*int s0, */ int s1, int s2, int s3,
+ /*int s00,*/ int s01, int s02, int s03,
+ /*int s10,*/ int s11, int s12, int s13,
+ const sycl::nd_item<3> &item_ct1) {
+
+ const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2);
+
+ const int i3 = i/(ne2*ne1*ne0);
+ const int i2 = (i/(ne1*ne0)) % ne2;
+ const int i1 = (i/ne0) % ne1;
+ const int i0 = i % ne0;
+
+ if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
+ return;
}
+
+ const int i11 = i1 % ne11;
+ const int i12 = i2 % ne12;
+ const int i13 = i3 % ne13;
+
+ const size_t i_src0 = i3*s03 + i2*s02 + i1*s01;
+ const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
+ const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
+
+ const src0_t * src0_row = src0 + i_src0;
+ const src1_t * src1_row = src1 + i_src1;
+ dst_t * dst_row = dst + i_dst;
+
+ const int i10 = i0 % ne10;
+ dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
}
-template <float (*bin_op)(const float, const float)> struct bin_bcast_sycl {
+
+template<float (*bin_op)(const float, const float)>
+struct bin_bcast_sycl {
template <typename src0_t, typename src1_t, typename dst_t>
void operator()(const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd, const int64_t ne00,
const int64_t ne01, const int64_t ne02, const int64_t ne03, const int64_t ne10, const int64_t ne11,
const size_t nb10, const size_t nb11, const size_t nb12, const size_t nb13, const size_t nb0,
const size_t nb1, const size_t nb2, const size_t nb3, const bool src0_is_contiguous,
const bool src1_is_contiguous, const bool dst_is_contiguous, queue_ptr stream) {
- auto check_bcast_required = [](const std::array<int64_t, 4> & src_dims,
- const std::array<int64_t, 4> & dst_dims) -> bool {
+ int nr0 = ne10 / ne0;
+ int nr1 = ne11/ne1;
+ int nr2 = ne12/ne2;
+ int nr3 = ne13/ne3;
+
+ int nr[4] = { nr0, nr1, nr2, nr3 };
+
+ // collapse dimensions until first broadcast dimension
+ int64_t cne[] = {ne0, ne1, ne2, ne3};
+ int64_t cne0[] = {ne00, ne01, ne02, ne03};
+ int64_t cne1[] = {ne10, ne11, ne12, ne13};
+ size_t cnb[] = {nb0, nb1, nb2, nb3};
+ size_t cnb0[] = {nb00, nb01, nb02, nb03};
+ size_t cnb1[] = {nb10, nb11, nb12, nb13};
+ auto collapse = [](int64_t cne[]) {
+ cne[0] *= cne[1];
+ cne[1] = cne[2];
+ cne[2] = cne[3];
+ cne[3] = 1;
+ };
+
+ auto collapse_nb = [](size_t cnb[], int64_t cne[]) {
+ cnb[1] *= cne[1];
+ cnb[2] *= cne[2];
+ cnb[3] *= cne[3];
+ };
+
+ if (src0_is_contiguous && src1_is_contiguous && dst_is_contiguous) {
for (int i = 0; i < 4; i++) {
- if (dst_dims[i] > src_dims[i]) {
- return true;
+ if (nr[i] != 1) {
+ break;
+ }
+ if (i > 0) {
+ collapse_nb(cnb, cne);
+ collapse_nb(cnb0, cne0);
+ collapse_nb(cnb1, cne1);
+ collapse(cne);
+ collapse(cne0);
+ collapse(cne1);
}
}
- return false;
- };
-
- dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
-
- GGML_ASSERT(nb0 % sizeof(dst_t) == 0);
- GGML_ASSERT(nb1 % sizeof(dst_t) == 0);
- GGML_ASSERT(nb2 % sizeof(dst_t) == 0);
- GGML_ASSERT(nb3 % sizeof(dst_t) == 0);
-
- GGML_ASSERT(nb00 % sizeof(src0_t) == 0);
- GGML_ASSERT(nb01 % sizeof(src0_t) == 0);
- GGML_ASSERT(nb02 % sizeof(src0_t) == 0);
- GGML_ASSERT(nb03 % sizeof(src0_t) == 0);
-
- GGML_ASSERT(nb10 % sizeof(src1_t) == 0);
- GGML_ASSERT(nb11 % sizeof(src1_t) == 0);
- GGML_ASSERT(nb12 % sizeof(src1_t) == 0);
- GGML_ASSERT(nb13 % sizeof(src1_t) == 0);
-
- // dst strides in number of elements
- size_t s0 = nb0 / sizeof(dst_t);
- size_t s1 = nb1 / sizeof(dst_t);
- size_t s2 = nb2 / sizeof(dst_t);
- size_t s3 = nb3 / sizeof(dst_t);
-
- // src1 strides in number of elements
- size_t s10 = nb10 / sizeof(src0_t);
- size_t s11 = nb11 / sizeof(src1_t);
- size_t s12 = nb12 / sizeof(src1_t);
- size_t s13 = nb13 / sizeof(src1_t);
-
- // src0 strides in number of elements
- size_t s00 = nb00 / sizeof(src0_t);
- size_t s01 = nb01 / sizeof(src0_t);
- size_t s02 = nb02 / sizeof(src0_t);
- size_t s03 = nb03 / sizeof(src0_t);
-
- std::size_t num_dst_elements = static_cast<std::size_t>(ne0) * static_cast<std::size_t>(ne1) *
- static_cast<std::size_t>(ne2) * static_cast<std::size_t>(ne3);
- std::size_t local_range = 256;
- std::size_t global_range = ceil_div(num_dst_elements, local_range) * local_range;
-
- bool needs_broadcasting = check_bcast_required({ ne00, ne01, ne02, ne03 }, { ne0, ne1, ne2, ne3 }) ||
- check_bcast_required({ ne10, ne11, ne12, ne13 }, { ne0, ne1, ne2, ne3 });
- bool all_contiguous = src0_is_contiguous && src1_is_contiguous && dst_is_contiguous;
-
- if (! needs_broadcasting && all_contiguous) {
- stream->submit([&](sycl::handler & cgh) {
- cgh.parallel_for(sycl::nd_range<1>({ global_range }, { local_range }), [=](sycl::nd_item<1> it) {
- k_bin_bcast_contiguous<bin_op>(src0_dd, src1_dd, dst_dd, num_dst_elements, it);
- });
- });
- } else {
- stream->submit([&](sycl::handler & cgh) {
- cgh.parallel_for(sycl::nd_range<1>({ global_range }, { local_range }), [=](sycl::nd_item<1> it) {
- k_bin_bcast<bin_op>(src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3, ne10, ne11, ne12, ne13, s0, s1,
- s2, s3, s00, s01, s02, s03, s10, s11, s12, s13, num_dst_elements, it);
- });
- });
+ }
+ {
+ int64_t ne0 = cne[0];
+ int64_t ne1 = cne[1];
+ int64_t ne2 = cne[2];
+ int64_t ne3 = cne[3];
+
+ int64_t ne10 = cne1[0];
+ int64_t ne11 = cne1[1];
+ int64_t ne12 = cne1[2];
+ int64_t ne13 = cne1[3];
+
+ size_t nb0 = cnb[0];
+ size_t nb1 = cnb[1];
+ size_t nb2 = cnb[2];
+ size_t nb3 = cnb[3];
+
+ size_t nb00 = cnb0[0];
+ size_t nb01 = cnb0[1];
+ size_t nb02 = cnb0[2];
+ size_t nb03 = cnb0[3];
+
+ size_t nb10 = cnb1[0];
+ size_t nb11 = cnb1[1];
+ size_t nb12 = cnb1[2];
+ size_t nb13 = cnb1[3];
+
+ size_t s0 = nb0 / sizeof(dst_t);
+ size_t s1 = nb1 / sizeof(dst_t);
+ size_t s2 = nb2 / sizeof(dst_t);
+ size_t s3 = nb3 / sizeof(dst_t);
+
+ size_t s10 = nb10 / sizeof(src1_t);
+ size_t s11 = nb11 / sizeof(src1_t);
+ size_t s12 = nb12 / sizeof(src1_t);
+ size_t s13 = nb13 / sizeof(src1_t);
+
+ size_t s00 = nb00 / sizeof(src0_t);
+ size_t s01 = nb01 / sizeof(src0_t);
+ size_t s02 = nb02 / sizeof(src0_t);
+ size_t s03 = nb03 / sizeof(src0_t);
+
+ GGML_UNUSED(s00);
+
+ GGML_ASSERT(nb0 % sizeof(dst_t) == 0);
+ GGML_ASSERT(nb1 % sizeof(dst_t) == 0);
+ GGML_ASSERT(nb2 % sizeof(dst_t) == 0);
+ GGML_ASSERT(nb3 % sizeof(dst_t) == 0);
+
+ GGML_ASSERT(nb00 % sizeof(src0_t) == 0);
+ GGML_ASSERT(nb01 % sizeof(src0_t) == 0);
+ GGML_ASSERT(nb02 % sizeof(src0_t) == 0);
+ GGML_ASSERT(nb03 % sizeof(src0_t) == 0);
+
+ GGML_ASSERT(nb10 % sizeof(src1_t) == 0);
+ GGML_ASSERT(nb11 % sizeof(src1_t) == 0);
+ GGML_ASSERT(nb12 % sizeof(src1_t) == 0);
+ GGML_ASSERT(nb13 % sizeof(src1_t) == 0);
+
+ GGML_ASSERT(s0 == 1);
+ GGML_ASSERT(s10 == 1);
+
+ const int block_size = 128;
+
+ int64_t hne0 = std::max(ne0/2LL, 1LL);
+
+ sycl::range<3> block_dims(1, 1, 1);
+ block_dims[2] = std::min<unsigned int>(hne0, block_size);
+ block_dims[1] = std::min<unsigned int>(
+ ne1, block_size / (unsigned int)block_dims[2]);
+ block_dims[0] = std::min(
+ std::min<unsigned int>(
+ ne2 * ne3, block_size / (unsigned int)block_dims[2] /
+ (unsigned int)block_dims[1]),
+ 64U);
+
+ sycl::range<3> block_nums(
+ (ne2 * ne3 + block_dims[0] - 1) / block_dims[0],
+ (ne1 + block_dims[1] - 1) / block_dims[1],
+ (hne0 + block_dims[2] - 1) / block_dims[2]);
+
+ if (block_nums[0] > 65535) {
+ // this is the maximum number of blocks in z direction, fallback to 1D grid kernel
+ int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
+ {
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, block_num) *
+ sycl::range<3>(1, 1, block_size),
+ sycl::range<3>(1, 1, block_size)),
+ [=](sycl::nd_item<3> item_ct1) {
+ k_bin_bcast_unravel<bin_op>(
+ src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3,
+ ne10, ne11, ne12, ne13, s1, s2, s3, s01, s02,
+ s03, s11, s12, s13, item_ct1);
+ });
+ }
+ } else {
+ /*
+ DPCT1049:16: The work-group size passed to the SYCL kernel may
+ exceed the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if
+ needed.
+ */
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ stream->parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ k_bin_bcast<bin_op>(src0_dd, src1_dd, dst_dd, ne0, ne1,
+ ne2, ne3, ne10, ne11, ne12, ne13,
+ s1, s2, s3, s01, s02, s03, s11, s12, s13,
+ item_ct1);
+ });
+ }
}
}
};