]> git.djapps.eu Git - pkg/ggml/sources/whisper.cpp/commitdiff
ggml : sync sycl (skip) (#0)
authorGeorgi Gerganov <redacted>
Mon, 8 Jul 2024 10:50:14 +0000 (13:50 +0300)
committerGeorgi Gerganov <redacted>
Mon, 8 Jul 2024 11:53:55 +0000 (14:53 +0300)
15 files changed:
ggml/src/ggml-sycl/backend.hpp
ggml/src/ggml-sycl/common.hpp
ggml/src/ggml-sycl/convert.cpp
ggml/src/ggml-sycl/dequantize.hpp
ggml/src/ggml-sycl/dmmv.cpp
ggml/src/ggml-sycl/dpct/helper.hpp
ggml/src/ggml-sycl/mmvq.cpp
ggml/src/ggml-sycl/norm.cpp [new file with mode: 0644]
ggml/src/ggml-sycl/norm.hpp [new file with mode: 0644]
ggml/src/ggml-sycl/presets.hpp
ggml/src/ggml-sycl/rope.cpp [new file with mode: 0644]
ggml/src/ggml-sycl/rope.hpp [new file with mode: 0644]
ggml/src/ggml-sycl/softmax.cpp [new file with mode: 0644]
ggml/src/ggml-sycl/softmax.hpp [new file with mode: 0644]
ggml/src/ggml-sycl/vecdotq.hpp

index 2d37e271f90508825d6d7fdae56df4927b0b00b2..2a789edfc909d589b5d4a046f6acc3f4b84ee7cb 100644 (file)
@@ -19,5 +19,8 @@
 #include "dmmv.hpp"
 #include "mmq.hpp"
 #include "mmvq.hpp"
+#include "rope.hpp"
+#include "norm.hpp"
+#include "softmax.hpp"
 
 #endif // GGML_SYCL_BACKEND_HPP
index 414c37eed0d5dabf1ae5feef05a2e8eb1a1cc66a..9a1c161b69db57a55188d3b637ae32057d775dbb 100644 (file)
@@ -17,6 +17,7 @@
 #include <iostream>
 
 #include "dpct/helper.hpp"
+#include "ggml-sycl.h"
 #include "presets.hpp"
 
 #define GGML_COMMON_DECL_SYCL
@@ -46,10 +47,6 @@ static int g_ggml_sycl_debug = 0;
     }                                                                    \
   }()
 
-// #define DEBUG_SYCL_MALLOC
-
-static int g_work_group_size = 0;
-// typedef sycl::half ggml_fp16_t;
 
 #define __SYCL_ARCH__ DPCT_COMPATIBILITY_TEMP
 #define VER_4VEC 610 // todo for hardward optimize.
@@ -192,6 +189,8 @@ struct ggml_sycl_device_info {
     sycl_device_info devices[GGML_SYCL_MAX_DEVICES] = {};
 
     std::array<float, GGML_SYCL_MAX_DEVICES> default_tensor_split = {};
+
+    int max_work_group_sizes[GGML_SYCL_MAX_DEVICES] = {0};
 };
 
 const ggml_sycl_device_info & ggml_sycl_info();
@@ -294,5 +293,57 @@ struct ggml_backend_sycl_context {
     }
 };
 
+// common device functions
+
+static __dpct_inline__ float warp_reduce_sum(float x,
+    const sycl::nd_item<3>& item_ct1) {
+#pragma unroll
+    for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
+        /*
+        DPCT1096:98: The right-most dimension of the work-group used in the SYCL
+        kernel that calls this function may be less than "32". The function
+        "dpct::permute_sub_group_by_xor" may return an unexpected result on the
+        CPU device. Modify the size of the work-group to ensure that the value
+        of the right-most dimension is a multiple of "32".
+        */
+        x += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), x, mask);
+    }
+    return x;
+}
+
+static __dpct_inline__ sycl::float2
+warp_reduce_sum(sycl::float2 a, const sycl::nd_item<3>& item_ct1) {
+#pragma unroll
+    for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
+        a.x() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.x(),
+            mask);
+        a.y() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.y(),
+            mask);
+    }
+    return a;
+}
+
+static __dpct_inline__ float warp_reduce_max(float x,
+    const sycl::nd_item<3>& item_ct1) {
+#pragma unroll
+    for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
+        /*
+        DPCT1096:97: The right-most dimension of the work-group used in the SYCL
+        kernel that calls this function may be less than "32". The function
+        "dpct::permute_sub_group_by_xor" may return an unexpected result on the
+        CPU device. Modify the size of the work-group to ensure that the value
+        of the right-most dimension is a multiple of "32".
+        */
+        x = sycl::fmax(x, dpct::permute_sub_group_by_xor(
+            item_ct1.get_sub_group(), x, mask));
+    }
+    return x;
+}
+
+// Helper for vec loading aligned data
+template <typename Tp, int n>
+inline sycl::vec<Tp, n> vec_aligned_load(const Tp* aligned_ptr) {
+    return *reinterpret_cast<const sycl::vec<Tp, n>*>(aligned_ptr);
+}
 
 #endif // GGML_SYCL_COMMON_HPP
index ce9de2b42b7220b9630778c635caae5bb4da0a13..a15271b516fa8066742b15e0745f3ae1f7bdcf90 100644 (file)
@@ -152,12 +152,15 @@ static void dequantize_row_q4_K_sycl(const void *vx, dst_t *y, const int k,
         dpct::has_capability_or_fail(stream->get_device(),
                                      {sycl::aspect::fp16});
 
-        stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
+        stream->submit([&](sycl::handler &cgh) {
+            sycl::local_accessor<uint8_t, 1> scale_local_acc(sycl::range<1>(12), cgh);
+            cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
                                                    sycl::range<3>(1, 1, 32),
                                                sycl::range<3>(1, 1, 32)),
                              [=](sycl::nd_item<3> item_ct1) {
-                                 dequantize_block_q4_K(vx, y, item_ct1);
+                                 dequantize_block_q4_K(vx, y, scale_local_acc.get_pointer(), item_ct1);
                              });
+        });
     }
 }
 
index b6080d83a33eb86fdd46b640090026c7b3574806..ed8ad098bcb2fdec53c2bf79a3fbaa64a1311ee4 100644 (file)
@@ -293,7 +293,8 @@ static void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restri
 #if QK_K == 256
 static inline void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
     if (j < 4) {
-        d = q[j] & 63; m = q[j + 4] & 63;
+        d = q[j] & 63;
+        m = q[j + 4] & 63;
     } else {
         d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
         m = (q[j+4] >>  4) | ((q[j-0] >> 6) << 4);
@@ -303,7 +304,7 @@ static inline void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8
 
 template<typename dst_t>
 static void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
-                                  const sycl::nd_item<3> &item_ct1) {
+                                  uint8_t* scales_local, const sycl::nd_item<3> &item_ct1) {
     const block_q4_K * x = (const block_q4_K *) vx;
 
     const int i = item_ct1.get_group(2);
@@ -318,19 +319,26 @@ static void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restri
 
     dst_t * y = yy + i*QK_K + 64*il + n*ir;
 
-    const float dall = x[i].dm[0];
-    const float dmin = x[i].dm[1];
+    const sycl::half2 dm = x[i].dm;
+    const float dall = dm[0];
+    const float dmin = dm[1];
 
-    const uint8_t * q = x[i].qs + 32*il + n*ir;
+    if (tid < 12)
+        scales_local[tid] = x[i].scales[tid];
+    item_ct1.barrier(sycl::access::fence_space::local_space);
 
     uint8_t sc, m;
-    get_scale_min_k4(is + 0, x[i].scales, sc, m);
-    const float d1 = dall * sc; const float m1 = dmin * m;
-    get_scale_min_k4(is + 1, x[i].scales, sc, m);
-    const float d2 = dall * sc; const float m2 = dmin * m;
+    get_scale_min_k4(is + 0, scales_local, sc, m);
+    const float d1 = dall * sc;
+    const float m1 = dmin * m;
+    get_scale_min_k4(is + 1, scales_local, sc, m);
+    const float d2 = dall * sc;
+    const float m2 = dmin * m;
+
+    sycl::vec<uint8_t, n> q_vec = vec_aligned_load<uint8_t, n>(x[i].qs + 32*il + n*ir);
     for (int l = 0; l < n; ++l) {
-        y[l + 0] = d1 * (q[l] & 0xF) - m1;
-        y[l +32] = d2 * (q[l] >>  4) - m2;
+        y[l + 0] = d1 * (q_vec[l] & 0xF) - m1;
+        y[l +32] = d2 * (q_vec[l] >>  4) - m2;
     }
 #else
     const int tid = item_ct1.get_local_id(2);
index 3a87d3ef8e45cd3bede19f366095746a448aa03a..70a94fc16b99d024b634a128b75df78a99de3085 100644 (file)
@@ -3,6 +3,7 @@
 #include "dequantize.hpp"
 #include "presets.hpp"
 
+
 static void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){
     const sycl::half *x = (const sycl::half *)vx;
 
@@ -76,7 +77,7 @@ static void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat *
 
     // sum up partial sums and write back result
 #pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
+    for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
         tmp +=
             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
     }
@@ -104,7 +105,7 @@ static void convert_mul_mat_vec_f16_sycl(const void *vx, const dfloat *y,
 
         stream->parallel_for(
             sycl::nd_range<3>(block_nums * block_dims, block_dims),
-            [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+            [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
                 dequantize_mul_mat_vec<1, 1, convert_f16>(vx, y, dst, ncols,
                                                           nrows, item_ct1);
             });
@@ -227,7 +228,7 @@ static void dequantize_mul_mat_vec_q2_k(const void *__restrict__ vx,
 
     // sum up partial sums and write back result
 #pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
+    for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) {
         tmp +=
             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
     }
@@ -346,7 +347,7 @@ static void dequantize_mul_mat_vec_q3_k(const void *__restrict__ vx,
 
     // sum up partial sums and write back result
 #pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
+    for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) {
         tmp +=
             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
     }
@@ -499,7 +500,7 @@ static void dequantize_mul_mat_vec_q4_k(const void *__restrict__ vx,
 
     // sum up partial sums and write back result
 #pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
+    for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) {
         tmp +=
             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
     }
@@ -633,7 +634,7 @@ static void dequantize_mul_mat_vec_q5_k(const void *__restrict__ vx,
 
     // sum up partial sums and write back result
 #pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
+    for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) {
         tmp +=
             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
     }
@@ -748,7 +749,7 @@ static void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const floa
 
     // sum up partial sums and write back result
 #pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
+    for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) {
         tmp +=
             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
     }
@@ -774,7 +775,7 @@ static void dequantize_mul_mat_vec_q4_0_sycl(const void *vx, const dfloat *y,
 
         stream->parallel_for(
             sycl::nd_range<3>(block_nums * block_dims, block_dims),
-            [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+            [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
                 dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>(
                     vx, y, dst, ncols, nrows, item_ct1);
             });
@@ -795,7 +796,7 @@ static void dequantize_mul_mat_vec_q4_1_sycl(const void *vx, const dfloat *y,
 
         stream->parallel_for(
             sycl::nd_range<3>(block_nums * block_dims, block_dims),
-            [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+            [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
                 dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>(
                     vx, y, dst, ncols, nrows, item_ct1);
             });
@@ -816,7 +817,7 @@ static void dequantize_mul_mat_vec_q5_0_sycl(const void *vx, const dfloat *y,
 
         stream->parallel_for(
             sycl::nd_range<3>(block_nums * block_dims, block_dims),
-            [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+            [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
                 dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>(
                     vx, y, dst, ncols, nrows, item_ct1);
             });
@@ -837,7 +838,7 @@ static void dequantize_mul_mat_vec_q5_1_sycl(const void *vx, const dfloat *y,
 
         stream->parallel_for(
             sycl::nd_range<3>(block_nums * block_dims, block_dims),
-            [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+            [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
                 dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>(
                     vx, y, dst, ncols, nrows, item_ct1);
             });
@@ -858,7 +859,7 @@ static void dequantize_mul_mat_vec_q8_0_sycl(const void *vx, const dfloat *y,
 
         stream->parallel_for(
             sycl::nd_range<3>(block_nums * block_dims, block_dims),
-            [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+            [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
                 dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>(
                     vx, y, dst, ncols, nrows, item_ct1);
             });
@@ -873,10 +874,10 @@ static void dequantize_mul_mat_vec_q2_K_sycl(const void *vx, const float *y,
     const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
     const int block_num_y = (nrows + ny - 1) / ny;
     const sycl::range<3> block_nums(1, 1, block_num_y);
-    const sycl::range<3> block_dims(1, ny, 32);
+    const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE);
     stream->parallel_for(
         sycl::nd_range<3>(block_nums * block_dims, block_dims),
-        [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+        [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] {
             dequantize_mul_mat_vec_q2_k(vx, y, dst, ncols, nrows, item_ct1);
         });
 }
@@ -889,10 +890,10 @@ static void dequantize_mul_mat_vec_q3_K_sycl(const void *vx, const float *y,
     const int ny = 2 / K_QUANTS_PER_ITERATION;
     const int block_num_y = (nrows + ny - 1) / ny;
     const sycl::range<3> block_nums(1, 1, block_num_y);
-    const sycl::range<3> block_dims(1, ny, 32);
+    const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE);
     stream->parallel_for(
         sycl::nd_range<3>(block_nums * block_dims, block_dims),
-        [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+        [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] {
             dequantize_mul_mat_vec_q3_k(vx, y, dst, ncols, nrows, item_ct1);
         });
 }
@@ -905,10 +906,10 @@ static void dequantize_mul_mat_vec_q4_K_sycl(const void *vx, const float *y,
     const int ny = 2 / K_QUANTS_PER_ITERATION;
     const int block_num_y = (nrows + ny - 1) / ny;
     const sycl::range<3> block_nums(1, 1, block_num_y);
-    const sycl::range<3> block_dims(1, ny, 32);
+    const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE);
     stream->parallel_for(
         sycl::nd_range<3>(block_nums * block_dims, block_dims),
-        [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+        [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] {
             dequantize_mul_mat_vec_q4_k(vx, y, dst, ncols, nrows, item_ct1);
         });
 }
@@ -918,10 +919,10 @@ static void dequantize_mul_mat_vec_q5_K_sycl(const void *vx, const float *y,
                                              const int nrows,
                                              dpct::queue_ptr stream) {
     GGML_ASSERT(ncols % QK_K == 0);
-    const sycl::range<3> block_dims(1, 1, 32);
+    const sycl::range<3> block_dims(1, 1, QK_WARP_SIZE);
     stream->parallel_for(
         sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, block_dims),
-        [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+        [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] {
             dequantize_mul_mat_vec_q5_k(vx, y, dst, ncols, item_ct1);
         });
 }
@@ -934,10 +935,10 @@ static void dequantize_mul_mat_vec_q6_K_sycl(const void *vx, const float *y,
     const int ny = 2 / K_QUANTS_PER_ITERATION;
     const int block_num_y = (nrows + ny - 1) / ny;
     const sycl::range<3> block_nums(1, 1, block_num_y);
-    const sycl::range<3> block_dims(1, ny, 32);
+    const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE);
     stream->parallel_for(
         sycl::nd_range<3>(block_nums * block_dims, block_dims),
-        [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+        [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] {
             dequantize_mul_mat_vec_q6_k(vx, y, dst, ncols, nrows, item_ct1);
         });
 }
index 1ff297218c6853d8cb88e0d8aaefe45998eb185b..31df1cb9e2cf489b47ade99c93524ee455256609 100644 (file)
@@ -255,7 +255,7 @@ namespace dpct
         void set_pitch(size_t pitch) { _pitch = pitch; }
 
         size_t get_x() { return _x; }
-        void set_x(size_t x) { _x = x; };
+        void set_x(size_t x) { _x = x; }
 
         size_t get_y() { return _y; }
         void set_y(size_t y) { _y = y; }
@@ -1056,7 +1056,7 @@ namespace dpct
 #error "Only support Windows and Linux."
 #endif
                 next_free = mapped_address_space;
-            };
+            }
 
         public:
             using buffer_id_t = int;
@@ -1077,7 +1077,7 @@ namespace dpct
 #else
 #error "Only support Windows and Linux."
 #endif
-            };
+            }
 
             mem_mgr(const mem_mgr &) = delete;
             mem_mgr &operator=(const mem_mgr &) = delete;
@@ -2426,6 +2426,7 @@ namespace dpct
                                            b, ldb, beta, c, ldc, batch_size);
             break;
         }
+#endif
         case detail::get_type_combination_id(
             library_data_t::real_int8, library_data_t::real_int8,
             library_data_t::real_int32, library_data_t::real_int32):
@@ -2458,7 +2459,6 @@ namespace dpct
                 batch_size);
             break;
         }
-#endif
         case detail::get_type_combination_id(
             library_data_t::real_half, library_data_t::real_half,
             library_data_t::real_half, library_data_t::real_float):
@@ -2595,6 +2595,7 @@ namespace dpct
                                            stride_c, batch_size);
             break;
         }
+#endif
         case detail::get_type_combination_id(
             library_data_t::real_int8, library_data_t::real_int8,
             library_data_t::real_int32, library_data_t::real_int32):
@@ -2623,7 +2624,6 @@ namespace dpct
                 beta, c, ldc, stride_c, batch_size);
             break;
         }
-#endif
         case detail::get_type_combination_id(
             library_data_t::real_half, library_data_t::real_half,
             library_data_t::real_half, library_data_t::real_float):
index 23227649e2661edb3e1c97376fe6902c0ea28bc5..3fbc4dd606bbedd466627f3cc95af2e64ad206ce 100644 (file)
@@ -37,7 +37,7 @@ static void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict_
 
     // sum up partial sums and write back result
 #pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
+    for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
         tmp +=
             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
     }
@@ -85,7 +85,7 @@ static void mul_mat_vec_q_iq2_xxs_q8_1(const void *__restrict__ vx,
 
     // sum up partial sums and write back result
 #pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
+    for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
         tmp +=
             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
     }
@@ -133,7 +133,7 @@ static void mul_mat_vec_q_iq2_xs_q8_1(const void *__restrict__ vx,
 
     // sum up partial sums and write back result
 #pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
+    for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
         tmp +=
             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
     }
@@ -181,7 +181,7 @@ static void mul_mat_vec_q_iq2_s_q8_1(const void *__restrict__ vx,
 
     // sum up partial sums and write back result
 #pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
+    for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
         tmp +=
             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
     }
@@ -229,7 +229,7 @@ static void mul_mat_vec_q_iq3_xxs_q8_1(const void *__restrict__ vx,
 
     // sum up partial sums and write back result
 #pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
+    for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
         tmp +=
             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
     }
@@ -277,7 +277,7 @@ static void mul_mat_vec_q_iq3_s_q8_1(const void *__restrict__ vx,
 
     // sum up partial sums and write back result
 #pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
+    for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
         tmp +=
             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
     }
@@ -325,7 +325,7 @@ static void mul_mat_vec_q_iq1_s_q8_1(const void *__restrict__ vx,
 
     // sum up partial sums and write back result
 #pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
+    for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
         tmp +=
             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
     }
@@ -373,7 +373,7 @@ static void mul_mat_vec_q_iq1_m_q8_1(const void *__restrict__ vx,
 
     // sum up partial sums and write back result
 #pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
+    for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
         tmp +=
             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
     }
@@ -421,7 +421,7 @@ static void mul_mat_vec_q_iq4_nl_q8_1(const void *__restrict__ vx,
 
     // sum up partial sums and write back result
 #pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
+    for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
         tmp +=
             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
     }
@@ -470,7 +470,7 @@ static void mul_mat_vec_q_iq4_xs_q8_1(const void *__restrict__ vx,
 
     // sum up partial sums and write back result
 #pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
+    for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
         tmp +=
             dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
     }
@@ -495,7 +495,7 @@ static void mul_mat_vec_q4_0_q8_1_sycl(const void *vx, const void *vy,
             cgh.parallel_for(
                 sycl::nd_range<3>(block_nums * block_dims, block_dims),
                 [=](sycl::nd_item<3> item_ct1)
-                    [[intel::reqd_sub_group_size(32)]] {
+                    [[intel::reqd_sub_group_size(WARP_SIZE)]] {
                         mul_mat_vec_q<QK4_0, QI4_0, block_q4_0,
                                       VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>(
                             vx, vy, dst, ncols, nrows, item_ct1);
@@ -519,7 +519,7 @@ static void mul_mat_vec_q4_1_q8_1_sycl(const void *vx, const void *vy,
             cgh.parallel_for(
                 sycl::nd_range<3>(block_nums * block_dims, block_dims),
                 [=](sycl::nd_item<3> item_ct1)
-                    [[intel::reqd_sub_group_size(32)]] {
+                    [[intel::reqd_sub_group_size(WARP_SIZE)]] {
                         mul_mat_vec_q<QK4_0, QI4_1, block_q4_1,
                                       VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>(
                             vx, vy, dst, ncols, nrows, item_ct1);
@@ -543,7 +543,7 @@ static void mul_mat_vec_q5_0_q8_1_sycl(const void *vx, const void *vy,
             cgh.parallel_for(
                 sycl::nd_range<3>(block_nums * block_dims, block_dims),
                 [=](sycl::nd_item<3> item_ct1)
-                    [[intel::reqd_sub_group_size(32)]] {
+                    [[intel::reqd_sub_group_size(WARP_SIZE)]] {
                         mul_mat_vec_q<QK5_0, QI5_0, block_q5_0,
                                       VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>(
                             vx, vy, dst, ncols, nrows, item_ct1);
@@ -567,7 +567,7 @@ static void mul_mat_vec_q5_1_q8_1_sycl(const void *vx, const void *vy,
             cgh.parallel_for(
                 sycl::nd_range<3>(block_nums * block_dims, block_dims),
                 [=](sycl::nd_item<3> item_ct1)
-                    [[intel::reqd_sub_group_size(32)]] {
+                    [[intel::reqd_sub_group_size(WARP_SIZE)]] {
                         mul_mat_vec_q<QK5_1, QI5_1, block_q5_1,
                                       VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>(
                             vx, vy, dst, ncols, nrows, item_ct1);
@@ -591,7 +591,7 @@ static void mul_mat_vec_q8_0_q8_1_sycl(const void *vx, const void *vy,
             cgh.parallel_for(
                 sycl::nd_range<3>(block_nums * block_dims, block_dims),
                 [=](sycl::nd_item<3> item_ct1)
-                    [[intel::reqd_sub_group_size(32)]] {
+                    [[intel::reqd_sub_group_size(WARP_SIZE)]] {
                         mul_mat_vec_q<QK8_0, QI8_0, block_q8_0,
                                       VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>(
                             vx, vy, dst, ncols, nrows, item_ct1);
@@ -615,7 +615,7 @@ static void mul_mat_vec_q2_K_q8_1_sycl(const void *vx, const void *vy,
             cgh.parallel_for(
                 sycl::nd_range<3>(block_nums * block_dims, block_dims),
                 [=](sycl::nd_item<3> item_ct1)
-                    [[intel::reqd_sub_group_size(32)]] {
+                    [[intel::reqd_sub_group_size(WARP_SIZE)]] {
                         mul_mat_vec_q<QK_K, QI2_K, block_q2_K,
                                       VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>(
                             vx, vy, dst, ncols, nrows, item_ct1);
@@ -639,7 +639,7 @@ static void mul_mat_vec_q3_K_q8_1_sycl(const void *vx, const void *vy,
             cgh.parallel_for(
                 sycl::nd_range<3>(block_nums * block_dims, block_dims),
                 [=](sycl::nd_item<3> item_ct1)
-                    [[intel::reqd_sub_group_size(32)]] {
+                    [[intel::reqd_sub_group_size(WARP_SIZE)]] {
                         mul_mat_vec_q<QK_K, QI3_K, block_q3_K,
                                       VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>(
                             vx, vy, dst, ncols, nrows, item_ct1);
@@ -663,7 +663,7 @@ static void mul_mat_vec_q4_K_q8_1_sycl(const void *vx, const void *vy,
             cgh.parallel_for(
                 sycl::nd_range<3>(block_nums * block_dims, block_dims),
                 [=](sycl::nd_item<3> item_ct1)
-                    [[intel::reqd_sub_group_size(32)]] {
+                    [[intel::reqd_sub_group_size(WARP_SIZE)]] {
                         mul_mat_vec_q<QK_K, QI4_K, block_q4_K,
                                       VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>(
                             vx, vy, dst, ncols, nrows, item_ct1);
@@ -687,7 +687,7 @@ static void mul_mat_vec_q5_K_q8_1_sycl(const void *vx, const void *vy,
             cgh.parallel_for(
                 sycl::nd_range<3>(block_nums * block_dims, block_dims),
                 [=](sycl::nd_item<3> item_ct1)
-                    [[intel::reqd_sub_group_size(32)]] {
+                    [[intel::reqd_sub_group_size(WARP_SIZE)]] {
                         mul_mat_vec_q<QK_K, QI5_K, block_q5_K,
                                       VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>(
                             vx, vy, dst, ncols, nrows, item_ct1);
@@ -711,7 +711,7 @@ static void mul_mat_vec_q6_K_q8_1_sycl(const void *vx, const void *vy,
             cgh.parallel_for(
                 sycl::nd_range<3>(block_nums * block_dims, block_dims),
                 [=](sycl::nd_item<3> item_ct1)
-                    [[intel::reqd_sub_group_size(32)]] {
+                    [[intel::reqd_sub_group_size(WARP_SIZE)]] {
                         mul_mat_vec_q<QK_K, QI6_K, block_q6_K,
                                       VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>(
                             vx, vy, dst, ncols, nrows, item_ct1);
@@ -734,8 +734,8 @@ static void mul_mat_vec_iq2_xxs_q8_1_sycl(const void *vx, const void *vy,
             cgh.parallel_for(
                 sycl::nd_range<3>(block_nums * block_dims, block_dims),
                 [=](sycl::nd_item<3> item_ct1)
-                    [[intel::reqd_sub_group_size(32)]] {
-                        mul_mat_vec_q_iq2_xxs_q8_1<QK_K, QI2_XXS, block_iq2_xxs, 1>(
+                    [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+                        mul_mat_vec_q_iq2_xxs_q8_1<QK_K, QI2_XXS/2, block_iq2_xxs, 1>(
                             vx, vy, dst, ncols, nrows, item_ct1);
                     });
         });
@@ -759,8 +759,8 @@ static void mul_mat_vec_iq2_xs_q8_1_sycl(const void *vx, const void *vy,
             cgh.parallel_for(
                 sycl::nd_range<3>(block_nums * block_dims, block_dims),
                 [=](sycl::nd_item<3> item_ct1)
-                    [[intel::reqd_sub_group_size(32)]] {
-                        mul_mat_vec_q_iq2_xs_q8_1<QK_K, QI2_XS, block_iq2_xs, 1>(
+                    [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+                        mul_mat_vec_q_iq2_xs_q8_1<QK_K, QI2_XS/2, block_iq2_xs, 1>(
                             vx, vy, dst, ncols, nrows, item_ct1);
                     });
         });
@@ -784,8 +784,8 @@ static void mul_mat_vec_iq2_s_q8_1_sycl(const void *vx, const void *vy,
             cgh.parallel_for(
                 sycl::nd_range<3>(block_nums * block_dims, block_dims),
                 [=](sycl::nd_item<3> item_ct1)
-                    [[intel::reqd_sub_group_size(32)]] {
-                        mul_mat_vec_q_iq2_s_q8_1<QK_K, QI2_S, block_iq2_s, 1>(
+                    [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+                        mul_mat_vec_q_iq2_s_q8_1<QK_K, QI2_S/2, block_iq2_s, 1>(
                             vx, vy, dst, ncols, nrows, item_ct1);
                     });
         });
@@ -809,8 +809,8 @@ static void mul_mat_vec_iq3_xxs_q8_1_sycl(const void *vx, const void *vy,
             cgh.parallel_for(
                 sycl::nd_range<3>(block_nums * block_dims, block_dims),
                 [=](sycl::nd_item<3> item_ct1)
-                    [[intel::reqd_sub_group_size(32)]] {
-                        mul_mat_vec_q_iq3_xxs_q8_1<QK_K, QI3_XXS, block_iq3_xxs, 1>(
+                    [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+                        mul_mat_vec_q_iq3_xxs_q8_1<QK_K, QI3_XXS/2, block_iq3_xxs, 1>(
                             vx, vy, dst, ncols, nrows, item_ct1);
                     });
         });
@@ -833,8 +833,8 @@ static void mul_mat_vec_iq3_s_q8_1_sycl(const void *vx, const void *vy,
             cgh.parallel_for(
                 sycl::nd_range<3>(block_nums * block_dims, block_dims),
                 [=](sycl::nd_item<3> item_ct1)
-                    [[intel::reqd_sub_group_size(32)]] {
-                        mul_mat_vec_q_iq3_s_q8_1<QK_K, QI3_XS, block_iq3_s, 1>(
+                    [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+                        mul_mat_vec_q_iq3_s_q8_1<QK_K, QI3_S/2, block_iq3_s, 1>(
                             vx, vy, dst, ncols, nrows, item_ct1);
                     });
         });
@@ -858,7 +858,7 @@ static void mul_mat_vec_iq1_s_q8_1_sycl(const void *vx, const void *vy,
             cgh.parallel_for(
                 sycl::nd_range<3>(block_nums * block_dims, block_dims),
                 [=](sycl::nd_item<3> item_ct1)
-                    [[intel::reqd_sub_group_size(32)]] {
+                    [[intel::reqd_sub_group_size(WARP_SIZE)]] {
                         mul_mat_vec_q_iq1_s_q8_1<QK_K, QI1_S, block_iq1_s, 1>(
                             vx, vy, dst, ncols, nrows, item_ct1);
                     });
@@ -879,7 +879,7 @@ static void mul_mat_vec_iq1_m_q8_1_sycl(const void *vx, const void *vy,
             cgh.parallel_for(
                 sycl::nd_range<3>(block_nums * block_dims, block_dims),
                 [=](sycl::nd_item<3> item_ct1)
-                    [[intel::reqd_sub_group_size(32)]] {
+                    [[intel::reqd_sub_group_size(WARP_SIZE)]] {
                         mul_mat_vec_q_iq1_m_q8_1<QK_K, QI1_S, block_iq1_m, 1>(
                             vx, vy, dst, ncols, nrows, item_ct1);
                     });
@@ -901,7 +901,7 @@ static void mul_mat_vec_iq4_nl_q8_1_sycl(const void *vx, const void *vy,
             cgh.parallel_for(
                 sycl::nd_range<3>(block_nums * block_dims, block_dims),
                 [=](sycl::nd_item<3> item_ct1)
-                    [[intel::reqd_sub_group_size(32)]] {
+                    [[intel::reqd_sub_group_size(WARP_SIZE)]] {
                         mul_mat_vec_q_iq4_nl_q8_1<QK4_NL, QI4_NL, block_iq4_nl, 1>(
                             vx, vy, dst, ncols, nrows, item_ct1);
                     });
@@ -923,8 +923,8 @@ static void mul_mat_vec_iq4_xs_q8_1_sycl(const void *vx, const void *vy,
             cgh.parallel_for(
                 sycl::nd_range<3>(block_nums * block_dims, block_dims),
                 [=](sycl::nd_item<3> item_ct1)
-                    [[intel::reqd_sub_group_size(32)]] {
-                        mul_mat_vec_q_iq4_xs_q8_1<QK_K, QI4_XS, block_iq4_xs, 1>(
+                    [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+                        mul_mat_vec_q_iq4_xs_q8_1<QK_K, QI4_XS/4, block_iq4_xs, 1>(
                             vx, vy, dst, ncols, nrows, item_ct1);
                     });
         });
@@ -936,7 +936,7 @@ void ggml_sycl_op_mul_mat_vec_q(
     const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
     const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
     float *dst_dd_i, const int64_t row_low, const int64_t row_high,
-    const int64_t src1_ncols, const int64_t src1_padded_row_size,
+    const int64_t src1_ncols, const int64_t src1_padded_col_size,
     const dpct::queue_ptr &stream) {
 
     const int64_t ne10 = src1->ne[0];
@@ -948,77 +948,80 @@ void ggml_sycl_op_mul_mat_vec_q(
     int id;
     SYCL_CHECK(
         CHECK_TRY_ERROR(id = get_current_device_id()));
-
+    const size_t q8_1_ts = sizeof(block_q8_1);
+    const size_t q8_1_bs = QK8_1;
     // the main device has a larger memory buffer to hold the results from all GPUs
     // nrows_dst == nrows of the matrix that the kernel writes into
     const int64_t nrows_dst = id == ctx.device ? ne00 : row_diff;
-
-    switch (src0->type) {
+    for (int i = 0; i < src1_ncols; i++)
+    {
+        const size_t src1_ddq_i_offset = i * src1_padded_col_size * q8_1_ts / q8_1_bs;
+        const char* src1_ddq_i_bs = src1_ddq_i + src1_ddq_i_offset;
+        float* dst_dd_i_bs = dst_dd_i + i * dst->ne[0];
+        switch (src0->type) {
         case GGML_TYPE_Q4_0:
-            mul_mat_vec_q4_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+            mul_mat_vec_q4_0_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
             break;
         case GGML_TYPE_Q4_1:
-            mul_mat_vec_q4_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+            mul_mat_vec_q4_1_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
             break;
         case GGML_TYPE_Q5_0:
-            mul_mat_vec_q5_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+            mul_mat_vec_q5_0_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
             break;
         case GGML_TYPE_Q5_1:
-            mul_mat_vec_q5_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+            mul_mat_vec_q5_1_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
             break;
         case GGML_TYPE_Q8_0:
-            mul_mat_vec_q8_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+            mul_mat_vec_q8_0_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
             break;
         case GGML_TYPE_Q2_K:
-            mul_mat_vec_q2_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+            mul_mat_vec_q2_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
             break;
         case GGML_TYPE_Q3_K:
-            mul_mat_vec_q3_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+            mul_mat_vec_q3_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
             break;
         case GGML_TYPE_Q4_K:
-            mul_mat_vec_q4_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+            mul_mat_vec_q4_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
             break;
         case GGML_TYPE_Q5_K:
-            mul_mat_vec_q5_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+            mul_mat_vec_q5_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
             break;
         case GGML_TYPE_Q6_K:
-            mul_mat_vec_q6_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+            mul_mat_vec_q6_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
             break;
         case GGML_TYPE_IQ1_S:
-            mul_mat_vec_iq1_s_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+            mul_mat_vec_iq1_s_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
             break;
         case GGML_TYPE_IQ1_M:
-            mul_mat_vec_iq1_m_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+            mul_mat_vec_iq1_m_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
             break;
         case GGML_TYPE_IQ2_XXS:
-            mul_mat_vec_iq2_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+            mul_mat_vec_iq2_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
             break;
         case GGML_TYPE_IQ2_XS:
-            mul_mat_vec_iq2_xs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+            mul_mat_vec_iq2_xs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
             break;
         case GGML_TYPE_IQ2_S:
-            mul_mat_vec_iq2_s_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+            mul_mat_vec_iq2_s_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
             break;
         case GGML_TYPE_IQ3_XXS:
-            mul_mat_vec_iq3_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+            mul_mat_vec_iq3_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
             break;
         case GGML_TYPE_IQ3_S:
-            mul_mat_vec_iq3_s_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+            mul_mat_vec_iq3_s_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
             break;
         case GGML_TYPE_IQ4_NL:
-            mul_mat_vec_iq4_nl_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+            mul_mat_vec_iq4_nl_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
             break;
         case GGML_TYPE_IQ4_XS:
-            mul_mat_vec_iq4_xs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+            mul_mat_vec_iq4_xs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
             break;
         default:
             GGML_ASSERT(false);
             break;
+        }
     }
-
     (void) src1;
     (void) dst;
     (void) src1_ddf_i;
-    (void) src1_ncols;
-    (void) src1_padded_row_size;
 }
diff --git a/ggml/src/ggml-sycl/norm.cpp b/ggml/src/ggml-sycl/norm.cpp
new file mode 100644 (file)
index 0000000..e0c5dfe
--- /dev/null
@@ -0,0 +1,374 @@
+#include "norm.hpp"
+
+static void norm_f32(const float* x, float* dst, const int ncols, const float eps,
+    const sycl::nd_item<3>& item_ct1, sycl::float2* s_sum, int block_size) {
+    const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
+        item_ct1.get_local_id(1);
+    const int tid = item_ct1.get_local_id(2);
+
+    const int nthreads = item_ct1.get_local_range(2);
+    const int nwarps = nthreads / WARP_SIZE;
+    assert(nwarps % WARP_SIZE == 0);
+    sycl::float2 mean_var = sycl::float2(0.f, 0.f);
+
+    for (int col = tid; col < ncols; col += block_size) {
+        const float xi = x[row * ncols + col];
+        mean_var.x() += xi;
+        mean_var.y() += xi * xi;
+    }
+
+    // sum up partial sums
+    mean_var = warp_reduce_sum(mean_var, item_ct1);
+    if (block_size > WARP_SIZE) {
+
+        int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
+        int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
+        if (lane_id == 0) {
+            s_sum[warp_id] = mean_var;
+        }
+        /*
+        DPCT1118:0: SYCL group functions and algorithms must be encountered in
+        converged control flow. You may need to adjust the code.
+        */
+        item_ct1.barrier(sycl::access::fence_space::local_space);
+        mean_var = 0.f;
+        int nreduce = nwarps / WARP_SIZE;
+        for (size_t i = 0; i < nreduce; i += 1)
+        {
+            mean_var += s_sum[lane_id + i * WARP_SIZE];
+        }
+        mean_var = warp_reduce_sum(mean_var, item_ct1);
+    }
+
+    const float mean = mean_var.x() / ncols;
+    const float var = mean_var.y() / ncols - mean * mean;
+    const float inv_std = sycl::rsqrt(var + eps);
+
+    for (int col = tid; col < ncols; col += block_size) {
+        dst[row * ncols + col] = (x[row * ncols + col] - mean) * inv_std;
+    }
+}
+
+static void group_norm_f32(const float* x, float* dst, const int group_size, const int ne_elements, const float eps,
+    const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) {
+    int start = item_ct1.get_group(2) * group_size;
+    int end = start + group_size;
+    const int nthreads = item_ct1.get_local_range(2);
+    const int nwarps = nthreads / WARP_SIZE;
+    assert(nwarps % WARP_SIZE == 0);
+    start += item_ct1.get_local_id(2);
+    int nreduce = nwarps / WARP_SIZE;
+
+    if (end >= ne_elements) {
+        end = ne_elements;
+    }
+
+    float tmp = 0.0f; // partial sum for thread in warp
+
+    for (int j = start; j < end; j += block_size) {
+        tmp += x[j];
+    }
+
+    tmp = warp_reduce_sum(tmp, item_ct1);
+    if (block_size > WARP_SIZE) {
+
+        int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
+        int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
+        if (lane_id == 0) {
+            s_sum[warp_id] = tmp;
+        }
+        /*
+        DPCT1118:1: SYCL group functions and algorithms must be encountered in
+        converged control flow. You may need to adjust the code.
+        */
+        /*
+        DPCT1065:54: Consider replacing sycl::nd_item::barrier() with
+        sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
+        better performance if there is no access to global memory.
+        */
+        item_ct1.barrier();
+        tmp = 0.f;
+        for (size_t i = 0; i < nreduce; i += 1)
+        {
+            tmp += s_sum[lane_id + i * WARP_SIZE];
+        }
+        tmp = warp_reduce_sum(tmp, item_ct1);
+    }
+
+    float mean = tmp / group_size;
+    tmp = 0.0f;
+
+    for (int j = start; j < end; j += block_size) {
+        float xi = x[j] - mean;
+        dst[j] = xi;
+        tmp += xi * xi;
+    }
+
+    tmp = warp_reduce_sum(tmp, item_ct1);
+    if (block_size > WARP_SIZE) {
+
+        int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
+        int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
+        if (lane_id == 0) {
+            s_sum[warp_id] = tmp;
+        }
+        /*
+        DPCT1118:2: SYCL group functions and algorithms must be encountered in
+        converged control flow. You may need to adjust the code.
+        */
+        /*
+        DPCT1065:55: Consider replacing sycl::nd_item::barrier() with
+        sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
+        better performance if there is no access to global memory.
+        */
+        item_ct1.barrier();
+        tmp = 0.f;
+        for (size_t i = 0; i < nreduce; i += 1)
+        {
+            tmp += s_sum[lane_id + i * WARP_SIZE];
+        }
+        tmp = warp_reduce_sum(tmp, item_ct1);
+    }
+
+    float variance = tmp / group_size;
+    float scale = sycl::rsqrt(variance + eps);
+    for (int j = start; j < end; j += block_size) {
+        dst[j] *= scale;
+    }
+}
+
+static void rms_norm_f32(const float* x, float* dst, const int ncols, const float eps,
+    const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) {
+    const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
+        item_ct1.get_local_id(1);
+    const int tid = item_ct1.get_local_id(2);
+    const int nthreads = item_ct1.get_local_range(2);
+    const int nwarps = nthreads / WARP_SIZE;
+    assert(nwarps % WARP_SIZE == 0);
+    float tmp = 0.0f; // partial sum for thread in warp
+
+    for (int col = tid; col < ncols; col += block_size) {
+        const float xi = x[row * ncols + col];
+        tmp += xi * xi;
+    }
+
+    // sum up partial sums
+    tmp = warp_reduce_sum(tmp, item_ct1);
+    if (block_size > WARP_SIZE) {
+
+        int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
+        int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
+        if (lane_id == 0) {
+            s_sum[warp_id] = tmp;
+        }
+        /*
+        DPCT1118:3: SYCL group functions and algorithms must be encountered in
+        converged control flow. You may need to adjust the code.
+        */
+        item_ct1.barrier(sycl::access::fence_space::local_space);
+        int nreduce = nwarps / WARP_SIZE;
+        tmp = 0.f;
+        for (size_t i = 0; i < nreduce; i += 1)
+        {
+            tmp += s_sum[lane_id + i * WARP_SIZE];
+        }
+        tmp = warp_reduce_sum(tmp, item_ct1);
+    }
+
+    const float mean = tmp / ncols;
+    const float scale = sycl::rsqrt(mean + eps);
+
+    for (int col = tid; col < ncols; col += block_size) {
+        dst[row * ncols + col] = scale * x[row * ncols + col];
+    }
+}
+
+static void norm_f32_sycl(const float* x, float* dst, const int ncols,
+    const int nrows, const float eps,
+    queue_ptr stream, int device) {
+    GGML_ASSERT(ncols % WARP_SIZE == 0);
+    if (ncols < 1024) {
+        const sycl::range<3> block_dims(1, 1, WARP_SIZE);
+        stream->submit([&](sycl::handler& cgh) {
+            cgh.parallel_for(
+                sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
+                    block_dims),
+                [=](sycl::nd_item<3> item_ct1)
+                [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+                    norm_f32(x, dst, ncols, eps, item_ct1,
+                        nullptr, WARP_SIZE);
+                });
+            });
+    }
+    else {
+        const int work_group_size = ggml_sycl_info().max_work_group_sizes[device];
+        const sycl::range<3> block_dims(1, 1, work_group_size);
+        /*
+        DPCT1049:17: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        stream->submit([&](sycl::handler& cgh) {
+            sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
+                sycl::range<1>(work_group_size / WARP_SIZE), cgh);
+
+            cgh.parallel_for(
+                sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
+                    block_dims),
+                [=](sycl::nd_item<3> item_ct1)
+                [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+                    norm_f32(x, dst, ncols, eps, item_ct1,
+                        s_sum_acc_ct1.get_pointer(), work_group_size);
+                });
+            });
+    }
+}
+
+static void group_norm_f32_sycl(const float* x, float* dst,
+    const int num_groups, const int group_size,
+    const int ne_elements, queue_ptr stream, int device) {
+    static const float eps = 1e-6f;
+    if (group_size < 1024) {
+        const sycl::range<3> block_dims(1, 1, WARP_SIZE);
+        stream->submit([&](sycl::handler& cgh) {
+            const float eps_ct4 = eps;
+            cgh.parallel_for(
+                sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
+                    block_dims),
+                [=](sycl::nd_item<3> item_ct1)
+                [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+                    group_norm_f32(
+                        x, dst, group_size, ne_elements, eps_ct4, item_ct1,
+                        nullptr, WARP_SIZE);
+                });
+            });
+    }
+    else {
+        const int work_group_size = ggml_sycl_info().max_work_group_sizes[device];
+        const sycl::range<3> block_dims(1, 1, work_group_size);
+        /*
+        DPCT1049:18: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+
+        stream->submit([&](sycl::handler& cgh) {
+            sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(work_group_size / WARP_SIZE),
+                cgh);
+
+            const float eps_ct4 = eps;
+
+            cgh.parallel_for(
+                sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
+                    block_dims),
+                [=](sycl::nd_item<3> item_ct1)
+                [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+                    group_norm_f32(x, dst, group_size, ne_elements,
+                        eps_ct4, item_ct1,
+                        s_sum_acc_ct1.get_pointer(), work_group_size);
+                });
+            });
+    }
+}
+
+static void rms_norm_f32_sycl(const float* x, float* dst, const int ncols,
+    const int nrows, const float eps,
+    queue_ptr stream, int device) {
+    GGML_ASSERT(ncols % WARP_SIZE == 0);
+    // printf("%s ncols=%d, nrows=%d, WARP_SIZE=%d\n", __func__, ncols, nrows, WARP_SIZE);
+    if (ncols < 1024) {
+        const sycl::range<3> block_dims(1, 1, WARP_SIZE);
+        stream->submit([&](sycl::handler& cgh) {
+            cgh.parallel_for(
+                sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
+                    block_dims),
+                [=](sycl::nd_item<3> item_ct1)
+                [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+                    rms_norm_f32(x, dst, ncols, eps, item_ct1,
+                        nullptr, WARP_SIZE);
+                });
+            });
+    }
+    else {
+        const int work_group_size = ggml_sycl_info().max_work_group_sizes[device];
+        const sycl::range<3> block_dims(1, 1, work_group_size);
+        /*
+        DPCT1049:19: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        stream->submit([&](sycl::handler& cgh) {
+            sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(work_group_size / WARP_SIZE),
+                cgh);
+            cgh.parallel_for(
+                sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
+                    block_dims),
+                [=](sycl::nd_item<3> item_ct1)
+                [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+                    rms_norm_f32(x, dst, ncols, eps, item_ct1,
+                        s_sum_acc_ct1.get_pointer(), work_group_size);
+                });
+            });
+    }
+}
+
+void ggml_sycl_op_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0, const ggml_tensor* src1,
+    ggml_tensor* dst, const float* src0_dd,
+    const float* src1_dd, float* dst_dd,
+    const queue_ptr& main_stream) {
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT(dst->type == GGML_TYPE_F32);
+
+    const int64_t ne00 = src0->ne[0];
+    const int64_t nrows = ggml_nrows(src0);
+
+    float eps;
+    memcpy(&eps, dst->op_params, sizeof(float));
+
+    norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream, ctx.device);
+
+    (void)src1;
+    (void)dst;
+    (void)src1_dd;
+}
+
+void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
+    const ggml_tensor* src1, ggml_tensor* dst,
+    const float* src0_dd, const float* src1_dd,
+    float* dst_dd,
+    const queue_ptr& main_stream) {
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT(dst->type == GGML_TYPE_F32);
+
+    int num_groups = dst->op_params[0];
+    int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
+    group_norm_f32_sycl(src0_dd, dst_dd, num_groups, group_size, src0->ne[0] * src0->ne[1] * src0->ne[2], main_stream, ctx.device);
+
+    (void)src1;
+    (void)dst;
+    (void)src1_dd;
+}
+
+void ggml_sycl_op_rms_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
+    const ggml_tensor* src1, ggml_tensor* dst,
+    const float* src0_dd, const float* src1_dd,
+    float* dst_dd,
+    const queue_ptr& main_stream) {
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT(dst->type == GGML_TYPE_F32);
+
+    const int64_t ne00 = src0->ne[0];
+    const int64_t nrows = ggml_nrows(src0);
+
+    float eps;
+    memcpy(&eps, dst->op_params, sizeof(float));
+
+    rms_norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream, ctx.device);
+
+    (void)src1;
+    (void)dst;
+    (void)src1_dd;
+}
diff --git a/ggml/src/ggml-sycl/norm.hpp b/ggml/src/ggml-sycl/norm.hpp
new file mode 100644 (file)
index 0000000..a9ad915
--- /dev/null
@@ -0,0 +1,35 @@
+//
+// MIT license
+// Copyright (C) 2024 Intel Corporation
+// SPDX-License-Identifier: MIT
+//
+
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+
+#ifndef GGML_SYCL_NORM_HPP
+#define GGML_SYCL_NORM_HPP
+
+#include "common.hpp"
+
+void ggml_sycl_op_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0, const ggml_tensor* src1,
+    ggml_tensor* dst, const float* src0_dd,
+    const float* src1_dd, float* dst_dd,
+    const queue_ptr& main_stream);
+
+void ggml_sycl_op_rms_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
+    const ggml_tensor* src1, ggml_tensor* dst,
+    const float* src0_dd, const float* src1_dd,
+    float* dst_dd,
+    const queue_ptr& main_stream);
+
+void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
+    const ggml_tensor* src1, ggml_tensor* dst,
+    const float* src0_dd, const float* src1_dd,
+    float* dst_dd,
+    const queue_ptr& main_stream);
+
+#endif // GGML_SYCL_NORM_HPP
index 5e6b61813ab4915855cfa7bf9d0f140897a47ed7..15ddcac1fa14861ea29cefd8cca0b4ac5c8afca5 100644 (file)
 
 #define GGML_SYCL_MAX_STREAMS       8
 #define GGML_SYCL_MAX_BUFFERS       256
-#define GGML_SYCL_MAX_DEVICES       48
-#define GGML_SYCL_NAME "SYCL"
 
-#define WARP_SIZE 32
+#define WARP_SIZE GGML_SYCL_WARP_SIZE
 #define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
 
 #define SYCL_GELU_BLOCK_SIZE 256
@@ -64,4 +62,5 @@ static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUA
 
 #define MUL_MAT_SRC1_COL_STRIDE 128
 
+#define QK_WARP_SIZE 32
 #endif // GGML_SYCL_PRESETS_HPP
diff --git a/ggml/src/ggml-sycl/rope.cpp b/ggml/src/ggml-sycl/rope.cpp
new file mode 100644 (file)
index 0000000..eabf169
--- /dev/null
@@ -0,0 +1,275 @@
+#include "rope.hpp"
+
+struct rope_corr_dims {
+    float v[2];
+};
+
+static float rope_yarn_ramp(const float low, const float high, const int i0) {
+    const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low);
+    return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y));
+}
+
+// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
+// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
+static void rope_yarn(
+    float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
+    float * cos_theta, float * sin_theta) {
+    // Get n-d rotational scaling corrected for extrapolation
+    float theta_interp = freq_scale * theta_extrap;
+    float theta = theta_interp;
+    if (ext_factor != 0.0f) {
+        float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
+        theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
+
+        // Get n-d magnitude scaling corrected for interpolation
+        mscale *= 1.0f + 0.1f * sycl::log(1.0f / freq_scale);
+    }
+    *cos_theta = sycl::cos(theta) * mscale;
+    *sin_theta = sycl::sin(theta) * mscale;
+}
+
+template<typename T, bool has_ff>
+static void rope_norm(
+    const T * x, T * dst, int ne0, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
+    float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors,
+    const sycl::nd_item<3> &item_ct1) {
+    const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+                         item_ct1.get_local_id(1));
+
+    if (i0 >= ne0) {
+        return;
+    }
+
+    const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+                    item_ct1.get_local_id(2);
+
+    if (i0 >= n_dims) {
+        const int i = row*ne0 + i0;
+
+        dst[i + 0] = x[i + 0];
+        dst[i + 1] = x[i + 1];
+
+        return;
+    }
+
+    const int i = row*ne0 + i0;
+    const int i2 = row/p_delta_rows;
+
+    const float theta_base = pos[i2]*powf(theta_scale, i0/2.0f);
+
+    const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
+
+    float cos_theta;
+    float sin_theta;
+
+    rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
+
+    const float x0 = x[i + 0];
+    const float x1 = x[i + 1];
+
+    dst[i + 0] = x0*cos_theta - x1*sin_theta;
+    dst[i + 1] = x0*sin_theta + x1*cos_theta;
+}
+
+template<typename T, bool has_ff>
+static void rope_neox(
+    const T * x, T * dst, int ne0, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
+    float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors,
+    const sycl::nd_item<3> &item_ct1) {
+    const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+                         item_ct1.get_local_id(1));
+
+    if (i0 >= ne0) {
+        return;
+    }
+
+    const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+                    item_ct1.get_local_id(2);
+
+    if (i0 >= n_dims) {
+        const int i = row*ne0 + i0;
+
+        dst[i + 0] = x[i + 0];
+        dst[i + 1] = x[i + 1];
+
+        return;
+    }
+
+    const int i  = row*ne0 + i0/2;
+    const int i2 = row/p_delta_rows;
+
+    const float theta_base = pos[i2]*powf(theta_scale, i0/2.0f);
+
+    const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
+
+    float cos_theta;
+    float sin_theta;
+
+    rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
+
+    const float x0 = x[i + 0];
+    const float x1 = x[i + n_dims/2];
+
+    dst[i + 0]        = x0*cos_theta - x1*sin_theta;
+    dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
+}
+
+template <typename T>
+static void rope_norm_sycl(
+    const T *x, T *dst, int ne0, int n_dims, int nr, const int32_t *pos, float freq_scale, int p_delta_rows,
+    float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) {
+    GGML_ASSERT(ne0 % 2 == 0);
+    const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
+    const int num_blocks_x = (ne0 + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
+    const sycl::range<3> block_nums(1, num_blocks_x, nr);
+
+    const float theta_scale = powf(freq_base, -2.0f/n_dims);
+
+    dpct::has_capability_or_fail(stream->get_device(),
+                                     {sycl::aspect::fp16});
+
+    if (freq_factors == nullptr) {
+        /*
+        DPCT1049:40: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        stream->parallel_for(
+            sycl::nd_range<3>(block_nums * block_dims, block_dims),
+            [=](sycl::nd_item<3> item_ct1) {
+                rope_norm<T, false>(x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows,
+                               ext_factor, attn_factor, corr_dims, theta_scale, freq_factors,
+                               item_ct1);
+            });
+    } else {
+        /*
+        DPCT1049:41: The work-group size passed to the SYCL kernel may exceed
+        the limit. To get the device limit, query
+        info::device::max_work_group_size. Adjust the work-group size if needed.
+        */
+        stream->parallel_for(
+            sycl::nd_range<3>(block_nums * block_dims, block_dims),
+            [=](sycl::nd_item<3> item_ct1) {
+                rope_norm<T, true>(x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows,
+                              ext_factor, attn_factor, corr_dims, theta_scale, freq_factors,
+                              item_ct1);
+            });
+    }
+}
+
+template <typename T>
+static void rope_neox_sycl(
+    const T *x, T *dst, int ne0, int n_dims, int nr, const int32_t *pos, float freq_scale, int p_delta_rows,
+    float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) {
+    GGML_ASSERT(ne0 % 2 == 0);
+    const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
+    const int num_blocks_x = (ne0 + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
+    const sycl::range<3> block_nums(1, num_blocks_x, nr);
+
+    const float theta_scale = powf(freq_base, -2.0f/n_dims);
+
+    dpct::has_capability_or_fail(stream->get_device(),
+                                    {sycl::aspect::fp16});
+
+    if (freq_factors == nullptr) {
+        stream->parallel_for(
+            sycl::nd_range<3>(block_nums * block_dims, block_dims),
+            [=](sycl::nd_item<3> item_ct1) {
+                rope_neox<T, false>(x, dst, ne0, n_dims, pos, freq_scale,
+                                    p_delta_rows, ext_factor, attn_factor,
+                                    corr_dims, theta_scale, freq_factors,
+                                    item_ct1);
+            });
+    } else {
+        stream->parallel_for(
+            sycl::nd_range<3>(block_nums * block_dims, block_dims),
+            [=](sycl::nd_item<3> item_ct1) {
+                rope_neox<T, true>(x, dst, ne0, n_dims, pos, freq_scale,
+                                    p_delta_rows, ext_factor, attn_factor,
+                                    corr_dims, theta_scale, freq_factors,
+                                    item_ct1);
+            });
+    }
+}
+
+void ggml_sycl_op_rope(
+    ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
+    const float *src0_dd, const float *src1_dd, float *dst_dd, const queue_ptr &main_stream) {
+    const ggml_tensor * src2 = dst->src[2];
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
+    GGML_ASSERT(src0->type == dst->type);
+
+    const int64_t ne00 = src0->ne[0];
+    const int64_t ne01 = src0->ne[1];
+    const int64_t nr = ggml_nrows(src0);
+
+    //const int n_past      = ((int32_t *) dst->op_params)[0];
+    const int n_dims      = ((int32_t *) dst->op_params)[1];
+    const int mode        = ((int32_t *) dst->op_params)[2];
+    //const int n_ctx       = ((int32_t *) dst->op_params)[3];
+    const int n_ctx_orig  = ((int32_t *) dst->op_params)[4];
+
+    // RoPE alteration for extended context
+    float freq_base;
+    float freq_scale;
+    float ext_factor;
+    float attn_factor;
+    float beta_fast;
+    float beta_slow;
+
+    memcpy(&freq_base,   (int32_t *) dst->op_params +  5, sizeof(float));
+    memcpy(&freq_scale,  (int32_t *) dst->op_params +  6, sizeof(float));
+    memcpy(&ext_factor,  (int32_t *) dst->op_params +  7, sizeof(float));
+    memcpy(&attn_factor, (int32_t *) dst->op_params +  8, sizeof(float));
+    memcpy(&beta_fast,   (int32_t *) dst->op_params +  9, sizeof(float));
+    memcpy(&beta_slow,   (int32_t *) dst->op_params + 10, sizeof(float));
+
+    const bool is_neox = mode & 2;
+
+    const int32_t * pos = (const int32_t *) src1_dd;
+
+    const float * freq_factors = nullptr;
+    if (src2 != nullptr) {
+        freq_factors = (const float *) src2->data;
+    }
+
+    rope_corr_dims corr_dims;
+    ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims.v);
+
+    // compute
+    if (is_neox) {
+        if (src0->type == GGML_TYPE_F32) {
+            rope_neox_sycl(
+                (const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
+                attn_factor, corr_dims, freq_factors, main_stream
+            );
+        } else if (src0->type == GGML_TYPE_F16) {
+            rope_neox_sycl(
+                (const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
+                attn_factor, corr_dims, freq_factors, main_stream
+            );
+        } else {
+            GGML_ASSERT(false);
+        }
+    } else {
+        if (src0->type == GGML_TYPE_F32) {
+            rope_norm_sycl(
+                (const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
+                attn_factor, corr_dims, freq_factors, main_stream
+            );
+        } else if (src0->type == GGML_TYPE_F16) {
+            rope_norm_sycl(
+                (const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
+                attn_factor, corr_dims, freq_factors, main_stream
+            );
+        } else {
+            GGML_ASSERT(false);
+        }
+    }
+
+    (void) src1;
+    (void) dst;
+    (void) src1_dd;
+}
diff --git a/ggml/src/ggml-sycl/rope.hpp b/ggml/src/ggml-sycl/rope.hpp
new file mode 100644 (file)
index 0000000..00354c3
--- /dev/null
@@ -0,0 +1,22 @@
+//
+// MIT license
+// Copyright (C) 2024 Intel Corporation
+// SPDX-License-Identifier: MIT
+//
+
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+
+#ifndef GGML_SYCL_ROPE_HPP
+#define GGML_SYCL_ROPE_HPP
+
+#include "common.hpp"
+
+void ggml_sycl_op_rope(
+    ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
+    const float *src0_dd, const float *src1_dd, float *dst_dd, const queue_ptr &main_stream);
+
+#endif // GGML_SYCL_ROPE_HPP
diff --git a/ggml/src/ggml-sycl/softmax.cpp b/ggml/src/ggml-sycl/softmax.cpp
new file mode 100644 (file)
index 0000000..e624b6b
--- /dev/null
@@ -0,0 +1,250 @@
+#include "norm.hpp"
+
+template <bool vals_smem, int ncols_template, int block_size_template>
+static void soft_max_f32(const float * x, const float * mask, float * dst, const int ncols_par,
+                         const int nrows_y, const float scale, const float max_bias, const float m0,
+                         const float m1, uint32_t n_head_log2, const sycl::nd_item<3> &item_ct1, float *buf) {
+    const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
+
+    const int tid = item_ct1.get_local_id(2);
+    const int rowx = item_ct1.get_group(2);
+    const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension
+
+    const int block_size = block_size_template == 0 ? item_ct1.get_local_range(2) : block_size_template;
+
+    const int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
+    const int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
+    const int nthreads = block_size;
+    const int nwarps = nthreads / WARP_SIZE;
+    int nreduce = nwarps / WARP_SIZE;
+    float slope = 1.0f;
+
+    // ALiBi
+    if (max_bias > 0.0f) {
+        const uint32_t h = rowx/nrows_y; // head index
+
+        const float base = h < n_head_log2 ? m0 : m1;
+        const int   exp  = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
+
+        slope = sycl::pow(base, float(exp));
+    }
+
+    float *vals = vals_smem ? buf + std::max(nwarps, WARP_SIZE) : dst + rowx * ncols;
+    float max_val = -INFINITY;
+
+    for (int col0 = 0; col0 < ncols; col0 += block_size) {
+        const int col = col0 + tid;
+
+        if (ncols_template == 0 && col >= ncols) {
+            break;
+        }
+
+        const int ix = rowx*ncols + col;
+        const int iy = rowy*ncols + col;
+
+        const float val = x[ix]*scale + (mask ? slope*mask[iy] : 0.0f);
+
+        vals[col] = val;
+        max_val = sycl::max(max_val, val);
+    }
+
+    // find the max value in the block
+    max_val = warp_reduce_max(max_val, item_ct1);
+    if (block_size > WARP_SIZE) {
+        if (warp_id == 0) {
+            buf[lane_id] = -INFINITY;
+            for (size_t i = 1; i < nreduce; i += 1)
+                buf[lane_id + i * WARP_SIZE] = -INFINITY;
+        }
+        item_ct1.barrier(sycl::access::fence_space::local_space);
+
+        if (lane_id == 0) {
+            buf[warp_id] = max_val;
+        }
+        item_ct1.barrier(sycl::access::fence_space::local_space);
+        max_val = buf[lane_id];
+        for (size_t i = 1; i < nreduce; i += 1)
+        {
+            max_val = std::max(max_val, buf[lane_id + i * WARP_SIZE]);
+        }
+        max_val = warp_reduce_max(max_val, item_ct1);
+    }
+
+    float tmp = 0.f;
+#pragma unroll
+    for (int col0 = 0; col0 < ncols; col0 += block_size) {
+        const int col = col0 + tid;
+                if (ncols_template == 0 && col >= ncols) {
+            break;
+        }
+
+        const float val = sycl::native::exp(vals[col] - max_val);
+        tmp += val;
+        vals[col] = val;
+    }
+
+    // find the sum of exps in the block
+    tmp = warp_reduce_sum(tmp, item_ct1);
+    if (block_size > WARP_SIZE) {
+        item_ct1.barrier(sycl::access::fence_space::local_space);
+        if (warp_id == 0) {
+            buf[lane_id] = 0.f;
+            for (size_t i = 1; i < nreduce; i += 1)
+                buf[lane_id + i * WARP_SIZE] = 0.f;
+        }
+        item_ct1.barrier(sycl::access::fence_space::local_space);
+
+        if (lane_id == 0) {
+            buf[warp_id] = tmp;
+        }
+        item_ct1.barrier(sycl::access::fence_space::local_space);
+
+        tmp = buf[lane_id];
+        for (size_t i = 1; i < nreduce; i += 1)
+        {
+            tmp += buf[lane_id + i * WARP_SIZE];
+        }
+        tmp = warp_reduce_sum(tmp, item_ct1);
+    }
+
+    const float inv_sum = 1.f / tmp;
+
+#pragma unroll
+    for (int col0 = 0; col0 < ncols; col0 += block_size) {
+        const int col = col0 + tid;
+
+        if (ncols_template == 0 && col >= ncols) {
+            return;
+        }
+
+        const int idst = rowx*ncols + col;
+        dst[idst] = vals[col] * inv_sum;
+    }
+}
+
+template <bool vals_smem, int ncols_template, int block_size_template>
+static void soft_max_f32_submitter(const float * x, const float * mask, float * dst, const int ncols_par,
+                                   const int nrows_y, const float scale, const float max_bias, const float m0,
+                                   const float m1, uint32_t n_head_log2, sycl::range<3> block_nums, sycl::range<3> block_dims,
+                                   const size_t n_local_scratch, queue_ptr stream) {
+    stream->submit([&](sycl::handler &cgh) {
+        sycl::local_accessor<float, 1> local_buf_acc(n_local_scratch, cgh);
+
+        cgh.parallel_for(
+            sycl::nd_range<3>(block_nums * block_dims, block_dims),
+            [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+                soft_max_f32<vals_smem, ncols_template, block_size_template>(x, mask, dst, ncols_par,
+                                                                             nrows_y, scale, max_bias, m0,
+                                                                             m1, n_head_log2, item_ct1,
+                                                                             local_buf_acc.get_pointer());
+            });
+    });
+}
+
+static void soft_max_f32_sycl(const float * x, const float * mask,
+                              float * dst, const int ncols_x, const int nrows_x,
+                              const int nrows_y, const float scale, const float max_bias,
+                              queue_ptr stream, int device) {
+    int nth = WARP_SIZE;
+    int max_block_size = ggml_sycl_info().max_work_group_sizes[device];
+    while (nth < ncols_x && nth < max_block_size) nth *= 2;
+    if (nth>max_block_size) nth = max_block_size;
+
+    const sycl::range<3> block_dims(1, 1, nth);
+    const sycl::range<3> block_nums(1, 1, nrows_x);
+    const size_t n_local_scratch = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE);
+
+    const uint32_t n_head_kv   = nrows_x/nrows_y;
+    const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
+
+    const float m0 = powf(2.0f, -(max_bias       ) / n_head_log2);
+    const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
+
+    const size_t local_mem_size = stream->get_device().get_info<sycl::info::device::local_mem_size>();
+    if (n_local_scratch*sizeof(float) < local_mem_size) {
+        if (ncols_x > max_block_size) {
+            soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
+                                               max_bias, m0, m1, n_head_log2, block_nums,
+                                               block_dims, n_local_scratch, stream);
+            return;
+        }
+        switch (ncols_x) {
+            case 32:
+                soft_max_f32_submitter<true, 32, 32>(x, mask, dst, ncols_x, nrows_y, scale,
+                                                     max_bias, m0, m1, n_head_log2, block_nums,
+                                                     block_dims, n_local_scratch, stream);
+                break;
+            case 64:
+                soft_max_f32_submitter<true, 64, 64>(x, mask, dst, ncols_x, nrows_y, scale,
+                                                     max_bias, m0, m1, n_head_log2, block_nums,
+                                                     block_dims, n_local_scratch, stream);
+                break;
+            case 128:
+                soft_max_f32_submitter<true, 128, 128>(x, mask, dst, ncols_x, nrows_y, scale,
+                                                       max_bias, m0, m1, n_head_log2, block_nums,
+                                                       block_dims, n_local_scratch, stream);
+                break;
+            case 256:
+                soft_max_f32_submitter<true, 256, 256>(x, mask, dst, ncols_x, nrows_y, scale,
+                                                       max_bias, m0, m1, n_head_log2, block_nums,
+                                                       block_dims, n_local_scratch, stream);
+                break;
+            case 512:
+                soft_max_f32_submitter<true, 512, 512>(x, mask, dst, ncols_x, nrows_y, scale,
+                                                       max_bias, m0, m1, n_head_log2, block_nums,
+                                                       block_dims, n_local_scratch, stream);
+                break;
+            case 1024:
+                soft_max_f32_submitter<true, 1024, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
+                                                         max_bias, m0, m1, n_head_log2, block_nums,
+                                                         block_dims, n_local_scratch, stream);
+                break;
+            case 2048:
+                soft_max_f32_submitter<true, 2048, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
+                                                         max_bias, m0, m1, n_head_log2, block_nums,
+                                                         block_dims, n_local_scratch, stream);
+                break;
+            case 4096:
+                soft_max_f32_submitter<true, 4096, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
+                                                         max_bias, m0, m1, n_head_log2, block_nums,
+                                                         block_dims, n_local_scratch, stream);
+                break;
+            default:
+                soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
+                                                   max_bias, m0, m1, n_head_log2, block_nums,
+                                                   block_dims, n_local_scratch, stream);
+                break;
+        }
+    } else {
+        soft_max_f32_submitter<false, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
+                                            max_bias, m0, m1, n_head_log2, block_nums,
+                                            block_dims, WARP_SIZE, stream);
+    }
+}
+
+void ggml_sycl_op_soft_max(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
+                                  const ggml_tensor *src1, ggml_tensor *dst,
+                                  const float *src0_dd, const float *src1_dd,
+                                  float *dst_dd,
+                                  const queue_ptr &main_stream) {
+
+    GGML_ASSERT(src0->type == GGML_TYPE_F32);
+    GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+#pragma message("TODO: add ggml_sycl_op_soft_max() F16 src1 support")
+#pragma message("ref:  https://github.com/ggerganov/llama.cpp/pull/5021")
+    GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
+
+    const int64_t ne00 = src0->ne[0];
+    const int64_t nrows_x = ggml_nrows(src0);
+    const int64_t nrows_y = src0->ne[1];
+
+    float scale = 1.0f;
+    float max_bias = 0.0f;
+
+    memcpy(&scale, dst->op_params + 0, sizeof(float));
+    memcpy(&max_bias, dst->op_params + 1, sizeof(float));
+
+    soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00,
+        nrows_x, nrows_y, scale, max_bias, main_stream, ctx.device);
+}
diff --git a/ggml/src/ggml-sycl/softmax.hpp b/ggml/src/ggml-sycl/softmax.hpp
new file mode 100644 (file)
index 0000000..bdb8f71
--- /dev/null
@@ -0,0 +1,24 @@
+//
+// MIT license
+// Copyright (C) 2024 Intel Corporation
+// SPDX-License-Identifier: MIT
+//
+
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+
+#ifndef GGML_SYCL_SOFTMAX_HPP
+#define GGML_SYCL_SOFTMAX_HPP
+
+#include "common.hpp"
+
+void ggml_sycl_op_soft_max(ggml_backend_sycl_context &ctx, const ggml_tensor *src0,
+    const ggml_tensor *src1, ggml_tensor *dst,
+    const float *src0_dd, const float *src1_dd,
+    float *dst_dd,
+    const queue_ptr &main_stream);
+
+#endif // GGML_SYCL_SOFTMAX_HPP
index 5e2e825463cde3aba8af71828fd4d8addb22bc57..d2dccade20bfd690b94bd4733acce8f546bf98ee 100644 (file)
@@ -820,7 +820,6 @@ vec_dot_iq2_xxs_q8_1(const void *__restrict__ vbq,
 #if QK_K == 256
     const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq;
 
-#if QR2_XXS == 8
     const int ib32 = iqs;
     const uint16_t * q2 = bq2->qs + 4*ib32;
     const uint8_t  * aux8 = (const uint8_t *)q2;
@@ -838,26 +837,6 @@ vec_dot_iq2_xxs_q8_1(const void *__restrict__ vbq,
     }
     const float d = (float)bq2->d * (0.5f + aux32) * bq8_1[ib32].ds[0] * 0.25f;
     return d * sumi;
-#else
-    // iqs is 0...15
-    const int ib32 = iqs/2;
-    const int il = iqs%2;
-    const uint16_t * q2 = bq2->qs + 4*ib32;
-    const uint8_t  * aux8 = (const uint8_t *)q2;
-    const uint8_t  * grid1 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+0]);
-    const uint8_t  * grid2 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+1]);
-    const uint32_t aux32 = q2[2] | (q2[3] << 16);
-    const float d = (float)bq2->d * (0.5f + (aux32 >> 28)) * bq8_1[ib32].ds[0] * 0.25f;
-    const uint8_t signs1 = ksigns_iq2xs[(aux32 >> 14*il) & 127];
-    const uint8_t signs2 = ksigns_iq2xs[(aux32 >> (14*il + 7)) & 127];
-    const int8_t * q8 = bq8_1[ib32].qs + 16*il;
-    int sumi1 = 0, sumi2 = 0;
-    for (int j = 0; j < 8; ++j) {
-        sumi1 += q8[j+0] * grid1[j] * (signs1 & kmask_iq2xs[j] ? -1 : 1);
-        sumi2 += q8[j+8] * grid2[j] * (signs2 & kmask_iq2xs[j] ? -1 : 1);
-    }
-    return d * (sumi1 + sumi2);
-#endif
 #else
     assert(false);
     return 0.f;