{
struct ggml_tensor * a = op->src[0];
struct ggml_tensor * b = op->src[1];
+ // for small weight matrices the active device can end up without any rows, don't use row split in those cases
+ // this avoids some edge cases (and the performance would not be good anyways)
+ if (a->buffer && ggml_backend_buft_is_cuda_split(a->buffer->buft)) {
+ ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) a->buffer->buft->context;
+ int64_t row_low;
+ int64_t row_high;
+ get_row_split(&row_low, &row_high, a, buft_ctx->tensor_split, dev_ctx->device);
+ if (row_low == row_high) {
+ return false;
+ }
+ }
if (b->type == GGML_TYPE_F16 && a->type != GGML_TYPE_F16) {
return false;
}