bool has_imatrix = false;
+ // used to figure out if a model shares tok_embd with the output weight
+ bool has_output = false;
+
quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
: model(model)
, params(params)
// for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
// with the quantization of the output tensor
- if (name == tn(LLM_TENSOR_OUTPUT, "weight") ||
- (LLM_TENSOR_NAMES.at(arch).find(LLM_TENSOR_OUTPUT) == LLM_TENSOR_NAMES.at(arch).end() && name == "token_embd.weight")) {
+ if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
int nx = tensor->ne[0];
if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
new_type = GGML_TYPE_Q8_0;
else if (name.find("ffn_up") != std::string::npos) {
++qs.n_ffn_up;
}
+ else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
+ qs.has_output = true;
+ }
}
if (qs.n_attention_wv != qs.n_ffn_down || (uint32_t)qs.n_attention_wv != model.hparams.n_layer) {
LLAMA_LOG_WARN("%s ============ Strange model: n_attention_wv = %d, n_ffn_down = %d, hparams.n_layer = %d\n",