#include "dmmv.hpp"
#include "mmq.hpp"
#include "mmvq.hpp"
+#include "rope.hpp"
+#include "norm.hpp"
+#include "softmax.hpp"
#endif // GGML_SYCL_BACKEND_HPP
#include <iostream>
#include "dpct/helper.hpp"
+#include "ggml-sycl.h"
#include "presets.hpp"
#define GGML_COMMON_DECL_SYCL
} \
}()
-// #define DEBUG_SYCL_MALLOC
-
-static int g_work_group_size = 0;
-// typedef sycl::half ggml_fp16_t;
#define __SYCL_ARCH__ DPCT_COMPATIBILITY_TEMP
#define VER_4VEC 610 // todo for hardward optimize.
sycl_device_info devices[GGML_SYCL_MAX_DEVICES] = {};
std::array<float, GGML_SYCL_MAX_DEVICES> default_tensor_split = {};
+
+ int max_work_group_sizes[GGML_SYCL_MAX_DEVICES] = {0};
};
const ggml_sycl_device_info & ggml_sycl_info();
}
};
+// common device functions
+
+static __dpct_inline__ float warp_reduce_sum(float x,
+ const sycl::nd_item<3>& item_ct1) {
+#pragma unroll
+ for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
+ /*
+ DPCT1096:98: The right-most dimension of the work-group used in the SYCL
+ kernel that calls this function may be less than "32". The function
+ "dpct::permute_sub_group_by_xor" may return an unexpected result on the
+ CPU device. Modify the size of the work-group to ensure that the value
+ of the right-most dimension is a multiple of "32".
+ */
+ x += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), x, mask);
+ }
+ return x;
+}
+
+static __dpct_inline__ sycl::float2
+warp_reduce_sum(sycl::float2 a, const sycl::nd_item<3>& item_ct1) {
+#pragma unroll
+ for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
+ a.x() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.x(),
+ mask);
+ a.y() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.y(),
+ mask);
+ }
+ return a;
+}
+
+static __dpct_inline__ float warp_reduce_max(float x,
+ const sycl::nd_item<3>& item_ct1) {
+#pragma unroll
+ for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
+ /*
+ DPCT1096:97: The right-most dimension of the work-group used in the SYCL
+ kernel that calls this function may be less than "32". The function
+ "dpct::permute_sub_group_by_xor" may return an unexpected result on the
+ CPU device. Modify the size of the work-group to ensure that the value
+ of the right-most dimension is a multiple of "32".
+ */
+ x = sycl::fmax(x, dpct::permute_sub_group_by_xor(
+ item_ct1.get_sub_group(), x, mask));
+ }
+ return x;
+}
+
+// Helper for vec loading aligned data
+template <typename Tp, int n>
+inline sycl::vec<Tp, n> vec_aligned_load(const Tp* aligned_ptr) {
+ return *reinterpret_cast<const sycl::vec<Tp, n>*>(aligned_ptr);
+}
#endif // GGML_SYCL_COMMON_HPP
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<uint8_t, 1> scale_local_acc(sycl::range<1>(12), cgh);
+ cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
sycl::range<3>(1, 1, 32),
sycl::range<3>(1, 1, 32)),
[=](sycl::nd_item<3> item_ct1) {
- dequantize_block_q4_K(vx, y, item_ct1);
+ dequantize_block_q4_K(vx, y, scale_local_acc.get_pointer(), item_ct1);
});
+ });
}
}
#if QK_K == 256
static inline void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
if (j < 4) {
- d = q[j] & 63; m = q[j + 4] & 63;
+ d = q[j] & 63;
+ m = q[j + 4] & 63;
} else {
d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
template<typename dst_t>
static void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
- const sycl::nd_item<3> &item_ct1) {
+ uint8_t* scales_local, const sycl::nd_item<3> &item_ct1) {
const block_q4_K * x = (const block_q4_K *) vx;
const int i = item_ct1.get_group(2);
dst_t * y = yy + i*QK_K + 64*il + n*ir;
- const float dall = x[i].dm[0];
- const float dmin = x[i].dm[1];
+ const sycl::half2 dm = x[i].dm;
+ const float dall = dm[0];
+ const float dmin = dm[1];
- const uint8_t * q = x[i].qs + 32*il + n*ir;
+ if (tid < 12)
+ scales_local[tid] = x[i].scales[tid];
+ item_ct1.barrier(sycl::access::fence_space::local_space);
uint8_t sc, m;
- get_scale_min_k4(is + 0, x[i].scales, sc, m);
- const float d1 = dall * sc; const float m1 = dmin * m;
- get_scale_min_k4(is + 1, x[i].scales, sc, m);
- const float d2 = dall * sc; const float m2 = dmin * m;
+ get_scale_min_k4(is + 0, scales_local, sc, m);
+ const float d1 = dall * sc;
+ const float m1 = dmin * m;
+ get_scale_min_k4(is + 1, scales_local, sc, m);
+ const float d2 = dall * sc;
+ const float m2 = dmin * m;
+
+ sycl::vec<uint8_t, n> q_vec = vec_aligned_load<uint8_t, n>(x[i].qs + 32*il + n*ir);
for (int l = 0; l < n; ++l) {
- y[l + 0] = d1 * (q[l] & 0xF) - m1;
- y[l +32] = d2 * (q[l] >> 4) - m2;
+ y[l + 0] = d1 * (q_vec[l] & 0xF) - m1;
+ y[l +32] = d2 * (q_vec[l] >> 4) - m2;
}
#else
const int tid = item_ct1.get_local_id(2);
#include "dequantize.hpp"
#include "presets.hpp"
+
static void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){
const sycl::half *x = (const sycl::half *)vx;
// sum up partial sums and write back result
#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
+ for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+ [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
dequantize_mul_mat_vec<1, 1, convert_f16>(vx, y, dst, ncols,
nrows, item_ct1);
});
// sum up partial sums and write back result
#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
+ for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
// sum up partial sums and write back result
#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
+ for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
// sum up partial sums and write back result
#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
+ for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
// sum up partial sums and write back result
#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
+ for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
// sum up partial sums and write back result
#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
+ for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+ [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>(
vx, y, dst, ncols, nrows, item_ct1);
});
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+ [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>(
vx, y, dst, ncols, nrows, item_ct1);
});
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+ [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>(
vx, y, dst, ncols, nrows, item_ct1);
});
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+ [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>(
vx, y, dst, ncols, nrows, item_ct1);
});
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+ [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>(
vx, y, dst, ncols, nrows, item_ct1);
});
const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
const int block_num_y = (nrows + ny - 1) / ny;
const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, ny, 32);
+ const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE);
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+ [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] {
dequantize_mul_mat_vec_q2_k(vx, y, dst, ncols, nrows, item_ct1);
});
}
const int ny = 2 / K_QUANTS_PER_ITERATION;
const int block_num_y = (nrows + ny - 1) / ny;
const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, ny, 32);
+ const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE);
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+ [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] {
dequantize_mul_mat_vec_q3_k(vx, y, dst, ncols, nrows, item_ct1);
});
}
const int ny = 2 / K_QUANTS_PER_ITERATION;
const int block_num_y = (nrows + ny - 1) / ny;
const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, ny, 32);
+ const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE);
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+ [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] {
dequantize_mul_mat_vec_q4_k(vx, y, dst, ncols, nrows, item_ct1);
});
}
const int nrows,
dpct::queue_ptr stream) {
GGML_ASSERT(ncols % QK_K == 0);
- const sycl::range<3> block_dims(1, 1, 32);
+ const sycl::range<3> block_dims(1, 1, QK_WARP_SIZE);
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+ [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] {
dequantize_mul_mat_vec_q5_k(vx, y, dst, ncols, item_ct1);
});
}
const int ny = 2 / K_QUANTS_PER_ITERATION;
const int block_num_y = (nrows + ny - 1) / ny;
const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, ny, 32);
+ const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE);
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
+ [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] {
dequantize_mul_mat_vec_q6_k(vx, y, dst, ncols, nrows, item_ct1);
});
}
void set_pitch(size_t pitch) { _pitch = pitch; }
size_t get_x() { return _x; }
- void set_x(size_t x) { _x = x; };
+ void set_x(size_t x) { _x = x; }
size_t get_y() { return _y; }
void set_y(size_t y) { _y = y; }
#error "Only support Windows and Linux."
#endif
next_free = mapped_address_space;
- };
+ }
public:
using buffer_id_t = int;
#else
#error "Only support Windows and Linux."
#endif
- };
+ }
mem_mgr(const mem_mgr &) = delete;
mem_mgr &operator=(const mem_mgr &) = delete;
b, ldb, beta, c, ldc, batch_size);
break;
}
+#endif
case detail::get_type_combination_id(
library_data_t::real_int8, library_data_t::real_int8,
library_data_t::real_int32, library_data_t::real_int32):
batch_size);
break;
}
-#endif
case detail::get_type_combination_id(
library_data_t::real_half, library_data_t::real_half,
library_data_t::real_half, library_data_t::real_float):
stride_c, batch_size);
break;
}
+#endif
case detail::get_type_combination_id(
library_data_t::real_int8, library_data_t::real_int8,
library_data_t::real_int32, library_data_t::real_int32):
beta, c, ldc, stride_c, batch_size);
break;
}
-#endif
case detail::get_type_combination_id(
library_data_t::real_half, library_data_t::real_half,
library_data_t::real_half, library_data_t::real_float):
// sum up partial sums and write back result
#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
+ for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
// sum up partial sums and write back result
#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
+ for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
// sum up partial sums and write back result
#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
+ for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
// sum up partial sums and write back result
#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
+ for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
// sum up partial sums and write back result
#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
+ for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
// sum up partial sums and write back result
#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
+ for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
// sum up partial sums and write back result
#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
+ for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
// sum up partial sums and write back result
#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
+ for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
// sum up partial sums and write back result
#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
+ for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
// sum up partial sums and write back result
#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
+ for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
tmp +=
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
}
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q<QK4_0, QI4_0, block_q4_0,
VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>(
vx, vy, dst, ncols, nrows, item_ct1);
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q<QK4_0, QI4_1, block_q4_1,
VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>(
vx, vy, dst, ncols, nrows, item_ct1);
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q<QK5_0, QI5_0, block_q5_0,
VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>(
vx, vy, dst, ncols, nrows, item_ct1);
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q<QK5_1, QI5_1, block_q5_1,
VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>(
vx, vy, dst, ncols, nrows, item_ct1);
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q<QK8_0, QI8_0, block_q8_0,
VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>(
vx, vy, dst, ncols, nrows, item_ct1);
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q<QK_K, QI2_K, block_q2_K,
VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>(
vx, vy, dst, ncols, nrows, item_ct1);
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q<QK_K, QI3_K, block_q3_K,
VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>(
vx, vy, dst, ncols, nrows, item_ct1);
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q<QK_K, QI4_K, block_q4_K,
VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>(
vx, vy, dst, ncols, nrows, item_ct1);
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q<QK_K, QI5_K, block_q5_K,
VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>(
vx, vy, dst, ncols, nrows, item_ct1);
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q<QK_K, QI6_K, block_q6_K,
VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>(
vx, vy, dst, ncols, nrows, item_ct1);
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq2_xxs_q8_1<QK_K, QI2_XXS, block_iq2_xxs, 1>(
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ mul_mat_vec_q_iq2_xxs_q8_1<QK_K, QI2_XXS/2, block_iq2_xxs, 1>(
vx, vy, dst, ncols, nrows, item_ct1);
});
});
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq2_xs_q8_1<QK_K, QI2_XS, block_iq2_xs, 1>(
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ mul_mat_vec_q_iq2_xs_q8_1<QK_K, QI2_XS/2, block_iq2_xs, 1>(
vx, vy, dst, ncols, nrows, item_ct1);
});
});
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq2_s_q8_1<QK_K, QI2_S, block_iq2_s, 1>(
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ mul_mat_vec_q_iq2_s_q8_1<QK_K, QI2_S/2, block_iq2_s, 1>(
vx, vy, dst, ncols, nrows, item_ct1);
});
});
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq3_xxs_q8_1<QK_K, QI3_XXS, block_iq3_xxs, 1>(
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ mul_mat_vec_q_iq3_xxs_q8_1<QK_K, QI3_XXS/2, block_iq3_xxs, 1>(
vx, vy, dst, ncols, nrows, item_ct1);
});
});
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq3_s_q8_1<QK_K, QI3_XS, block_iq3_s, 1>(
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ mul_mat_vec_q_iq3_s_q8_1<QK_K, QI3_S/2, block_iq3_s, 1>(
vx, vy, dst, ncols, nrows, item_ct1);
});
});
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q_iq1_s_q8_1<QK_K, QI1_S, block_iq1_s, 1>(
vx, vy, dst, ncols, nrows, item_ct1);
});
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q_iq1_m_q8_1<QK_K, QI1_S, block_iq1_m, 1>(
vx, vy, dst, ncols, nrows, item_ct1);
});
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
mul_mat_vec_q_iq4_nl_q8_1<QK4_NL, QI4_NL, block_iq4_nl, 1>(
vx, vy, dst, ncols, nrows, item_ct1);
});
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq4_xs_q8_1<QK_K, QI4_XS, block_iq4_xs, 1>(
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ mul_mat_vec_q_iq4_xs_q8_1<QK_K, QI4_XS/4, block_iq4_xs, 1>(
vx, vy, dst, ncols, nrows, item_ct1);
});
});
const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
float *dst_dd_i, const int64_t row_low, const int64_t row_high,
- const int64_t src1_ncols, const int64_t src1_padded_row_size,
+ const int64_t src1_ncols, const int64_t src1_padded_col_size,
const dpct::queue_ptr &stream) {
const int64_t ne10 = src1->ne[0];
int id;
SYCL_CHECK(
CHECK_TRY_ERROR(id = get_current_device_id()));
-
+ const size_t q8_1_ts = sizeof(block_q8_1);
+ const size_t q8_1_bs = QK8_1;
// the main device has a larger memory buffer to hold the results from all GPUs
// nrows_dst == nrows of the matrix that the kernel writes into
const int64_t nrows_dst = id == ctx.device ? ne00 : row_diff;
-
- switch (src0->type) {
+ for (int i = 0; i < src1_ncols; i++)
+ {
+ const size_t src1_ddq_i_offset = i * src1_padded_col_size * q8_1_ts / q8_1_bs;
+ const char* src1_ddq_i_bs = src1_ddq_i + src1_ddq_i_offset;
+ float* dst_dd_i_bs = dst_dd_i + i * dst->ne[0];
+ switch (src0->type) {
case GGML_TYPE_Q4_0:
- mul_mat_vec_q4_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+ mul_mat_vec_q4_0_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
break;
case GGML_TYPE_Q4_1:
- mul_mat_vec_q4_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+ mul_mat_vec_q4_1_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
break;
case GGML_TYPE_Q5_0:
- mul_mat_vec_q5_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+ mul_mat_vec_q5_0_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
break;
case GGML_TYPE_Q5_1:
- mul_mat_vec_q5_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+ mul_mat_vec_q5_1_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
break;
case GGML_TYPE_Q8_0:
- mul_mat_vec_q8_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+ mul_mat_vec_q8_0_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
break;
case GGML_TYPE_Q2_K:
- mul_mat_vec_q2_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+ mul_mat_vec_q2_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
break;
case GGML_TYPE_Q3_K:
- mul_mat_vec_q3_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+ mul_mat_vec_q3_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
break;
case GGML_TYPE_Q4_K:
- mul_mat_vec_q4_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+ mul_mat_vec_q4_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
break;
case GGML_TYPE_Q5_K:
- mul_mat_vec_q5_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+ mul_mat_vec_q5_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
break;
case GGML_TYPE_Q6_K:
- mul_mat_vec_q6_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+ mul_mat_vec_q6_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
break;
case GGML_TYPE_IQ1_S:
- mul_mat_vec_iq1_s_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+ mul_mat_vec_iq1_s_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
break;
case GGML_TYPE_IQ1_M:
- mul_mat_vec_iq1_m_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+ mul_mat_vec_iq1_m_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
break;
case GGML_TYPE_IQ2_XXS:
- mul_mat_vec_iq2_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+ mul_mat_vec_iq2_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
break;
case GGML_TYPE_IQ2_XS:
- mul_mat_vec_iq2_xs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+ mul_mat_vec_iq2_xs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
break;
case GGML_TYPE_IQ2_S:
- mul_mat_vec_iq2_s_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+ mul_mat_vec_iq2_s_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
break;
case GGML_TYPE_IQ3_XXS:
- mul_mat_vec_iq3_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+ mul_mat_vec_iq3_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
break;
case GGML_TYPE_IQ3_S:
- mul_mat_vec_iq3_s_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+ mul_mat_vec_iq3_s_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
break;
case GGML_TYPE_IQ4_NL:
- mul_mat_vec_iq4_nl_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+ mul_mat_vec_iq4_nl_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
break;
case GGML_TYPE_IQ4_XS:
- mul_mat_vec_iq4_xs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
+ mul_mat_vec_iq4_xs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
break;
default:
GGML_ASSERT(false);
break;
+ }
}
-
(void) src1;
(void) dst;
(void) src1_ddf_i;
- (void) src1_ncols;
- (void) src1_padded_row_size;
}
--- /dev/null
+#include "norm.hpp"
+
+static void norm_f32(const float* x, float* dst, const int ncols, const float eps,
+ const sycl::nd_item<3>& item_ct1, sycl::float2* s_sum, int block_size) {
+ const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
+ item_ct1.get_local_id(1);
+ const int tid = item_ct1.get_local_id(2);
+
+ const int nthreads = item_ct1.get_local_range(2);
+ const int nwarps = nthreads / WARP_SIZE;
+ assert(nwarps % WARP_SIZE == 0);
+ sycl::float2 mean_var = sycl::float2(0.f, 0.f);
+
+ for (int col = tid; col < ncols; col += block_size) {
+ const float xi = x[row * ncols + col];
+ mean_var.x() += xi;
+ mean_var.y() += xi * xi;
+ }
+
+ // sum up partial sums
+ mean_var = warp_reduce_sum(mean_var, item_ct1);
+ if (block_size > WARP_SIZE) {
+
+ int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
+ int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
+ if (lane_id == 0) {
+ s_sum[warp_id] = mean_var;
+ }
+ /*
+ DPCT1118:0: SYCL group functions and algorithms must be encountered in
+ converged control flow. You may need to adjust the code.
+ */
+ item_ct1.barrier(sycl::access::fence_space::local_space);
+ mean_var = 0.f;
+ int nreduce = nwarps / WARP_SIZE;
+ for (size_t i = 0; i < nreduce; i += 1)
+ {
+ mean_var += s_sum[lane_id + i * WARP_SIZE];
+ }
+ mean_var = warp_reduce_sum(mean_var, item_ct1);
+ }
+
+ const float mean = mean_var.x() / ncols;
+ const float var = mean_var.y() / ncols - mean * mean;
+ const float inv_std = sycl::rsqrt(var + eps);
+
+ for (int col = tid; col < ncols; col += block_size) {
+ dst[row * ncols + col] = (x[row * ncols + col] - mean) * inv_std;
+ }
+}
+
+static void group_norm_f32(const float* x, float* dst, const int group_size, const int ne_elements, const float eps,
+ const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) {
+ int start = item_ct1.get_group(2) * group_size;
+ int end = start + group_size;
+ const int nthreads = item_ct1.get_local_range(2);
+ const int nwarps = nthreads / WARP_SIZE;
+ assert(nwarps % WARP_SIZE == 0);
+ start += item_ct1.get_local_id(2);
+ int nreduce = nwarps / WARP_SIZE;
+
+ if (end >= ne_elements) {
+ end = ne_elements;
+ }
+
+ float tmp = 0.0f; // partial sum for thread in warp
+
+ for (int j = start; j < end; j += block_size) {
+ tmp += x[j];
+ }
+
+ tmp = warp_reduce_sum(tmp, item_ct1);
+ if (block_size > WARP_SIZE) {
+
+ int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
+ int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
+ if (lane_id == 0) {
+ s_sum[warp_id] = tmp;
+ }
+ /*
+ DPCT1118:1: SYCL group functions and algorithms must be encountered in
+ converged control flow. You may need to adjust the code.
+ */
+ /*
+ DPCT1065:54: Consider replacing sycl::nd_item::barrier() with
+ sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
+ better performance if there is no access to global memory.
+ */
+ item_ct1.barrier();
+ tmp = 0.f;
+ for (size_t i = 0; i < nreduce; i += 1)
+ {
+ tmp += s_sum[lane_id + i * WARP_SIZE];
+ }
+ tmp = warp_reduce_sum(tmp, item_ct1);
+ }
+
+ float mean = tmp / group_size;
+ tmp = 0.0f;
+
+ for (int j = start; j < end; j += block_size) {
+ float xi = x[j] - mean;
+ dst[j] = xi;
+ tmp += xi * xi;
+ }
+
+ tmp = warp_reduce_sum(tmp, item_ct1);
+ if (block_size > WARP_SIZE) {
+
+ int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
+ int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
+ if (lane_id == 0) {
+ s_sum[warp_id] = tmp;
+ }
+ /*
+ DPCT1118:2: SYCL group functions and algorithms must be encountered in
+ converged control flow. You may need to adjust the code.
+ */
+ /*
+ DPCT1065:55: Consider replacing sycl::nd_item::barrier() with
+ sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
+ better performance if there is no access to global memory.
+ */
+ item_ct1.barrier();
+ tmp = 0.f;
+ for (size_t i = 0; i < nreduce; i += 1)
+ {
+ tmp += s_sum[lane_id + i * WARP_SIZE];
+ }
+ tmp = warp_reduce_sum(tmp, item_ct1);
+ }
+
+ float variance = tmp / group_size;
+ float scale = sycl::rsqrt(variance + eps);
+ for (int j = start; j < end; j += block_size) {
+ dst[j] *= scale;
+ }
+}
+
+static void rms_norm_f32(const float* x, float* dst, const int ncols, const float eps,
+ const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) {
+ const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
+ item_ct1.get_local_id(1);
+ const int tid = item_ct1.get_local_id(2);
+ const int nthreads = item_ct1.get_local_range(2);
+ const int nwarps = nthreads / WARP_SIZE;
+ assert(nwarps % WARP_SIZE == 0);
+ float tmp = 0.0f; // partial sum for thread in warp
+
+ for (int col = tid; col < ncols; col += block_size) {
+ const float xi = x[row * ncols + col];
+ tmp += xi * xi;
+ }
+
+ // sum up partial sums
+ tmp = warp_reduce_sum(tmp, item_ct1);
+ if (block_size > WARP_SIZE) {
+
+ int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
+ int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
+ if (lane_id == 0) {
+ s_sum[warp_id] = tmp;
+ }
+ /*
+ DPCT1118:3: SYCL group functions and algorithms must be encountered in
+ converged control flow. You may need to adjust the code.
+ */
+ item_ct1.barrier(sycl::access::fence_space::local_space);
+ int nreduce = nwarps / WARP_SIZE;
+ tmp = 0.f;
+ for (size_t i = 0; i < nreduce; i += 1)
+ {
+ tmp += s_sum[lane_id + i * WARP_SIZE];
+ }
+ tmp = warp_reduce_sum(tmp, item_ct1);
+ }
+
+ const float mean = tmp / ncols;
+ const float scale = sycl::rsqrt(mean + eps);
+
+ for (int col = tid; col < ncols; col += block_size) {
+ dst[row * ncols + col] = scale * x[row * ncols + col];
+ }
+}
+
+static void norm_f32_sycl(const float* x, float* dst, const int ncols,
+ const int nrows, const float eps,
+ queue_ptr stream, int device) {
+ GGML_ASSERT(ncols % WARP_SIZE == 0);
+ if (ncols < 1024) {
+ const sycl::range<3> block_dims(1, 1, WARP_SIZE);
+ stream->submit([&](sycl::handler& cgh) {
+ cgh.parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
+ block_dims),
+ [=](sycl::nd_item<3> item_ct1)
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ norm_f32(x, dst, ncols, eps, item_ct1,
+ nullptr, WARP_SIZE);
+ });
+ });
+ }
+ else {
+ const int work_group_size = ggml_sycl_info().max_work_group_sizes[device];
+ const sycl::range<3> block_dims(1, 1, work_group_size);
+ /*
+ DPCT1049:17: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+ stream->submit([&](sycl::handler& cgh) {
+ sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
+ sycl::range<1>(work_group_size / WARP_SIZE), cgh);
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
+ block_dims),
+ [=](sycl::nd_item<3> item_ct1)
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ norm_f32(x, dst, ncols, eps, item_ct1,
+ s_sum_acc_ct1.get_pointer(), work_group_size);
+ });
+ });
+ }
+}
+
+static void group_norm_f32_sycl(const float* x, float* dst,
+ const int num_groups, const int group_size,
+ const int ne_elements, queue_ptr stream, int device) {
+ static const float eps = 1e-6f;
+ if (group_size < 1024) {
+ const sycl::range<3> block_dims(1, 1, WARP_SIZE);
+ stream->submit([&](sycl::handler& cgh) {
+ const float eps_ct4 = eps;
+ cgh.parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
+ block_dims),
+ [=](sycl::nd_item<3> item_ct1)
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ group_norm_f32(
+ x, dst, group_size, ne_elements, eps_ct4, item_ct1,
+ nullptr, WARP_SIZE);
+ });
+ });
+ }
+ else {
+ const int work_group_size = ggml_sycl_info().max_work_group_sizes[device];
+ const sycl::range<3> block_dims(1, 1, work_group_size);
+ /*
+ DPCT1049:18: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+
+ stream->submit([&](sycl::handler& cgh) {
+ sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(work_group_size / WARP_SIZE),
+ cgh);
+
+ const float eps_ct4 = eps;
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
+ block_dims),
+ [=](sycl::nd_item<3> item_ct1)
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ group_norm_f32(x, dst, group_size, ne_elements,
+ eps_ct4, item_ct1,
+ s_sum_acc_ct1.get_pointer(), work_group_size);
+ });
+ });
+ }
+}
+
+static void rms_norm_f32_sycl(const float* x, float* dst, const int ncols,
+ const int nrows, const float eps,
+ queue_ptr stream, int device) {
+ GGML_ASSERT(ncols % WARP_SIZE == 0);
+ // printf("%s ncols=%d, nrows=%d, WARP_SIZE=%d\n", __func__, ncols, nrows, WARP_SIZE);
+ if (ncols < 1024) {
+ const sycl::range<3> block_dims(1, 1, WARP_SIZE);
+ stream->submit([&](sycl::handler& cgh) {
+ cgh.parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
+ block_dims),
+ [=](sycl::nd_item<3> item_ct1)
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ rms_norm_f32(x, dst, ncols, eps, item_ct1,
+ nullptr, WARP_SIZE);
+ });
+ });
+ }
+ else {
+ const int work_group_size = ggml_sycl_info().max_work_group_sizes[device];
+ const sycl::range<3> block_dims(1, 1, work_group_size);
+ /*
+ DPCT1049:19: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+ stream->submit([&](sycl::handler& cgh) {
+ sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(work_group_size / WARP_SIZE),
+ cgh);
+ cgh.parallel_for(
+ sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
+ block_dims),
+ [=](sycl::nd_item<3> item_ct1)
+ [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ rms_norm_f32(x, dst, ncols, eps, item_ct1,
+ s_sum_acc_ct1.get_pointer(), work_group_size);
+ });
+ });
+ }
+}
+
+void ggml_sycl_op_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0, const ggml_tensor* src1,
+ ggml_tensor* dst, const float* src0_dd,
+ const float* src1_dd, float* dst_dd,
+ const queue_ptr& main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
+
+ const int64_t ne00 = src0->ne[0];
+ const int64_t nrows = ggml_nrows(src0);
+
+ float eps;
+ memcpy(&eps, dst->op_params, sizeof(float));
+
+ norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream, ctx.device);
+
+ (void)src1;
+ (void)dst;
+ (void)src1_dd;
+}
+
+void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
+ const ggml_tensor* src1, ggml_tensor* dst,
+ const float* src0_dd, const float* src1_dd,
+ float* dst_dd,
+ const queue_ptr& main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
+
+ int num_groups = dst->op_params[0];
+ int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
+ group_norm_f32_sycl(src0_dd, dst_dd, num_groups, group_size, src0->ne[0] * src0->ne[1] * src0->ne[2], main_stream, ctx.device);
+
+ (void)src1;
+ (void)dst;
+ (void)src1_dd;
+}
+
+void ggml_sycl_op_rms_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
+ const ggml_tensor* src1, ggml_tensor* dst,
+ const float* src0_dd, const float* src1_dd,
+ float* dst_dd,
+ const queue_ptr& main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
+
+ const int64_t ne00 = src0->ne[0];
+ const int64_t nrows = ggml_nrows(src0);
+
+ float eps;
+ memcpy(&eps, dst->op_params, sizeof(float));
+
+ rms_norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream, ctx.device);
+
+ (void)src1;
+ (void)dst;
+ (void)src1_dd;
+}
--- /dev/null
+//
+// MIT license
+// Copyright (C) 2024 Intel Corporation
+// SPDX-License-Identifier: MIT
+//
+
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+
+#ifndef GGML_SYCL_NORM_HPP
+#define GGML_SYCL_NORM_HPP
+
+#include "common.hpp"
+
+void ggml_sycl_op_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0, const ggml_tensor* src1,
+ ggml_tensor* dst, const float* src0_dd,
+ const float* src1_dd, float* dst_dd,
+ const queue_ptr& main_stream);
+
+void ggml_sycl_op_rms_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
+ const ggml_tensor* src1, ggml_tensor* dst,
+ const float* src0_dd, const float* src1_dd,
+ float* dst_dd,
+ const queue_ptr& main_stream);
+
+void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
+ const ggml_tensor* src1, ggml_tensor* dst,
+ const float* src0_dd, const float* src1_dd,
+ float* dst_dd,
+ const queue_ptr& main_stream);
+
+#endif // GGML_SYCL_NORM_HPP
#define GGML_SYCL_MAX_STREAMS 8
#define GGML_SYCL_MAX_BUFFERS 256
-#define GGML_SYCL_MAX_DEVICES 48
-#define GGML_SYCL_NAME "SYCL"
-#define WARP_SIZE 32
+#define WARP_SIZE GGML_SYCL_WARP_SIZE
#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
#define SYCL_GELU_BLOCK_SIZE 256
#define MUL_MAT_SRC1_COL_STRIDE 128
+#define QK_WARP_SIZE 32
#endif // GGML_SYCL_PRESETS_HPP
--- /dev/null
+#include "rope.hpp"
+
+struct rope_corr_dims {
+ float v[2];
+};
+
+static float rope_yarn_ramp(const float low, const float high, const int i0) {
+ const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low);
+ return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y));
+}
+
+// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
+// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
+static void rope_yarn(
+ float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
+ float * cos_theta, float * sin_theta) {
+ // Get n-d rotational scaling corrected for extrapolation
+ float theta_interp = freq_scale * theta_extrap;
+ float theta = theta_interp;
+ if (ext_factor != 0.0f) {
+ float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
+ theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
+
+ // Get n-d magnitude scaling corrected for interpolation
+ mscale *= 1.0f + 0.1f * sycl::log(1.0f / freq_scale);
+ }
+ *cos_theta = sycl::cos(theta) * mscale;
+ *sin_theta = sycl::sin(theta) * mscale;
+}
+
+template<typename T, bool has_ff>
+static void rope_norm(
+ const T * x, T * dst, int ne0, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
+ float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors,
+ const sycl::nd_item<3> &item_ct1) {
+ const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+ item_ct1.get_local_id(1));
+
+ if (i0 >= ne0) {
+ return;
+ }
+
+ const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2);
+
+ if (i0 >= n_dims) {
+ const int i = row*ne0 + i0;
+
+ dst[i + 0] = x[i + 0];
+ dst[i + 1] = x[i + 1];
+
+ return;
+ }
+
+ const int i = row*ne0 + i0;
+ const int i2 = row/p_delta_rows;
+
+ const float theta_base = pos[i2]*powf(theta_scale, i0/2.0f);
+
+ const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
+
+ float cos_theta;
+ float sin_theta;
+
+ rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
+
+ const float x0 = x[i + 0];
+ const float x1 = x[i + 1];
+
+ dst[i + 0] = x0*cos_theta - x1*sin_theta;
+ dst[i + 1] = x0*sin_theta + x1*cos_theta;
+}
+
+template<typename T, bool has_ff>
+static void rope_neox(
+ const T * x, T * dst, int ne0, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
+ float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors,
+ const sycl::nd_item<3> &item_ct1) {
+ const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
+ item_ct1.get_local_id(1));
+
+ if (i0 >= ne0) {
+ return;
+ }
+
+ const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
+ item_ct1.get_local_id(2);
+
+ if (i0 >= n_dims) {
+ const int i = row*ne0 + i0;
+
+ dst[i + 0] = x[i + 0];
+ dst[i + 1] = x[i + 1];
+
+ return;
+ }
+
+ const int i = row*ne0 + i0/2;
+ const int i2 = row/p_delta_rows;
+
+ const float theta_base = pos[i2]*powf(theta_scale, i0/2.0f);
+
+ const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
+
+ float cos_theta;
+ float sin_theta;
+
+ rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
+
+ const float x0 = x[i + 0];
+ const float x1 = x[i + n_dims/2];
+
+ dst[i + 0] = x0*cos_theta - x1*sin_theta;
+ dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
+}
+
+template <typename T>
+static void rope_norm_sycl(
+ const T *x, T *dst, int ne0, int n_dims, int nr, const int32_t *pos, float freq_scale, int p_delta_rows,
+ float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) {
+ GGML_ASSERT(ne0 % 2 == 0);
+ const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
+ const int num_blocks_x = (ne0 + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
+ const sycl::range<3> block_nums(1, num_blocks_x, nr);
+
+ const float theta_scale = powf(freq_base, -2.0f/n_dims);
+
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ if (freq_factors == nullptr) {
+ /*
+ DPCT1049:40: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+ stream->parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ rope_norm<T, false>(x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows,
+ ext_factor, attn_factor, corr_dims, theta_scale, freq_factors,
+ item_ct1);
+ });
+ } else {
+ /*
+ DPCT1049:41: The work-group size passed to the SYCL kernel may exceed
+ the limit. To get the device limit, query
+ info::device::max_work_group_size. Adjust the work-group size if needed.
+ */
+ stream->parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ rope_norm<T, true>(x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows,
+ ext_factor, attn_factor, corr_dims, theta_scale, freq_factors,
+ item_ct1);
+ });
+ }
+}
+
+template <typename T>
+static void rope_neox_sycl(
+ const T *x, T *dst, int ne0, int n_dims, int nr, const int32_t *pos, float freq_scale, int p_delta_rows,
+ float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) {
+ GGML_ASSERT(ne0 % 2 == 0);
+ const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
+ const int num_blocks_x = (ne0 + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
+ const sycl::range<3> block_nums(1, num_blocks_x, nr);
+
+ const float theta_scale = powf(freq_base, -2.0f/n_dims);
+
+ dpct::has_capability_or_fail(stream->get_device(),
+ {sycl::aspect::fp16});
+
+ if (freq_factors == nullptr) {
+ stream->parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ rope_neox<T, false>(x, dst, ne0, n_dims, pos, freq_scale,
+ p_delta_rows, ext_factor, attn_factor,
+ corr_dims, theta_scale, freq_factors,
+ item_ct1);
+ });
+ } else {
+ stream->parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) {
+ rope_neox<T, true>(x, dst, ne0, n_dims, pos, freq_scale,
+ p_delta_rows, ext_factor, attn_factor,
+ corr_dims, theta_scale, freq_factors,
+ item_ct1);
+ });
+ }
+}
+
+void ggml_sycl_op_rope(
+ ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
+ const float *src0_dd, const float *src1_dd, float *dst_dd, const queue_ptr &main_stream) {
+ const ggml_tensor * src2 = dst->src[2];
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
+ GGML_ASSERT(src0->type == dst->type);
+
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+ const int64_t nr = ggml_nrows(src0);
+
+ //const int n_past = ((int32_t *) dst->op_params)[0];
+ const int n_dims = ((int32_t *) dst->op_params)[1];
+ const int mode = ((int32_t *) dst->op_params)[2];
+ //const int n_ctx = ((int32_t *) dst->op_params)[3];
+ const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
+
+ // RoPE alteration for extended context
+ float freq_base;
+ float freq_scale;
+ float ext_factor;
+ float attn_factor;
+ float beta_fast;
+ float beta_slow;
+
+ memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
+ memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
+ memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
+ memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
+ memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
+ memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
+
+ const bool is_neox = mode & 2;
+
+ const int32_t * pos = (const int32_t *) src1_dd;
+
+ const float * freq_factors = nullptr;
+ if (src2 != nullptr) {
+ freq_factors = (const float *) src2->data;
+ }
+
+ rope_corr_dims corr_dims;
+ ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims.v);
+
+ // compute
+ if (is_neox) {
+ if (src0->type == GGML_TYPE_F32) {
+ rope_neox_sycl(
+ (const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
+ attn_factor, corr_dims, freq_factors, main_stream
+ );
+ } else if (src0->type == GGML_TYPE_F16) {
+ rope_neox_sycl(
+ (const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
+ attn_factor, corr_dims, freq_factors, main_stream
+ );
+ } else {
+ GGML_ASSERT(false);
+ }
+ } else {
+ if (src0->type == GGML_TYPE_F32) {
+ rope_norm_sycl(
+ (const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
+ attn_factor, corr_dims, freq_factors, main_stream
+ );
+ } else if (src0->type == GGML_TYPE_F16) {
+ rope_norm_sycl(
+ (const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
+ attn_factor, corr_dims, freq_factors, main_stream
+ );
+ } else {
+ GGML_ASSERT(false);
+ }
+ }
+
+ (void) src1;
+ (void) dst;
+ (void) src1_dd;
+}
--- /dev/null
+//
+// MIT license
+// Copyright (C) 2024 Intel Corporation
+// SPDX-License-Identifier: MIT
+//
+
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+
+#ifndef GGML_SYCL_ROPE_HPP
+#define GGML_SYCL_ROPE_HPP
+
+#include "common.hpp"
+
+void ggml_sycl_op_rope(
+ ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
+ const float *src0_dd, const float *src1_dd, float *dst_dd, const queue_ptr &main_stream);
+
+#endif // GGML_SYCL_ROPE_HPP
--- /dev/null
+#include "norm.hpp"
+
+template <bool vals_smem, int ncols_template, int block_size_template>
+static void soft_max_f32(const float * x, const float * mask, float * dst, const int ncols_par,
+ const int nrows_y, const float scale, const float max_bias, const float m0,
+ const float m1, uint32_t n_head_log2, const sycl::nd_item<3> &item_ct1, float *buf) {
+ const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
+
+ const int tid = item_ct1.get_local_id(2);
+ const int rowx = item_ct1.get_group(2);
+ const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension
+
+ const int block_size = block_size_template == 0 ? item_ct1.get_local_range(2) : block_size_template;
+
+ const int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
+ const int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
+ const int nthreads = block_size;
+ const int nwarps = nthreads / WARP_SIZE;
+ int nreduce = nwarps / WARP_SIZE;
+ float slope = 1.0f;
+
+ // ALiBi
+ if (max_bias > 0.0f) {
+ const uint32_t h = rowx/nrows_y; // head index
+
+ const float base = h < n_head_log2 ? m0 : m1;
+ const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
+
+ slope = sycl::pow(base, float(exp));
+ }
+
+ float *vals = vals_smem ? buf + std::max(nwarps, WARP_SIZE) : dst + rowx * ncols;
+ float max_val = -INFINITY;
+
+ for (int col0 = 0; col0 < ncols; col0 += block_size) {
+ const int col = col0 + tid;
+
+ if (ncols_template == 0 && col >= ncols) {
+ break;
+ }
+
+ const int ix = rowx*ncols + col;
+ const int iy = rowy*ncols + col;
+
+ const float val = x[ix]*scale + (mask ? slope*mask[iy] : 0.0f);
+
+ vals[col] = val;
+ max_val = sycl::max(max_val, val);
+ }
+
+ // find the max value in the block
+ max_val = warp_reduce_max(max_val, item_ct1);
+ if (block_size > WARP_SIZE) {
+ if (warp_id == 0) {
+ buf[lane_id] = -INFINITY;
+ for (size_t i = 1; i < nreduce; i += 1)
+ buf[lane_id + i * WARP_SIZE] = -INFINITY;
+ }
+ item_ct1.barrier(sycl::access::fence_space::local_space);
+
+ if (lane_id == 0) {
+ buf[warp_id] = max_val;
+ }
+ item_ct1.barrier(sycl::access::fence_space::local_space);
+ max_val = buf[lane_id];
+ for (size_t i = 1; i < nreduce; i += 1)
+ {
+ max_val = std::max(max_val, buf[lane_id + i * WARP_SIZE]);
+ }
+ max_val = warp_reduce_max(max_val, item_ct1);
+ }
+
+ float tmp = 0.f;
+#pragma unroll
+ for (int col0 = 0; col0 < ncols; col0 += block_size) {
+ const int col = col0 + tid;
+ if (ncols_template == 0 && col >= ncols) {
+ break;
+ }
+
+ const float val = sycl::native::exp(vals[col] - max_val);
+ tmp += val;
+ vals[col] = val;
+ }
+
+ // find the sum of exps in the block
+ tmp = warp_reduce_sum(tmp, item_ct1);
+ if (block_size > WARP_SIZE) {
+ item_ct1.barrier(sycl::access::fence_space::local_space);
+ if (warp_id == 0) {
+ buf[lane_id] = 0.f;
+ for (size_t i = 1; i < nreduce; i += 1)
+ buf[lane_id + i * WARP_SIZE] = 0.f;
+ }
+ item_ct1.barrier(sycl::access::fence_space::local_space);
+
+ if (lane_id == 0) {
+ buf[warp_id] = tmp;
+ }
+ item_ct1.barrier(sycl::access::fence_space::local_space);
+
+ tmp = buf[lane_id];
+ for (size_t i = 1; i < nreduce; i += 1)
+ {
+ tmp += buf[lane_id + i * WARP_SIZE];
+ }
+ tmp = warp_reduce_sum(tmp, item_ct1);
+ }
+
+ const float inv_sum = 1.f / tmp;
+
+#pragma unroll
+ for (int col0 = 0; col0 < ncols; col0 += block_size) {
+ const int col = col0 + tid;
+
+ if (ncols_template == 0 && col >= ncols) {
+ return;
+ }
+
+ const int idst = rowx*ncols + col;
+ dst[idst] = vals[col] * inv_sum;
+ }
+}
+
+template <bool vals_smem, int ncols_template, int block_size_template>
+static void soft_max_f32_submitter(const float * x, const float * mask, float * dst, const int ncols_par,
+ const int nrows_y, const float scale, const float max_bias, const float m0,
+ const float m1, uint32_t n_head_log2, sycl::range<3> block_nums, sycl::range<3> block_dims,
+ const size_t n_local_scratch, queue_ptr stream) {
+ stream->submit([&](sycl::handler &cgh) {
+ sycl::local_accessor<float, 1> local_buf_acc(n_local_scratch, cgh);
+
+ cgh.parallel_for(
+ sycl::nd_range<3>(block_nums * block_dims, block_dims),
+ [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] {
+ soft_max_f32<vals_smem, ncols_template, block_size_template>(x, mask, dst, ncols_par,
+ nrows_y, scale, max_bias, m0,
+ m1, n_head_log2, item_ct1,
+ local_buf_acc.get_pointer());
+ });
+ });
+}
+
+static void soft_max_f32_sycl(const float * x, const float * mask,
+ float * dst, const int ncols_x, const int nrows_x,
+ const int nrows_y, const float scale, const float max_bias,
+ queue_ptr stream, int device) {
+ int nth = WARP_SIZE;
+ int max_block_size = ggml_sycl_info().max_work_group_sizes[device];
+ while (nth < ncols_x && nth < max_block_size) nth *= 2;
+ if (nth>max_block_size) nth = max_block_size;
+
+ const sycl::range<3> block_dims(1, 1, nth);
+ const sycl::range<3> block_nums(1, 1, nrows_x);
+ const size_t n_local_scratch = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE);
+
+ const uint32_t n_head_kv = nrows_x/nrows_y;
+ const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
+
+ const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
+ const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
+
+ const size_t local_mem_size = stream->get_device().get_info<sycl::info::device::local_mem_size>();
+ if (n_local_scratch*sizeof(float) < local_mem_size) {
+ if (ncols_x > max_block_size) {
+ soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, n_local_scratch, stream);
+ return;
+ }
+ switch (ncols_x) {
+ case 32:
+ soft_max_f32_submitter<true, 32, 32>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, n_local_scratch, stream);
+ break;
+ case 64:
+ soft_max_f32_submitter<true, 64, 64>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, n_local_scratch, stream);
+ break;
+ case 128:
+ soft_max_f32_submitter<true, 128, 128>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, n_local_scratch, stream);
+ break;
+ case 256:
+ soft_max_f32_submitter<true, 256, 256>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, n_local_scratch, stream);
+ break;
+ case 512:
+ soft_max_f32_submitter<true, 512, 512>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, n_local_scratch, stream);
+ break;
+ case 1024:
+ soft_max_f32_submitter<true, 1024, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, n_local_scratch, stream);
+ break;
+ case 2048:
+ soft_max_f32_submitter<true, 2048, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, n_local_scratch, stream);
+ break;
+ case 4096:
+ soft_max_f32_submitter<true, 4096, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, n_local_scratch, stream);
+ break;
+ default:
+ soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, n_local_scratch, stream);
+ break;
+ }
+ } else {
+ soft_max_f32_submitter<false, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
+ max_bias, m0, m1, n_head_log2, block_nums,
+ block_dims, WARP_SIZE, stream);
+ }
+}
+
+void ggml_sycl_op_soft_max(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
+ const ggml_tensor *src1, ggml_tensor *dst,
+ const float *src0_dd, const float *src1_dd,
+ float *dst_dd,
+ const queue_ptr &main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+#pragma message("TODO: add ggml_sycl_op_soft_max() F16 src1 support")
+#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021")
+ GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
+
+ const int64_t ne00 = src0->ne[0];
+ const int64_t nrows_x = ggml_nrows(src0);
+ const int64_t nrows_y = src0->ne[1];
+
+ float scale = 1.0f;
+ float max_bias = 0.0f;
+
+ memcpy(&scale, dst->op_params + 0, sizeof(float));
+ memcpy(&max_bias, dst->op_params + 1, sizeof(float));
+
+ soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00,
+ nrows_x, nrows_y, scale, max_bias, main_stream, ctx.device);
+}
--- /dev/null
+//
+// MIT license
+// Copyright (C) 2024 Intel Corporation
+// SPDX-License-Identifier: MIT
+//
+
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+
+#ifndef GGML_SYCL_SOFTMAX_HPP
+#define GGML_SYCL_SOFTMAX_HPP
+
+#include "common.hpp"
+
+void ggml_sycl_op_soft_max(ggml_backend_sycl_context &ctx, const ggml_tensor *src0,
+ const ggml_tensor *src1, ggml_tensor *dst,
+ const float *src0_dd, const float *src1_dd,
+ float *dst_dd,
+ const queue_ptr &main_stream);
+
+#endif // GGML_SYCL_SOFTMAX_HPP
#if QK_K == 256
const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq;
-#if QR2_XXS == 8
const int ib32 = iqs;
const uint16_t * q2 = bq2->qs + 4*ib32;
const uint8_t * aux8 = (const uint8_t *)q2;
}
const float d = (float)bq2->d * (0.5f + aux32) * bq8_1[ib32].ds[0] * 0.25f;
return d * sumi;
-#else
- // iqs is 0...15
- const int ib32 = iqs/2;
- const int il = iqs%2;
- const uint16_t * q2 = bq2->qs + 4*ib32;
- const uint8_t * aux8 = (const uint8_t *)q2;
- const uint8_t * grid1 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+0]);
- const uint8_t * grid2 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+1]);
- const uint32_t aux32 = q2[2] | (q2[3] << 16);
- const float d = (float)bq2->d * (0.5f + (aux32 >> 28)) * bq8_1[ib32].ds[0] * 0.25f;
- const uint8_t signs1 = ksigns_iq2xs[(aux32 >> 14*il) & 127];
- const uint8_t signs2 = ksigns_iq2xs[(aux32 >> (14*il + 7)) & 127];
- const int8_t * q8 = bq8_1[ib32].qs + 16*il;
- int sumi1 = 0, sumi2 = 0;
- for (int j = 0; j < 8; ++j) {
- sumi1 += q8[j+0] * grid1[j] * (signs1 & kmask_iq2xs[j] ? -1 : 1);
- sumi2 += q8[j+8] * grid2[j] * (signs2 & kmask_iq2xs[j] ? -1 : 1);
- }
- return d * (sumi1 + sumi2);
-#endif
#else
assert(false);
return 0.f;