typedef float2 dfloat2;
#endif //GGML_CUDA_F16
+#if defined(GGML_USE_HIPBLAS)
+#define __CUDA_ARCH__ 1300
+
+#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
+ defined(__gfx1150__) || defined(__gfx1151__)
+#define RDNA3
+#endif
+
+#if defined(__gfx1030__) || defined(__gfx1031__) || defined(__gfx1032__) || defined(__gfx1033__) || \
+ defined(__gfx1034__) || defined(__gfx1035__) || defined(__gfx1036__) || defined(__gfx1037__)
+#define RDNA2
+#endif
+
+#ifndef __has_builtin
+ #define __has_builtin(x) 0
+#endif
+
+typedef int8_t int8x4_t __attribute__((ext_vector_type(4)));
+typedef uint8_t uint8x4_t __attribute__((ext_vector_type(4)));
+static __device__ __forceinline__ int __vsubss4(const int a, const int b) {
+ const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
+ const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
+#if __has_builtin(__builtin_elementwise_sub_sat)
+ const int8x4_t c = __builtin_elementwise_sub_sat(va, vb);
+ return reinterpret_cast<const int &>(c);
+#else
+ int8x4_t c;
+ int16_t tmp;
+#pragma unroll
+ for (int i = 0; i < 4; i++) {
+ tmp = va[i] - vb[i];
+ if(tmp > std::numeric_limits<int8_t>::max()) tmp = std::numeric_limits<int8_t>::max();
+ if(tmp < std::numeric_limits<int8_t>::min()) tmp = std::numeric_limits<int8_t>::min();
+ c[i] = tmp;
+ }
+ return reinterpret_cast<int &>(c);
+#endif // __has_builtin(__builtin_elementwise_sub_sat)
+}
+
+static __device__ __forceinline__ int __vsub4(const int a, const int b) {
+ return __vsubss4(a, b);
+}
+
+static __device__ __forceinline__ unsigned int __vcmpeq4(unsigned int a, unsigned int b) {
+ const uint8x4_t& va = reinterpret_cast<const uint8x4_t&>(a);
+ const uint8x4_t& vb = reinterpret_cast<const uint8x4_t&>(b);
+ unsigned int c;
+ uint8x4_t& vc = reinterpret_cast<uint8x4_t&>(c);
+#pragma unroll
+ for (int i = 0; i < 4; ++i) {
+ vc[i] = va[i] == vb[i] ? 0xff : 0x00;
+ }
+ return c;
+}
+
+static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) {
+#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx1030__)
+ c = __builtin_amdgcn_sdot4(a, b, c, false);
+#elif defined(RDNA3)
+ c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
+#elif defined(__gfx1010__) || defined(__gfx900__)
+ int tmp1;
+ int tmp2;
+ asm("\n \
+ v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_0 src1_sel:BYTE_0 \n \
+ v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_1 src1_sel:BYTE_1 \n \
+ v_add3_u32 %0, %1, %2, %0 \n \
+ v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_2 src1_sel:BYTE_2 \n \
+ v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_3 src1_sel:BYTE_3 \n \
+ v_add3_u32 %0, %1, %2, %0 \n \
+ "
+ : "+v"(c), "=&v"(tmp1), "=&v"(tmp2)
+ : "v"(a), "v"(b)
+ );
+#else
+ const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
+ const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
+ c += va[0] * vb[0] + va[1] * vb[1] + va[2] * vb[2] + va[3] * vb[3];
+#endif
+ return c;
+}
+#endif // defined(GGML_USE_HIPBLAS)
+
+#define FP16_AVAILABLE (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= CC_PASCAL
+
+#define FP16_MMA_AVAILABLE !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA
+
+static bool fp16_mma_available(const int cc) {
+ return cc < CC_OFFSET_AMD && cc >= CC_VOLTA;
+}
+
[[noreturn]]
static __device__ void no_device_code(
const char * file_name, const int line, const char * function_name, const int arch, const char * arch_list) {
}
static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
-#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
+#if FP16_AVAILABLE
+
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, mask, 32));
- }
- return a;
+ for (int mask = 16; mask > 0; mask >>= 1) {
+ const half2 a_other = __shfl_xor_sync(0xffffffff, a, mask, 32);
+ reinterpret_cast<half&>(a.x) += __low2half(a_other);
+ reinterpret_cast<half&>(a.y) += __high2half(a_other);
+ }
+ return a;
#else
- GGML_UNUSED(a);
- NO_DEVICE_CODE;
-#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
+#pragma unroll
+ for (int mask = 16; mask > 0; mask >>= 1) {
+ a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, mask, 32));
+ }
+ return a;
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+
+#else
+ NO_DEVICE_CODE;
+ return a;
+#endif // FP16_AVAILABLE
}
static __device__ __forceinline__ float warp_reduce_max(float x) {
}
static __device__ __forceinline__ half ggml_cuda_hmax(const half a, const half b) {
-#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
+#if FP16_AVAILABLE
-#if CUDART_VERSION >= CUDART_HMAX
- return __hmax(a, b);
+#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
+ return __float2half(fmaxf(__half2float(a), __half2float(b)));
#else
- return __half2float(a) > __half2float(b) ? a : b;
-#endif // CUDART_VERSION >= CUDART_HMAX
+ return __hmax(a, b);
+#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
#else
- GGML_UNUSED(a);
- GGML_UNUSED(b);
- NO_DEVICE_CODE;
-#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
+ NO_DEVICE_CODE;
+ GGML_UNUSED(b);
+ return a;
+#endif // FP16_AVAILABLE
}
+
static __device__ __forceinline__ half2 ggml_cuda_hmax2(const half2 a, const half2 b) {
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
return __hmax2(a, b);
#else
half2 ret;
- reinterpret_cast<half&>(ret.x) = __low2float(a) > __low2float(b) ? __low2half(a) : __low2half(b);
- reinterpret_cast<half&>(ret.y) = __high2float(a) > __high2float(b) ? __high2half(a) : __high2half(b);
+ reinterpret_cast<half&>(ret.x) = __float2half(fmaxf( __low2float(a), __low2float(b)));
+ reinterpret_cast<half&>(ret.y) = __float2half(fmaxf(__high2float(a), __high2float(b)));
return ret;
#endif // CUDART_VERSION >= CUDART_HMAX
GGML_UNUSED(a);
GGML_UNUSED(b);
NO_DEVICE_CODE;
-#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
+#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
}
static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
}
#endif // CUDART_VERSION < 12000
-#if defined(GGML_USE_HIPBLAS)
-#define __CUDA_ARCH__ 1300
-
-#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
- defined(__gfx1150__) || defined(__gfx1151__)
-#define RDNA3
-#endif
-
-#if defined(__gfx1030__) || defined(__gfx1031__) || defined(__gfx1032__) || defined(__gfx1033__) || \
- defined(__gfx1034__) || defined(__gfx1035__) || defined(__gfx1036__) || defined(__gfx1037__)
-#define RDNA2
-#endif
-
-#ifndef __has_builtin
- #define __has_builtin(x) 0
-#endif
-
-typedef int8_t int8x4_t __attribute__((ext_vector_type(4)));
-typedef uint8_t uint8x4_t __attribute__((ext_vector_type(4)));
-static __device__ __forceinline__ int __vsubss4(const int a, const int b) {
- const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
- const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
-#if __has_builtin(__builtin_elementwise_sub_sat)
- const int8x4_t c = __builtin_elementwise_sub_sat(va, vb);
- return reinterpret_cast<const int &>(c);
-#else
- int8x4_t c;
- int16_t tmp;
-#pragma unroll
- for (int i = 0; i < 4; i++) {
- tmp = va[i] - vb[i];
- if(tmp > std::numeric_limits<int8_t>::max()) tmp = std::numeric_limits<int8_t>::max();
- if(tmp < std::numeric_limits<int8_t>::min()) tmp = std::numeric_limits<int8_t>::min();
- c[i] = tmp;
- }
- return reinterpret_cast<int &>(c);
-#endif // __has_builtin(__builtin_elementwise_sub_sat)
-}
-
-static __device__ __forceinline__ int __vsub4(const int a, const int b) {
- return __vsubss4(a, b);
-}
-
-static __device__ __forceinline__ unsigned int __vcmpeq4(unsigned int a, unsigned int b) {
- const uint8x4_t& va = reinterpret_cast<const uint8x4_t&>(a);
- const uint8x4_t& vb = reinterpret_cast<const uint8x4_t&>(b);
- unsigned int c;
- uint8x4_t& vc = reinterpret_cast<uint8x4_t&>(c);
-#pragma unroll
- for (int i = 0; i < 4; ++i) {
- vc[i] = va[i] == vb[i] ? 0xff : 0x00;
- }
- return c;
-}
-
-static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) {
-#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx1030__)
- c = __builtin_amdgcn_sdot4(a, b, c, false);
-#elif defined(RDNA3)
- c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
-#elif defined(__gfx1010__) || defined(__gfx900__)
- int tmp1;
- int tmp2;
- asm("\n \
- v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_0 src1_sel:BYTE_0 \n \
- v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_1 src1_sel:BYTE_1 \n \
- v_add3_u32 %0, %1, %2, %0 \n \
- v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_2 src1_sel:BYTE_2 \n \
- v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_3 src1_sel:BYTE_3 \n \
- v_add3_u32 %0, %1, %2, %0 \n \
- "
- : "+v"(c), "=&v"(tmp1), "=&v"(tmp2)
- : "v"(a), "v"(b)
- );
-#else
- const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
- const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
- c += va[0] * vb[0] + va[1] * vb[1] + va[2] * vb[2] + va[3] * vb[3];
-#endif
- return c;
-}
-#endif // defined(GGML_USE_HIPBLAS)
-
-#define FP16_AVAILABLE defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) ? \
- defined(RDNA1) || defined(RDNA2) || defined(RDNA3) : __CUDA_ARCH__ >= CC_PASCAL
-
-#define FP16_MMA_AVAILABLE !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA
-
// TODO: move to ggml-common.h
static const __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
#define HALF_MAX_HALF __float2half(65504.0f/2) // Use neg. of this instead of -INFINITY to initialize KQ max vals to avoid NaN upon subtraction.
#define SOFTMAX_FTZ_THRESHOLD -20.0f // Softmax exp. of values smaller than this are flushed to zero to avoid NaNs.
-template<int D, int parallel_blocks> // D == head size
-__launch_bounds__(((D + WARP_SIZE - 1) / WARP_SIZE)*WARP_SIZE, 1)
+template<int D, int ncols, int parallel_blocks> // D == head size
+#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
+__launch_bounds__(D, 1)
+#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
static __global__ void flash_attn_vec_ext_f16(
const char * __restrict__ Q,
const char * __restrict__ K,
#if FP16_AVAILABLE
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
- const int ic = blockIdx.x / parallel_blocks; // Index of the Q/QKV column to work on.
- const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
+ const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
+ const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
- const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic);
+ const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0);
const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio));
const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
- const half * maskh = (const half *) mask + ne11*ic;
+ const half * maskh = (const half *) mask + ne11*ic0;
const int stride_KV = nb11 / sizeof(half);
const int stride_KV2 = nb11 / sizeof(half2);
- constexpr int nwarps = (D + WARP_SIZE - 1) / WARP_SIZE;
+ static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
+ constexpr int nwarps = D / WARP_SIZE;
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
- __builtin_assume(tid < nwarps*WARP_SIZE);
+ __builtin_assume(tid < D);
- __shared__ half KQ[nwarps*WARP_SIZE];
- KQ[tid] = -INFINITY;
+ __shared__ half KQ[ncols*D];
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ KQ[j*D + tid] = -HALF_MAX_HALF;
+ }
half2 * KQ2 = (half2 *) KQ;
- half kqmax = -HALF_MAX_HALF;
- half kqsum = 0.0f;
+ half kqmax[ncols];
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ kqmax[j] = -HALF_MAX_HALF;
+ }
+ half kqsum[ncols] = {0.0f};
- __shared__ half kqmax_shared[WARP_SIZE];
- __shared__ half kqsum_shared[WARP_SIZE];
- if (threadIdx.y == 0) {
- kqmax_shared[threadIdx.x] = -HALF_MAX_HALF;
- kqsum_shared[threadIdx.x] = 0.0f;
+ __shared__ half kqmax_shared[ncols][WARP_SIZE];
+ __shared__ half kqsum_shared[ncols][WARP_SIZE];
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ if (threadIdx.y == 0) {
+ kqmax_shared[j][threadIdx.x] = -HALF_MAX_HALF;
+ kqsum_shared[j][threadIdx.x] = 0.0f;
+ }
}
__syncthreads();
// Convert Q to half2 and store in registers:
- half2 Q_h2[(D/2 + WARP_SIZE - 1) / WARP_SIZE];
+ half2 Q_h2[ncols][D/(2*WARP_SIZE)];
#pragma unroll
- for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
- const int i = i0 + threadIdx.x;
- if (i0 + WARP_SIZE > D/2 && i >= D/2) {
- break;
- }
+ for (int j = 0; j < ncols; ++j) {
+#pragma unroll
+ for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
+ const int i = i0 + threadIdx.x;
- Q_h2[i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(Q_f2[i].x, Q_f2[i].y);
+ const float2 tmp = Q_f2[j*(nb01/sizeof(float2)) + i];
+ Q_h2[j][i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
+ }
}
- half2 VKQ = make_half2(0.0f, 0.0f); // Each thread calculates a single VKQ value.
+ half2 VKQ[ncols] = {{0.0f, 0.0f}};
- const int k_start = parallel_blocks == 1 ? 0 : ip*D;
+ const int k_start = parallel_blocks == 1 ? 0 : ip*D;
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
// Calculate KQ tile and keep track of new maximum KQ values:
- half kqmax_new = kqmax;
+
+ // For unknown reasons using a half array of size 1 for kqmax_new causes a performance regression,
+ // see https://github.com/ggerganov/llama.cpp/pull/7061 .
+ // Therefore this variable is defined twice but only used once (so that the compiler can optimize out the unused variable).
+ half kqmax_new = kqmax[0];
+ half kqmax_new_arr[ncols];
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ kqmax_new_arr[j] = kqmax[j];
+ }
+
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
const int i_KQ = i_KQ_0 + threadIdx.y;
break;
}
- half2 sum2 = make_half2(0.0f, 0.0f);
+ half2 sum2[ncols] = {{0.0f, 0.0f}};
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
const int k_KQ = k_KQ_0 + threadIdx.x;
- if (k_KQ_0 + WARP_SIZE > D/2 && k_KQ >= D/2) {
- break;
- }
const half2 K_ik = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ];
- sum2 += K_ik * Q_h2[k_KQ_0/WARP_SIZE];
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ sum2[j] += K_ik * Q_h2[j][k_KQ_0/WARP_SIZE];
+ }
}
- sum2 = warp_reduce_sum(sum2);
- half sum = __low2half(sum2) + __high2half(sum2);
- sum += mask ? maskh[k_VKQ_0 + i_KQ] : __float2half(0.0f);
- kqmax_new = ggml_cuda_hmax(kqmax_new, sum);
- if (threadIdx.x == 0) {
- KQ[i_KQ] = sum;
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ sum2[j] = warp_reduce_sum(sum2[j]);
+ half sum = __low2half(sum2[j]) + __high2half(sum2[j]);
+ sum += mask ? maskh[j*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
+
+ if (ncols == 1) {
+ kqmax_new = ggml_cuda_hmax(kqmax_new, sum);
+ } else {
+ kqmax_new_arr[j] = ggml_cuda_hmax(kqmax_new_arr[j], sum);
+ }
+
+ if (threadIdx.x == 0) {
+ KQ[j*D + i_KQ] = sum;
+ }
}
}
- kqmax_new = warp_reduce_max(kqmax_new);
- if (threadIdx.x == 0) {
- kqmax_shared[threadIdx.y] = kqmax_new;
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ half kqmax_new_j = ncols == 1 ? kqmax_new : kqmax_new_arr[j];
+
+ kqmax_new_j = warp_reduce_max(kqmax_new_j);
+ if (threadIdx.x == 0) {
+ kqmax_shared[j][threadIdx.y] = kqmax_new_j;
+ }
}
+
__syncthreads();
- kqmax_new = kqmax_shared[threadIdx.x];
- kqmax_new = warp_reduce_max(kqmax_new);
- const half KQ_max_scale = hexp(kqmax - kqmax_new);
- kqmax = kqmax_new;
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ half kqmax_new_j = kqmax_shared[j][threadIdx.x];
+ kqmax_new_j = warp_reduce_max(kqmax_new_j);
+
+ const half KQ_max_scale = hexp(kqmax[j] - kqmax_new_j);
+ kqmax[j] = kqmax_new_j;
- const half val = hexp(KQ[tid] - kqmax);
- kqsum = kqsum*KQ_max_scale + val;
- KQ[tid] = val;
+ const half val = hexp(KQ[j*D + tid] - kqmax[j]);
+ kqsum[j] = kqsum[j]*KQ_max_scale + val;
+ KQ[j*D + tid] = val;
- VKQ *= __half2half2(KQ_max_scale);
+ VKQ[j] *= __half2half2(KQ_max_scale);
+ }
__syncthreads();
- if (tid < D) {
#pragma unroll
- for (int k0 = 0; k0 < D; k0 += 2) {
- if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k0 >= ne11) {
- break;
- }
+ for (int k0 = 0; k0 < D; k0 += 2) {
+ if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k0 >= ne11) {
+ break;
+ }
- half2 V_k;
- reinterpret_cast<half&>(V_k.x) = V_h[(k_VKQ_0 + k0 + 0)*stride_KV + tid];
- reinterpret_cast<half&>(V_k.y) = V_h[(k_VKQ_0 + k0 + 1)*stride_KV + tid];
- VKQ += V_k*KQ2[k0/2];
+ half2 V_k;
+ reinterpret_cast<half&>(V_k.x) = V_h[(k_VKQ_0 + k0 + 0)*stride_KV + tid];
+ reinterpret_cast<half&>(V_k.y) = V_h[(k_VKQ_0 + k0 + 1)*stride_KV + tid];
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ VKQ[j] += V_k*KQ2[j*(D/2) + k0/2];
}
}
__syncthreads();
}
- if (tid >= D) {
- kqsum = 0.0f;
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ kqsum[j] = warp_reduce_sum(kqsum[j]);
+ if (threadIdx.x == 0) {
+ kqsum_shared[j][threadIdx.y] = kqsum[j];
+ }
}
- kqsum = warp_reduce_sum(kqsum);
- if (threadIdx.x == 0) {
- kqsum_shared[threadIdx.y] = kqsum;
- }
__syncthreads();
- kqsum = kqsum_shared[threadIdx.x];
- kqsum = warp_reduce_sum(kqsum);
- if (tid >= D) {
- return;
- }
+#pragma unroll
+ for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
+ kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
+ kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
- half dst_val = (__low2half(VKQ) + __high2half(VKQ));
- if (parallel_blocks == 1) {
- dst_val /= kqsum;
+ half dst_val = (__low2half(VKQ[j_VKQ]) + __high2half(VKQ[j_VKQ]));
+ if (parallel_blocks == 1) {
+ dst_val /= kqsum[j_VKQ];
+ }
+ const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
+ dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
}
- dst[D*gridDim.y*blockIdx.x + D*blockIdx.y + tid] = dst_val;
- if (parallel_blocks == 1 || tid != 0) {
- return;
+ if (parallel_blocks != 1 && tid != 0) {
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ dst_meta[(ic0 + j)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j], kqsum[j]);
+ }
}
- dst_meta[ic*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax, kqsum);
#else
NO_DEVICE_CODE;
#endif // FP16_AVAILABLE
// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t>
+#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(nwarps*WARP_SIZE, 1)
+#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
static __global__ void flash_attn_ext_f16(
const char * __restrict__ Q,
const char * __restrict__ K,
}
template<int D, int parallel_blocks> // D == head size
+#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(D, 1)
+#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
static __global__ void flash_attn_combine_results(
const float * __restrict__ VKQ_parts,
const float2 * __restrict__ VKQ_meta,
static_assert(get_VKQ_stride( 80, 2, 16) == 16, "Test failed.");
static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed.");
-template <int D, int parallel_blocks> void launch_fattn_vec_f16(
+template <int D, int cols_per_block, int parallel_blocks> void launch_fattn_vec_f16(
const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
ggml_cuda_pool & pool, cudaStream_t main_stream
) {
constexpr int nwarps = (D + WARP_SIZE - 1) / WARP_SIZE;
const dim3 block_dim(WARP_SIZE, nwarps, 1);
- const dim3 blocks_num(parallel_blocks*Q->ne[1], Q->ne[2], Q->ne[3]);
+ const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
const int shmem = 0;
float scale;
memcpy(&scale, KQV->op_params, sizeof(float));
- flash_attn_vec_ext_f16<D, parallel_blocks>
+ flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>
<<<blocks_num, block_dim, shmem, main_stream>>> (
(const char *) Q->data,
(const char *) K->data,
ggml_cuda_set_device(ctx.device);
+ const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
const int32_t precision = KQV->op_params[1];
+ if (!fp16_mma_available(cc)) {
+ GGML_ASSERT(precision == GGML_PREC_DEFAULT);
+ GGML_ASSERT(Q->ne[0] == 64 || Q->ne[0] == 128 && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
+
+ if (Q->ne[1] == 1) {
+ constexpr int cols_per_block = 1;
+ constexpr int parallel_blocks = 4;
+ switch (Q->ne[0]) {
+ case 64:
+ launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
+ break;
+ case 128:
+ launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
+ break;
+ default:
+ GGML_ASSERT(false);
+ break;
+ }
+ return;
+ }
+
+ if (Q->ne[1] == 2) {
+ constexpr int cols_per_block = 2;
+ constexpr int parallel_blocks = 4;
+ switch (Q->ne[0]) {
+ case 64:
+ launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
+ break;
+ case 128:
+ launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
+ break;
+ default:
+ GGML_ASSERT(false);
+ break;
+ }
+ return;
+ }
+
+ if (Q->ne[1] <= 4) {
+ constexpr int cols_per_block = 4;
+ constexpr int parallel_blocks = 4;
+ switch (Q->ne[0]) {
+ case 64:
+ launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
+ break;
+ case 128:
+ launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
+ break;
+ default:
+ GGML_ASSERT(false);
+ break;
+ }
+ return;
+ }
+
+ if (Q->ne[1] <= 8) {
+ constexpr int cols_per_block = 8;
+ constexpr int parallel_blocks = 4;
+ switch (Q->ne[0]) {
+ case 64:
+ launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
+ break;
+ case 128:
+ launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
+ break;
+ default:
+ GGML_ASSERT(false);
+ break;
+ }
+ return;
+ }
+
+ constexpr int cols_per_block = 8;
+ constexpr int parallel_blocks = 1;
+ switch (Q->ne[0]) {
+ case 64:
+ launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
+ break;
+ case 128:
+ launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
+ break;
+ default:
+ GGML_ASSERT(false);
+ break;
+ }
+ return;
+ }
+
if (precision != GGML_PREC_DEFAULT) {
if (Q->ne[1] <= 32 || Q->ne[0] > 128) {
constexpr int cols_per_block = 16;
}
if (Q->ne[1] == 1 && Q->ne[0] % (2*WARP_SIZE) == 0) {
+ constexpr int cols_per_block = 1;
constexpr int parallel_blocks = 4;
switch (Q->ne[0]) {
case 64:
- launch_fattn_vec_f16< 64, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
+ launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
break;
case 128:
- launch_fattn_vec_f16<128, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
+ launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
break;
case 256:
- launch_fattn_vec_f16<256, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
+ launch_fattn_vec_f16<256, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
break;
default:
GGML_ASSERT(false);