]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
llama : add support for StarCoder model architectures (#3187)
authorMeng Zhang <redacted>
Fri, 15 Sep 2023 19:02:13 +0000 (03:02 +0800)
committerGitHub <redacted>
Fri, 15 Sep 2023 19:02:13 +0000 (22:02 +0300)
* add placeholder of starcoder in gguf / llama.cpp

* support convert starcoder weights to gguf

* convert MQA to MHA

* fix ffn_down name

* add LLM_ARCH_STARCODER to llama.cpp

* set head_count_kv = 1

* load starcoder weight

* add max_position_embeddings

* set n_positions to max_positioin_embeddings

* properly load all starcoder params

* fix head count kv

* fix comments

* fix vram calculation for starcoder

* store mqa directly

* add input embeddings handling

* add TBD

* working in cpu, metal buggy

* cleanup useless code

* metal : fix out-of-bounds access in soft_max kernels

* llama : make starcoder graph build more consistent with others

* refactor: cleanup comments a bit

* add other starcoder models: 3B, 7B, 15B

* support-mqa-directly

* fix: remove max_position_embeddings, use n_train_ctx

* Update llama.cpp

Co-authored-by: Georgi Gerganov <redacted>
* Update llama.cpp

Co-authored-by: Georgi Gerganov <redacted>
* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <redacted>
* fix: switch to space from tab

---------

Co-authored-by: Georgi Gerganov <redacted>
convert-starcoder-hf-to-gguf.py [new file with mode: 0755]
gguf-py/gguf/gguf.py
llama.cpp

diff --git a/convert-starcoder-hf-to-gguf.py b/convert-starcoder-hf-to-gguf.py
new file mode 100755 (executable)
index 0000000..331e84e
--- /dev/null
@@ -0,0 +1,248 @@
+#!/usr/bin/env python3
+# HF starcoder --> gguf conversion
+
+from __future__ import annotations
+
+import argparse
+import json
+import os
+import struct
+import sys
+from pathlib import Path
+from typing import Any
+
+import numpy as np
+import torch
+from transformers import AutoTokenizer  # type: ignore[import]
+
+if 'NO_LOCAL_GGUF' not in os.environ:
+    sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
+import gguf
+
+
+def bytes_to_unicode():
+    # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
+    """
+    Returns list of utf-8 byte and a corresponding list of unicode strings.
+    The reversible bpe codes work on unicode strings.
+    This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
+    When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
+    This is a significant percentage of your normal, say, 32K bpe vocab.
+    To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
+    And avoids mapping to whitespace/control characters the bpe code barfs on.
+    """
+    bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
+    cs = bs[:]
+    n = 0
+    for b in range(2**8):
+        if b not in bs:
+            bs.append(b)
+            cs.append(2**8+n)
+            n += 1
+    return dict(zip(bs, (chr(n) for n in cs)))
+
+
+def count_model_parts(dir_model: Path) -> int:
+    num_parts = 0
+    for filename in os.listdir(dir_model):
+        if filename.startswith("pytorch_model-"):
+            num_parts += 1
+
+    if num_parts > 0:
+        print("gguf: found " + str(num_parts) + " model parts")
+    return num_parts
+
+
+def parse_args() -> argparse.Namespace:
+    parser = argparse.ArgumentParser(description="Convert a StarCoder model to a GGML compatible file")
+    parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
+    parser.add_argument("--outfile",    type=Path,           help="path to write to; default: based on input")
+    parser.add_argument("model",        type=Path,           help="directory containing model file, or model file itself (*.bin)")
+    parser.add_argument("ftype",        type=int,            help="output format - use 0 for float32, 1 for float16", choices=[0, 1], default = 1)
+    return parser.parse_args()
+
+args = parse_args()
+
+dir_model = args.model
+ftype = args.ftype
+if not dir_model.is_dir():
+    print(f'Error: {args.model} is not a directory', file = sys.stderr)
+    sys.exit(1)
+
+# possible tensor data types
+#   ftype == 0 -> float32
+#   ftype == 1 -> float16
+
+# map from ftype to string
+ftype_str = ["f32", "f16"]
+
+if args.outfile is not None:
+    fname_out = args.outfile
+else:
+    # output in the same directory as the model by default
+    fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
+
+print("gguf: loading model "+dir_model.name)
+
+with open(dir_model / "config.json", "r", encoding="utf-8") as f:
+    hparams = json.load(f)
+
+if hparams["architectures"][0] != "GPTBigCodeForCausalLM":
+    print("Model architecture not supported: " + hparams["architectures"][0])
+
+    sys.exit(1)
+
+# get number of model parts
+num_parts = count_model_parts(dir_model)
+
+ARCH=gguf.MODEL_ARCH.STARCODER
+gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
+
+print("gguf: get model metadata")
+
+block_count = hparams["n_layer"]
+
+gguf_writer.add_name("StarCoder")
+gguf_writer.add_context_length(hparams["n_positions"])
+gguf_writer.add_embedding_length(hparams["n_embd"])
+gguf_writer.add_feed_forward_length(4 * hparams["n_embd"])
+gguf_writer.add_block_count(block_count)
+gguf_writer.add_head_count(hparams["n_head"])
+gguf_writer.add_head_count_kv(1)
+gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
+gguf_writer.add_file_type(ftype)
+
+# TOKENIZATION
+
+print("gguf: get tokenizer metadata")
+
+tokens: list[bytearray] = []
+scores: list[float] = []
+toktypes: list[int] = []
+
+tokenizer_json_file = dir_model / 'tokenizer.json'
+if not tokenizer_json_file.is_file():
+    print(f'Error: Missing {tokenizer_json_file}', file = sys.stderr)
+    sys.exit(1)
+
+# gpt2 tokenizer
+gguf_writer.add_tokenizer_model("gpt2")
+
+with open(tokenizer_json_file, "r", encoding="utf-8") as f:
+    tokenizer_json = json.load(f)
+
+print("gguf: get gpt2 tokenizer vocab")
+
+# The number of tokens in tokenizer.json can differ from the expected vocab size.
+# This causes downstream issues with mismatched tensor sizes when running the inference
+vocab_size = hparams["vocab_size"] if "vocab_size" in hparams else len(tokenizer_json["model"]["vocab"])
+
+# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
+tokenizer = AutoTokenizer.from_pretrained(dir_model)
+
+reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
+byte_encoder = bytes_to_unicode()
+byte_decoder = {v: k for k, v in byte_encoder.items()}
+
+for i in range(vocab_size):
+    if i in reverse_vocab:
+        try:
+            text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
+        except KeyError:
+            text = bytearray()
+            for c in reverse_vocab[i]:
+                if ord(c) < 256:  # single byte character
+                    text.append(byte_decoder[ord(c)])
+                else:  # multibyte special token character
+                    text.extend(c.encode('utf-8'))
+    else:
+        print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
+        pad_token = f"[PAD{i}]".encode("utf8")
+        text = bytearray(pad_token)
+
+    tokens.append(text)
+    scores.append(0.0)                      # dymmy
+    toktypes.append(gguf.TokenType.NORMAL)  # dummy
+
+gguf_writer.add_token_list(tokens)
+gguf_writer.add_token_scores(scores)
+gguf_writer.add_token_types(toktypes)
+
+special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
+special_vocab.add_to_gguf(gguf_writer)
+
+# TENSORS
+
+tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
+
+# params for qkv transform
+n_head    = hparams["n_head"]
+n_head_kv = hparams["n_head_kv"] if "n_head_kv" in hparams else 1
+
+head_dim = hparams["n_embd"] // n_head
+
+# tensor info
+print("gguf: get tensor metadata")
+
+if num_parts == 0:
+    part_names = iter(("pytorch_model.bin",))
+else:
+    part_names = (
+        f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
+    )
+
+for part_name in part_names:
+    if args.vocab_only:
+        break
+    print("gguf: loading model part '" + part_name + "'")
+    model_part = torch.load(dir_model / part_name, map_location="cpu")
+
+    for name in model_part.keys():
+        data = model_part[name]
+
+        old_dtype = data.dtype
+
+        # convert any unsupported data types to float32
+        if data.dtype != torch.float16 and data.dtype != torch.float32:
+            data = data.to(torch.float32)
+
+        data = data.squeeze().numpy()
+
+        # map tensor names
+        new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
+        if new_name is None:
+            print("Can not map tensor '" + name + "'")
+            sys.exit()
+
+        n_dims = len(data.shape)
+        data_dtype = data.dtype
+
+        # if f32 desired, convert any float16 to float32
+        if ftype == 0 and data_dtype == np.float16:
+            data = data.astype(np.float32)
+
+        # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
+        if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
+            data = data.astype(np.float32)
+
+        # if f16 desired, convert any float32 2-dim weight tensors to float16
+        if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
+            data = data.astype(np.float16)
+
+        print(name, "=>", new_name + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype))
+
+        gguf_writer.add_tensor(new_name, data)
+
+
+print("gguf: write header")
+gguf_writer.write_header_to_file()
+print("gguf: write metadata")
+gguf_writer.write_kv_data_to_file()
+if not args.vocab_only:
+    print("gguf: write tensors")
+    gguf_writer.write_tensors_to_file()
+
+gguf_writer.close()
+
+print(f"gguf: model successfully exported to '{fname_out}'")
+print("")
index 7f7204ea1d9ec4a3c728cbbad7c063a9354b3010..e0e0dbcbbe840d00f888002245e0e2ee9f71ca35 100644 (file)
@@ -77,13 +77,14 @@ KEY_TOKENIZER_RWKV       = "tokenizer.rwkv.world"
 
 
 class MODEL_ARCH(IntEnum):
-    LLAMA  : int = auto()
-    FALCON : int = auto()
-    BAICHUAN:int = auto()
-    GPT2   : int = auto()
-    GPTJ   : int = auto()
-    GPTNEOX: int = auto()
-    MPT    : int = auto()
+    LLAMA         : int = auto()
+    FALCON        : int = auto()
+    BAICHUAN      : int = auto()
+    GPT2          : int = auto()
+    GPTJ          : int = auto()
+    GPTNEOX       : int = auto()
+    MPT           : int = auto()
+    STARCODER     : int = auto()
 
 
 class MODEL_TENSOR(IntEnum):
@@ -107,13 +108,14 @@ class MODEL_TENSOR(IntEnum):
 
 
 MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
-    MODEL_ARCH.LLAMA:   "llama",
-    MODEL_ARCH.FALCON:  "falcon",
-    MODEL_ARCH.BAICHUAN:"baichuan",
-    MODEL_ARCH.GPT2:    "gpt2",
-    MODEL_ARCH.GPTJ:    "gptj",
-    MODEL_ARCH.GPTNEOX: "gptneox",
-    MODEL_ARCH.MPT:     "mpt",
+    MODEL_ARCH.LLAMA:          "llama",
+    MODEL_ARCH.FALCON:         "falcon",
+    MODEL_ARCH.BAICHUAN:       "baichuan",
+    MODEL_ARCH.GPT2:           "gpt2",
+    MODEL_ARCH.GPTJ:           "gptj",
+    MODEL_ARCH.GPTNEOX:        "gptneox",
+    MODEL_ARCH.MPT:            "mpt",
+    MODEL_ARCH.STARCODER:      "starcoder",
 }
 
 MODEL_TENSOR_NAMES: dict[MODEL_ARCH, dict[MODEL_TENSOR, str]] = {
@@ -171,6 +173,18 @@ MODEL_TENSOR_NAMES: dict[MODEL_ARCH, dict[MODEL_TENSOR, str]] = {
         MODEL_TENSOR.FFN_DOWN:      "blk.{bid}.ffn_down",
         MODEL_TENSOR.FFN_UP:        "blk.{bid}.ffn_up",
     },
+    MODEL_ARCH.STARCODER: {
+        MODEL_TENSOR.TOKEN_EMBD:    "token_embd",
+        MODEL_TENSOR.POS_EMBD:      "position_embd",
+        MODEL_TENSOR.OUTPUT_NORM:   "output_norm",
+        MODEL_TENSOR.OUTPUT:        "output",
+        MODEL_TENSOR.ATTN_NORM:     "blk.{bid}.attn_norm",
+        MODEL_TENSOR.ATTN_QKV:      "blk.{bid}.attn_qkv",
+        MODEL_TENSOR.ATTN_OUT:      "blk.{bid}.attn_output",
+        MODEL_TENSOR.FFN_NORM:      "blk.{bid}.ffn_norm",
+        MODEL_TENSOR.FFN_DOWN:      "blk.{bid}.ffn_down",
+        MODEL_TENSOR.FFN_UP:        "blk.{bid}.ffn_up",
+    },
     MODEL_ARCH.GPT2: {
         # TODO
     },
index 0cab18093a8485829fd6c3598b6a9d6e28cbbde5..8c5b74721cbc112c68ad859c843e3cad46018d47 100644 (file)
--- a/llama.cpp
+++ b/llama.cpp
@@ -160,17 +160,19 @@ enum llm_arch {
     LLM_ARCH_GPTJ,
     LLM_ARCH_GPTNEOX,
     LLM_ARCH_MPT,
+    LLM_ARCH_STARCODER,
     LLM_ARCH_UNKNOWN,
 };
 
 static std::map<llm_arch, std::string> LLM_ARCH_NAMES = {
-    { LLM_ARCH_LLAMA,   "llama"   },
-    { LLM_ARCH_FALCON,  "falcon"  },
-    { LLM_ARCH_GPT2,    "gpt2"    },
-    { LLM_ARCH_GPTJ,    "gptj"    },
-    { LLM_ARCH_GPTNEOX, "gptneox" },
-    { LLM_ARCH_MPT,     "mpt"     },
-    { LLM_ARCH_BAICHUAN,"baichuan" },
+    { LLM_ARCH_LLAMA,           "llama"   },
+    { LLM_ARCH_FALCON,          "falcon"  },
+    { LLM_ARCH_GPT2,            "gpt2"    },
+    { LLM_ARCH_GPTJ,            "gptj"    },
+    { LLM_ARCH_GPTNEOX,         "gptneox" },
+    { LLM_ARCH_MPT,             "mpt"     },
+    { LLM_ARCH_BAICHUAN,        "baichuan" },
+    { LLM_ARCH_STARCODER,       "starcoder" },
 };
 
 enum llm_kv {
@@ -376,6 +378,21 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
         },
     },
+    {
+        LLM_ARCH_STARCODER,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
+            { LLM_TENSOR_POS_EMBD,        "position_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
+            { LLM_TENSOR_OUTPUT,          "output" },
+            { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_QKV,        "blk.%d.attn_qkv" },
+            { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
+            { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
+            { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
+            { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
+        },
+    },
     {
         LLM_ARCH_UNKNOWN,
         {
@@ -895,9 +912,11 @@ static llama_state g_state;
 // available llama models
 enum e_model {
     MODEL_UNKNOWN,
+    MODEL_1B,
     MODEL_3B,
     MODEL_7B,
     MODEL_13B,
+    MODEL_15B,
     MODEL_30B,
     MODEL_34B,
     MODEL_40B,
@@ -966,13 +985,22 @@ struct llama_layer {
     struct ggml_tensor * wo;
     struct ggml_tensor * wqkv;
 
+    // attention bias
+    struct ggml_tensor * bo;
+    struct ggml_tensor * bqkv;
+
     // normalization
     struct ggml_tensor * ffn_norm;
+    struct ggml_tensor * ffn_norm_b;
 
     // ff
     struct ggml_tensor * w1; // ffn_gate
     struct ggml_tensor * w2; // ffn_down
     struct ggml_tensor * w3; // ffn_up
+
+    // ff bias
+    struct ggml_tensor * b2; // ffn_down
+    struct ggml_tensor * b3; // ffn_up
 };
 
 struct llama_kv_cache {
@@ -1050,6 +1078,7 @@ struct llama_model {
     llama_vocab   vocab;
 
     struct ggml_tensor * tok_embeddings;
+    struct ggml_tensor * pos_embeddings;
 
     struct ggml_tensor * output_norm;
     struct ggml_tensor * output_norm_b;
@@ -1593,9 +1622,11 @@ std::string llama_model_ftype_name(enum llama_ftype ftype) {
 
 static const char * llama_model_type_name(e_model type) {
     switch (type) {
+        case MODEL_1B:  return "1B";
         case MODEL_3B:  return "3B";
         case MODEL_7B:  return "7B";
         case MODEL_13B: return "13B";
+        case MODEL_15B: return "15B";
         case MODEL_30B: return "30B";
         case MODEL_34B: return "34B";
         case MODEL_40B: return "40B";
@@ -1713,6 +1744,17 @@ static void llm_load_hparams(
                     default: model.type = e_model::MODEL_UNKNOWN;
                 }
             } break;
+        case LLM_ARCH_STARCODER:
+            {
+                GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
+                switch (hparams.n_layer) {
+                    case 24: model.type = e_model::MODEL_1B; break;
+                    case 36: model.type = e_model::MODEL_3B; break;
+                    case 42: model.type = e_model::MODEL_7B; break;
+                    case 40: model.type = e_model::MODEL_15B; break;
+                    default: model.type = e_model::MODEL_UNKNOWN;
+                }
+            } break;
         default: (void)0;
     };
 
@@ -2166,6 +2208,85 @@ static void llm_load_tensors(
                         }
                     }
                 } break;
+            case LLM_ARCH_STARCODER:
+                {
+                    model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
+                    model.pos_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, GGML_BACKEND_CPU);
+
+                    // output
+                    {
+                        ggml_backend backend_norm;
+                        ggml_backend backend_output;
+
+                        if (n_gpu_layers > int(n_layer)) {
+                            // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
+                            // on Windows however this is detrimental unless everything is on the GPU
+#ifndef _WIN32
+                            backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
+#else
+                            backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
+#endif // _WIN32
+
+                            backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
+                        } else {
+                            backend_norm   = GGML_BACKEND_CPU;
+                            backend_output = GGML_BACKEND_CPU;
+                        }
+
+                        model.output_norm   = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd},          backend_norm);
+                        model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd},          backend_norm);
+                        model.output        = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, backend_output);
+
+                        if (backend_norm == GGML_BACKEND_GPU) {
+                            vram_weights += ggml_nbytes(model.output_norm);
+                            vram_weights += ggml_nbytes(model.output_norm_b);
+                        }
+                        if (backend_output == GGML_BACKEND_GPU_SPLIT) {
+                            vram_weights += ggml_nbytes(model.output);
+                        }
+                    }
+
+                    const uint32_t n_ff = hparams.n_ff;
+
+                    const int i_gpu_start = n_layer - n_gpu_layers;
+
+                    model.layers.resize(n_layer);
+
+                    for (uint32_t i = 0; i < n_layer; ++i) {
+                        const ggml_backend backend       = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
+                        const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm   = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM,   "weight", i), {n_embd}, backend);
+                        layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM,   "bias", i),   {n_embd}, backend);
+
+                        layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
+                        layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i),   {n_embd + 2*n_embd_gqa},         backend_split);
+
+                        layer.wo   = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd},   backend_split);
+                        layer.bo   = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i),   {n_embd},           backend_split);
+
+                        layer.ffn_norm   = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
+                        layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i),   {n_embd}, backend);
+
+                        layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split);
+                        layer.b2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i),   {n_embd},       backend_split);
+
+                        layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, backend_split);
+                        layer.b3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP,   "bias", i),   {n_ff},           backend_split);
+
+                        if (backend == GGML_BACKEND_GPU) {
+                            vram_weights +=
+                                ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) +
+                                ggml_nbytes(layer.wqkv)      + ggml_nbytes(layer.bqkv)        +
+                                ggml_nbytes(layer.wo)        + ggml_nbytes(layer.bo)          +
+                                ggml_nbytes(layer.ffn_norm)  + ggml_nbytes(layer.ffn_norm_b)  +
+                                ggml_nbytes(layer.w2)        + ggml_nbytes(layer.b2)          +
+                                ggml_nbytes(layer.w3)        + ggml_nbytes(layer.b3);
+                        }
+                    }
+                } break;
             default:
                 throw std::runtime_error("unknown architecture");
         };
@@ -3305,6 +3426,235 @@ static struct ggml_cgraph * llm_build_falcon(
     return gf;
 }
 
+static struct ggml_cgraph * llm_build_starcoder(
+         llama_context & lctx,
+     const llama_token * tokens,
+           const float * embd,
+                   int   n_tokens,
+                   int   n_past) {
+
+    GGML_ASSERT((!tokens && embd) || (tokens && !embd)); // NOLINT
+
+    const int N = n_tokens;
+
+    const auto & model   = lctx.model;
+    const auto & hparams = model.hparams;
+
+    const auto & kv_self = lctx.kv_self;
+
+    GGML_ASSERT(!!kv_self.ctx);
+
+    const int64_t n_embd      = hparams.n_embd;
+    const int64_t n_layer     = hparams.n_layer;
+    const int64_t n_ctx       = hparams.n_ctx;
+    const int64_t n_head      = hparams.n_head;
+    const int64_t n_head_kv   = hparams.n_head_kv;
+    const int64_t n_embd_head = hparams.n_embd_head();
+    const int64_t n_embd_gqa  = hparams.n_embd_gqa();
+
+    GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+    const float norm_eps   = hparams.f_norm_eps;
+
+    auto & buf_compute = lctx.buf_compute;
+
+    struct ggml_init_params params = {
+        /*.mem_size   =*/ buf_compute.size,
+        /*.mem_buffer =*/ buf_compute.data,
+        /*.no_alloc   =*/ false,
+    };
+
+    params.no_alloc = true;
+
+    struct ggml_context * ctx0 = ggml_init(params);
+
+    ggml_cgraph * gf = ggml_new_graph(ctx0);
+
+    struct ggml_tensor * cur;
+    struct ggml_tensor * token;
+    struct ggml_tensor * position;
+    struct ggml_tensor * inpL;
+
+    if (tokens) {
+        struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
+
+        ggml_allocr_alloc(lctx.alloc, inp_tokens);
+        if (!ggml_allocr_is_measure(lctx.alloc)) {
+            memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens));
+        }
+        ggml_set_name(inp_tokens, "inp_tokens");
+
+        token = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
+    } else {
+#ifdef GGML_USE_MPI
+        GGML_ASSERT(false && "not implemented");
+#endif
+
+        token = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N);
+
+        ggml_allocr_alloc(lctx.alloc, token);
+        if (!ggml_allocr_is_measure(lctx.alloc)) {
+            memcpy(token->data, embd, N * n_embd * ggml_element_size(inpL));
+        }
+    }
+
+    {
+        // Compute position embeddings.
+        struct ggml_tensor * inp_positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
+        ggml_allocr_alloc(lctx.alloc, inp_positions);
+        if (!ggml_allocr_is_measure(lctx.alloc)) {
+            for (int i = 0; i < N; ++i) {
+                ((int32_t *) inp_positions->data)[i] = n_past + i;
+            }
+        }
+        ggml_set_name(inp_positions, "inp_positions");
+
+        position = ggml_get_rows(ctx0, model.pos_embeddings, inp_positions);
+    }
+
+    struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
+    ggml_allocr_alloc(lctx.alloc, KQ_scale);
+    if (!ggml_allocr_is_measure(lctx.alloc)) {
+        ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
+    }
+    ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
+
+    inpL = ggml_add(ctx0, token, position);
+    ggml_set_name(inpL, "inpL");
+
+    for (int il = 0; il < n_layer; ++il) {
+        {
+            // Norm
+            cur = ggml_norm(ctx0, inpL, norm_eps);
+            cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].attn_norm), model.layers[il].attn_norm_b);
+        }
+
+        {
+            // Self Attention
+            cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wqkv, cur), model.layers[il].bqkv);
+
+            struct ggml_tensor * tmpq = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0*sizeof(float)*n_embd);
+            struct ggml_tensor * tmpk = ggml_view_2d(ctx0, cur, n_embd_gqa, N, cur->nb[1], sizeof(float)*n_embd);
+            struct ggml_tensor * tmpv = ggml_view_2d(ctx0, cur, n_embd_gqa, N, cur->nb[1], sizeof(float)*(n_embd + n_embd_gqa));
+
+            struct ggml_tensor * Qcur = tmpq;
+            struct ggml_tensor * Kcur = tmpk;
+
+            {
+                struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, N));
+                ggml_set_name(Vcur, "Vcur");
+
+                struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + n_past));
+                ggml_set_name(k, "k");
+
+                struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd_gqa,
+                        (   n_ctx)*ggml_element_size(kv_self.v),
+                        (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + n_past*ggml_element_size(kv_self.v));
+
+                ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
+                ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
+            }
+
+            struct ggml_tensor * Q =
+                ggml_permute(ctx0,
+                        ggml_cpy(ctx0,
+                            Qcur,
+                            ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd_head, n_head, N)),
+                        0, 2, 1, 3);
+            ggml_set_name(Q, "Q");
+
+            struct ggml_tensor * K =
+                ggml_view_3d(ctx0, kv_self.k,
+                        n_embd_head, n_past + N, n_head_kv,
+                        ggml_element_size(kv_self.k)*n_embd_gqa,
+                        ggml_element_size(kv_self.k)*n_embd_head,
+                        ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
+            ggml_set_name(K, "K");
+
+            // K * Q
+            struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
+            ggml_set_name(KQ, "KQ");
+
+            // KQ_scaled = KQ / sqrt(n_embd_head)
+            // KQ_scaled shape [n_past + N, N, n_head, 1]
+            struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
+            ggml_set_name(KQ_scaled, "KQ_scaled");
+
+            // KQ_masked = mask_past(KQ_scaled)
+            struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
+            ggml_set_name(KQ_masked, "KQ_masked");
+
+            // KQ = soft_max(KQ_masked)
+            struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
+            ggml_set_name(KQ_soft_max, "KQ_soft_max");
+
+            // split cached V into n_head heads
+            struct ggml_tensor * V =
+                ggml_view_3d(ctx0, kv_self.v,
+                        n_past + N, n_embd_head, n_head_kv,
+                        ggml_element_size(kv_self.v)*n_ctx,
+                        ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
+                        ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
+            ggml_set_name(V, "V");
+
+            struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
+            ggml_set_name(KQV, "KQV");
+
+            // KQV_merged = KQV.permute(0, 2, 1, 3)
+            struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
+            ggml_set_name(KQV_merged, "KQV_merged");
+
+            // cur = KQV_merged.contiguous().view(n_embd, N)
+            cur = ggml_cpy(ctx0,
+                    KQV_merged,
+                    ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
+            ggml_set_name(cur, "KQV_merged_contiguous");
+        }
+
+        // Projection
+        cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wo, cur), model.layers[il].bo);
+
+        // Add the input
+        cur = ggml_add(ctx0, cur, inpL);
+
+        struct ggml_tensor * inpFF = cur;
+
+        // FF
+        {
+            // Norm
+            {
+                cur = ggml_norm(ctx0, inpFF, norm_eps);
+                cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ffn_norm), model.layers[il].ffn_norm_b);
+            }
+
+            cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w3, cur), model.layers[il].b3);
+
+            // GELU activation
+            cur = ggml_gelu(ctx0, cur);
+
+            // Projection
+            cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w2, cur), model.layers[il].b2);
+        }
+
+        inpL = ggml_add(ctx0, cur, inpFF);
+    }
+
+    // Output Norm
+    {
+        cur = ggml_norm(ctx0, inpL, norm_eps);
+        cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.output_norm), model.output_norm_b);
+    }
+    ggml_set_name(cur, "result_norm");
+
+    cur = ggml_mul_mat(ctx0, model.output, cur);
+    ggml_set_name(cur, "result_output");
+
+    ggml_build_forward_expand(gf, cur);
+    ggml_free(ctx0);
+
+    return gf;
+}
+
 static struct ggml_cgraph * llama_build_graph(
          llama_context & lctx,
      const llama_token * tokens,
@@ -3328,6 +3678,10 @@ static struct ggml_cgraph * llama_build_graph(
             {
                 result = llm_build_falcon(lctx, tokens, embd, n_tokens, n_past);
             } break;
+        case LLM_ARCH_STARCODER:
+            {
+                result = llm_build_starcoder(lctx, tokens, embd, n_tokens, n_past);
+            } break;
         default:
             GGML_ASSERT(false);
     };