return super().modify_tensors(data_torch, name, bid)
+@ModelBase.register("MiMoV2FlashForCausalLM")
+class MimoV2Model(TextModel):
+ model_arch = gguf.MODEL_ARCH.MIMO2
+
+ def set_gguf_parameters(self):
+ super().set_gguf_parameters()
+
+ assert self.hparams["swa_head_dim"] == self.hparams["head_dim"]
+ assert self.hparams["swa_num_attention_heads"] == self.hparams["num_attention_heads"]
+ assert self.hparams["swa_v_head_dim"] == self.hparams["v_head_dim"]
+ assert self.hparams["topk_method"] == "noaux_tc"
+
+ n_head_kv = self.hparams["num_key_value_heads"]
+ n_head_kv_swa = self.hparams["swa_num_key_value_heads"]
+ n_head_kv_arr = [n_head_kv_swa if use_swa == 1 else n_head_kv for use_swa in self.hparams["hybrid_layer_pattern"]]
+ self.gguf_writer.add_head_count_kv(n_head_kv_arr)
+
+ self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
+ self.gguf_writer.add_sliding_window_pattern(self.hparams["hybrid_layer_pattern"])
+ self.gguf_writer.add_rope_freq_base_swa(self.hparams["swa_rope_theta"])
+ self.gguf_writer.add_value_length(self.hparams["v_head_dim"])
+ self.gguf_writer.add_expert_count(self.hparams["n_routed_experts"])
+ self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
+
+ rope_dim = int(self.hparams["head_dim"] * self.hparams["partial_rotary_factor"])
+ self.gguf_writer.add_rope_dimension_count(rope_dim)
+
+ self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon", 1e-5))
+
+ _experts: list[dict[str, Tensor]] | None = None
+
+ def modify_tensors(self, data_torch, name, bid):
+ if name.endswith("e_score_correction_bias"):
+ name = name.replace("e_score_correction_bias", "e_score_correction.bias")
+
+ if "attention_sink" in name and not name.endswith(".weight"):
+ name += ".weight"
+
+ # TODO: mimo v2 does not indicate the number of next-token-prediction layers, therefore we cannot do the same way as GLM4_MOE
+ if "model.mtp." in name:
+ return []
+
+ # process the experts separately
+ if name.find("mlp.experts") != -1:
+ n_experts = self.hparams["n_routed_experts"]
+ assert bid is not None
+
+ if self._experts is None:
+ self._experts = [{} for _ in range(self.block_count)]
+
+ self._experts[bid][name] = data_torch
+
+ if len(self._experts[bid]) >= n_experts * 3:
+ tensors: list[tuple[str, Tensor]] = []
+
+ # merge the experts into a single 3d tensor
+ for w_name in ["gate_proj", "up_proj", "down_proj"]:
+ datas: list[Tensor] = []
+
+ for xid in range(n_experts):
+ ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
+ datas.append(self._experts[bid][ename_to_retrieve])
+ del self._experts[bid][ename_to_retrieve]
+
+ data_torch = torch.stack(datas, dim=0)
+ merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
+ new_name = self.map_tensor_name(merged_name)
+ tensors.append((new_name, data_torch))
+
+ return tensors
+ else:
+ return []
+ return [(self.map_tensor_name(name), data_torch)]
+
+ def prepare_tensors(self):
+ super().prepare_tensors()
+
+ if self._experts is not None:
+ # flatten `list[dict[str, Tensor]]` into `list[str]`
+ experts = [k for d in self._experts for k in d.keys()]
+ if len(experts) > 0:
+ raise ValueError(f"Unprocessed experts: {experts}")
+
+
@ModelBase.register("PanguEmbeddedForCausalLM")
class PanguEmbeddedModel(TextModel):
model_arch = gguf.MODEL_ARCH.PANGU_EMBED
RND1 = auto()
PANGU_EMBED = auto()
MISTRAL3 = auto()
+ MIMO2 = auto()
LLAMA_EMBED = auto()
MODEL_ARCH.RND1: "rnd1",
MODEL_ARCH.PANGU_EMBED: "pangu-embedded",
MODEL_ARCH.MISTRAL3: "mistral3",
+ MODEL_ARCH.MIMO2: "mimo2",
MODEL_ARCH.LLAMA_EMBED: "llama-embed",
}
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
],
+ MODEL_ARCH.MIMO2: [
+ MODEL_TENSOR.TOKEN_EMBD,
+ MODEL_TENSOR.OUTPUT_NORM,
+ MODEL_TENSOR.OUTPUT,
+ MODEL_TENSOR.ATTN_NORM,
+ MODEL_TENSOR.ATTN_Q,
+ MODEL_TENSOR.ATTN_K,
+ MODEL_TENSOR.ATTN_V,
+ MODEL_TENSOR.ATTN_SINKS,
+ MODEL_TENSOR.ATTN_OUT,
+ MODEL_TENSOR.FFN_NORM,
+ MODEL_TENSOR.FFN_GATE,
+ MODEL_TENSOR.FFN_DOWN,
+ MODEL_TENSOR.FFN_UP,
+ MODEL_TENSOR.FFN_GATE_INP,
+ MODEL_TENSOR.FFN_GATE_EXP,
+ MODEL_TENSOR.FFN_DOWN_EXP,
+ MODEL_TENSOR.FFN_UP_EXP,
+ MODEL_TENSOR.FFN_EXP_PROBS_B,
+ ],
MODEL_ARCH.LLAMA_EMBED: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
- ]
+ ],
# TODO
}
MODEL_TENSOR.ATTN_SINKS: (
"model.layers.{bid}.self_attn.sinks", # openai-moe
+ "model.layers.{bid}.self_attn.attention_sink_bias", # mimov2
),
MODEL_TENSOR.ATTN_GATE: (
models/llama-iswa.cpp
models/llama.cpp
models/mamba.cpp
+ models/mimo2-iswa.cpp
models/minicpm3.cpp
models/minimax-m2.cpp
models/modern-bert.cpp
{ LLM_ARCH_RND1, "rnd1" },
{ LLM_ARCH_PANGU_EMBED, "pangu-embedded" },
{ LLM_ARCH_MISTRAL3, "mistral3" },
+ { LLM_ARCH_MIMO2, "mimo2" },
{ LLM_ARCH_LLAMA_EMBED, "llama-embed" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
LLM_TENSOR_VISEXP_FFN_DOWN,
LLM_TENSOR_VISEXP_FFN_UP,
};
+ case LLM_ARCH_MIMO2:
+ return {
+ LLM_TENSOR_TOKEN_EMBD,
+ LLM_TENSOR_OUTPUT_NORM,
+ LLM_TENSOR_OUTPUT,
+ LLM_TENSOR_ATTN_NORM,
+ LLM_TENSOR_ATTN_Q,
+ LLM_TENSOR_ATTN_K,
+ LLM_TENSOR_ATTN_V,
+ LLM_TENSOR_ATTN_SINKS,
+ LLM_TENSOR_ATTN_OUT,
+ LLM_TENSOR_FFN_NORM,
+ LLM_TENSOR_FFN_GATE,
+ LLM_TENSOR_FFN_DOWN,
+ LLM_TENSOR_FFN_UP,
+ LLM_TENSOR_FFN_GATE_INP,
+ LLM_TENSOR_FFN_GATE_EXPS,
+ LLM_TENSOR_FFN_DOWN_EXPS,
+ LLM_TENSOR_FFN_UP_EXPS,
+ LLM_TENSOR_FFN_EXP_PROBS_B,
+ };
case LLM_ARCH_GPTJ:
case LLM_ARCH_UNKNOWN:
return {
LLM_ARCH_RND1,
LLM_ARCH_PANGU_EMBED,
LLM_ARCH_MISTRAL3,
+ LLM_ARCH_MIMO2,
LLM_ARCH_LLAMA_EMBED,
LLM_ARCH_UNKNOWN,
};
llama_swa_type swa_type = LLAMA_SWA_TYPE_NONE;
// the size of the sliding window (0 - no SWA)
uint32_t n_swa = 0;
- // if swa_layers[il] == true, then layer il is SWA
- // if swa_layers[il] == false, then layer il is dense (i.e. non-SWA)
+ // if swa_layers[il] == 1, then layer il is SWA
+ // if swa_layers[il] == 0, then layer il is dense (i.e. non-SWA)
// by default, all layers are dense
- std::array<bool, LLAMA_MAX_LAYERS> swa_layers;
+ // note: using uint32_t type for compatibility reason
+ std::array<uint32_t, LLAMA_MAX_LAYERS> swa_layers;
// for State Space Models
uint32_t ssm_d_conv = 0;
case LLM_TYPE_230B_A10B: return "230B.A10B";
case LLM_TYPE_235B_A22B: return "235B.A22B";
case LLM_TYPE_300B_A47B: return "300B.A47B";
+ case LLM_TYPE_310B_A15B: return "310B.A15B";
case LLM_TYPE_355B_A32B: return "355B.A32B";
case LLM_TYPE_E2B: return "E2B";
case LLM_TYPE_E4B: return "E4B";
default: type = LLM_TYPE_UNKNOWN;
}
} break;
+ case LLM_ARCH_MIMO2:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
+ hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
+
+ ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
+ ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
+ ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa);
+ ml.get_key_or_arr(LLM_KV_ATTENTION_SLIDING_WINDOW_PATTERN, hparams.swa_layers, hparams.n_layer);
+
+ switch (hparams.n_layer) {
+ case 48: type = LLM_TYPE_310B_A15B; break;
+ default: type = LLM_TYPE_UNKNOWN;
+ }
+ } break;
default: throw std::runtime_error("unsupported model architecture");
}
layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { hparams.n_ff_shexp, n_embd }, 0);
}
} break;
+ case LLM_ARCH_MIMO2:
+ {
+ tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
+
+ // output
+ output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
+ output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
+
+ for (int i = 0; i < n_layer; ++i) {
+ auto & layer = layers[i];
+ uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i);
+ uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i);
+ uint32_t n_head = hparams.n_head(i);
+
+ layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
+ layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, 0);
+ layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, 0);
+ layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_v * n_head, n_embd }, 0);
+
+ layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
+ layer.attn_sinks = create_tensor(tn(LLM_TENSOR_ATTN_SINKS, "weight", i), {n_head}, TENSOR_NOT_REQUIRED);
+
+ layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
+
+ // non-MoE branch
+ layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, TENSOR_NOT_REQUIRED);
+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
+
+ // MoE branch
+ int64_t n_ff_exp = hparams.n_ff_exp;
+ layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, TENSOR_NOT_REQUIRED);
+ layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, TENSOR_NOT_REQUIRED);
+ layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, TENSOR_NOT_REQUIRED);
+ layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, TENSOR_NOT_REQUIRED);
+ layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
+ }
+ } break;
default:
throw std::runtime_error("unknown architecture");
}
{
llm = std::make_unique<llm_build_mistral3>(*this, params);
} break;
+ case LLM_ARCH_MIMO2:
+ {
+ llm = std::make_unique<llm_build_mimo2_iswa>(*this, params);
+ } break;
default:
GGML_ABORT("fatal error");
}
case LLM_ARCH_PANGU_EMBED:
case LLM_ARCH_AFMOE:
case LLM_ARCH_QWEN3NEXT:
+ case LLM_ARCH_MIMO2:
return LLAMA_ROPE_TYPE_NEOX;
case LLM_ARCH_QWEN2VL:
LLM_TYPE_230B_A10B, // Minimax M2
LLM_TYPE_235B_A22B,
LLM_TYPE_300B_A47B, // Ernie MoE big
+ LLM_TYPE_310B_A15B, // /MiMo-V2-Flash
LLM_TYPE_355B_A32B, // GLM-4.5
LLM_TYPE_E2B,
LLM_TYPE_E4B,
--- /dev/null
+
+#include "models.h"
+
+llm_build_mimo2_iswa::llm_build_mimo2_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
+ ggml_tensor * cur;
+ ggml_tensor * inpL;
+
+ inpL = build_inp_embd(model.tok_embd);
+
+ ggml_tensor * inp_pos = build_inp_pos();
+ auto * inp_attn = build_attn_inp_kv_iswa();
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
+
+ for (int il = 0; il < n_layer; ++il) {
+ ggml_tensor * inpSA = inpL;
+
+ uint32_t n_head_l = hparams.n_head(il);
+ uint32_t n_head_kv_l = hparams.n_head_kv(il);
+ const float freq_base_l = model.get_rope_freq_base(cparams, il);
+ const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
+
+ cur = inpL;
+
+ // self_attention
+ {
+ cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
+ cb(cur, "attn_norm", il);
+
+ // compute Q and K and RoPE them
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head_l, n_tokens);
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv_l, n_tokens);
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head_v, n_head_kv_l, n_tokens);
+
+ Qcur = ggml_rope_ext(
+ ctx0, Qcur, inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+
+ Kcur = ggml_rope_ext(
+ ctx0, Kcur, inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+
+ cb(Qcur, "Qcur", il);
+ cb(Kcur, "Kcur", il);
+ cb(Vcur, "Vcur", il);
+
+ ggml_tensor * sinks = model.layers[il].attn_sinks;
+
+ cur = build_attn(inp_attn,
+ model.layers[il].wo, NULL,
+ Qcur, Kcur, Vcur, nullptr, sinks, nullptr, 1.0f/sqrtf(float(n_embd_head_k)), il);
+ }
+
+ if (il == n_layer - 1 && inp_out_ids) {
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ cur = build_norm(ffn_inp,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, il);
+ cb(cur, "ffn_norm", il);
+
+ // feed-forward network
+ if (model.layers[il].ffn_gate_inp == nullptr) {
+ // dense branch
+ cur = build_ffn(cur,
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
+ model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
+ cb(cur, "ffn_out", il);
+ } else {
+ // MoE branch
+ cur = build_moe_ffn(cur, model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps,
+ model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps,
+ model.layers[il].ffn_exp_probs_b, n_expert, n_expert_used, LLM_FFN_SILU, true, false,
+ 0.0, LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID, il);
+ cb(cur, "ffn_moe_out", il);
+ }
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+
+ cur = build_cvec(cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = build_norm(cur,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, -1);
+
+ cb(cur, "result_norm", -1);
+ res->t_embd = cur;
+
+ // lm_head
+ cur = build_lora_mm(model.output, cur);
+
+ cb(cur, "result_output", -1);
+ res->t_logits = cur;
+
+ ggml_build_forward_expand(gf, cur);
+}
llm_build_mamba(const llama_model & model, const llm_graph_params & params);
};
+struct llm_build_mimo2_iswa : public llm_graph_context {
+ llm_build_mimo2_iswa(const llama_model & model, const llm_graph_params & params);
+};
+
struct llm_build_minicpm3 : public llm_graph_context {
llm_build_minicpm3(const llama_model & model, const llm_graph_params & params);
};