super().set_vocab()
+@ModelBase.register("RND1")
+class RND1Model(Qwen2MoeModel):
+ model_arch = gguf.MODEL_ARCH.RND1
+
+ def set_gguf_parameters(self):
+ super().set_gguf_parameters()
+
+ # RND1 specific parameters
+ # RND1 uses bidirectional attention
+ self.gguf_writer.add_causal_attention(False)
+
+ if (mask_token_id := self.hparams.get("mask_token_id")) is not None:
+ self.gguf_writer.add_mask_token_id(mask_token_id)
+
+
@ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration")
class Qwen3VLVisionModel(MmprojModel):
def __init__(self, *args, **kwargs):
- https://github.com/ggml-org/llama.cpp/pull/14644
- https://github.com/ggml-org/llama.cpp/pull/14771
+## Parameters
+The diffusion CLI supports various parameters to control the generation process:
-Example of using Dream architechture: `llama-diffusion-cli -m dream7b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-eps 0.001 --diffusion-algorithm 3 --diffusion-steps 256 --diffusion-visual`
+### Core Diffusion Parameters
+- `--diffusion-steps`: Number of diffusion steps (default: 256)
+- `--diffusion-algorithm`: Algorithm for token selection
+ - `0`: ORIGIN - Token will be generated in a purely random order from https://arxiv.org/abs/2107.03006.
+ - `1`: ENTROPY_BASED - Entropy-based selection
+ - `2`: MARGIN_BASED - Margin-based selection
+ - `3`: RANDOM - Random selection
+ - `4`: CONFIDENCE_BASED - Confidence-based selection (default)
+ - More documentation here https://github.com/DreamLM/Dream
+- `--diffusion-visual`: Enable live visualization during generation
-Example of using LLaDA architechture: `llama-diffusion-cli -m llada-8b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-block-length 32 --diffusion-steps 256 --diffusion-visual`
+### Scheduling Parameters
+Choose one of the following scheduling methods:
+**Timestep-based scheduling:**
+- `--diffusion-eps`: Epsilon value for timestep scheduling (e.g., 0.001)
+
+**Block-based scheduling:**
+- `--diffusion-block-length`: Block size for block-based scheduling (e.g., 32)
+
+### Sampling Parameters
+- `--temp`: Temperature for sampling (0.0 = greedy/deterministic, higher = more random)
+- `--top-k`: Top-k filtering for sampling
+- `--top-p`: Top-p (nucleus) filtering for sampling
+- `--seed`: Random seed for reproducibility
+
+### Model Parameters
+- `-m`: Path to the GGUF model file
+- `-p`: Input prompt text
+- `-ub`: Maximum sequence length (ubatch size)
+- `-c`: Context size
+- `-b`: Batch size
+
+### Examples
+#### Dream architechture:
+```
+llama-diffusion-cli -m dream7b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-eps 0.001 --diffusion-algorithm 3 --diffusion-steps 256 --diffusion-visual
+```
+
+#### LLaDA architechture:
+```
+llama-diffusion-cli -m llada-8b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-block-length 32 --diffusion-steps 256 --diffusion-visual
+```
+
+#### RND1 architecture:
+```
+llama-diffusion-cli -m RND1-Base-0910.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-algorithm 1 --diffusion-steps 256 --diffusion-visual --temp 0.5 --diffusion-eps 0.001
+```
APERTUS = auto()
COGVLM = auto()
MINIMAXM2 = auto()
+ RND1 = auto()
PANGU_EMBED = auto()
MODEL_ARCH.APERTUS: "apertus",
MODEL_ARCH.MINIMAXM2: "minimax-m2",
MODEL_ARCH.COGVLM: "cogvlm",
+ MODEL_ARCH.RND1: "rnd1",
MODEL_ARCH.PANGU_EMBED: "pangu-embedded",
}
MODEL_TENSOR.VISEXP_UP,
MODEL_TENSOR.VISEXP_DOWN,
],
+ MODEL_ARCH.RND1: [
+ MODEL_TENSOR.TOKEN_EMBD,
+ MODEL_TENSOR.OUTPUT_NORM,
+ MODEL_TENSOR.OUTPUT,
+ MODEL_TENSOR.ATTN_NORM,
+ MODEL_TENSOR.ATTN_Q,
+ MODEL_TENSOR.ATTN_Q_NORM,
+ MODEL_TENSOR.ATTN_K,
+ MODEL_TENSOR.ATTN_K_NORM,
+ MODEL_TENSOR.ATTN_V,
+ MODEL_TENSOR.ATTN_OUT,
+ MODEL_TENSOR.FFN_NORM,
+ MODEL_TENSOR.FFN_GATE_INP,
+ MODEL_TENSOR.FFN_GATE_EXP,
+ MODEL_TENSOR.FFN_DOWN_EXP,
+ MODEL_TENSOR.FFN_UP_EXP,
+ ],
MODEL_ARCH.PANGU_EMBED: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
models/qwen3vl-moe.cpp
models/qwen3moe.cpp
models/refact.cpp
+ models/rnd1.cpp
models/rwkv6-base.cpp
models/rwkv6.cpp
models/rwkv6qwen2.cpp
{ LLM_ARCH_APERTUS, "apertus" },
{ LLM_ARCH_MINIMAX_M2, "minimax-m2" },
{ LLM_ARCH_COGVLM, "cogvlm" },
+ { LLM_ARCH_RND1, "rnd1" },
{ LLM_ARCH_PANGU_EMBED, "pangu-embedded" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
{ LLM_TENSOR_VISEXP_FFN_UP, "blk.%d.vis_up" },
},
},
+ {
+ LLM_ARCH_RND1,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
+ { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
+ { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
+ { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
+ },
+ },
{
LLM_ARCH_UNKNOWN,
{
case LLM_ARCH_DREAM:
case LLM_ARCH_LLADA:
case LLM_ARCH_LLADA_MOE:
+ case LLM_ARCH_RND1:
return true;
default:
return false;
LLM_ARCH_APERTUS,
LLM_ARCH_MINIMAX_M2,
LLM_ARCH_COGVLM,
+ LLM_ARCH_RND1,
LLM_ARCH_PANGU_EMBED,
LLM_ARCH_UNKNOWN,
};
default: type = LLM_TYPE_UNKNOWN;
}
} break;
+ case LLM_ARCH_RND1:
+ {
+ ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
+
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+ switch (hparams.n_layer) {
+ case 48: type = LLM_TYPE_30B_A3B; break;
+ default: type = LLM_TYPE_UNKNOWN;
+ }
+ // Set non-causal attention for diffusion models
+ hparams.causal_attn = false;
+ } break;
case LLM_ARCH_QWEN2MOE:
{
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
} break;
case LLM_ARCH_QWEN3MOE:
case LLM_ARCH_QWEN3VLMOE:
+ case LLM_ARCH_RND1:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
}
- if (arch == LLM_ARCH_QWEN3MOE || arch == LLM_ARCH_OPENAI_MOE || arch == LLM_ARCH_QWEN3VLMOE) {
+ if (arch == LLM_ARCH_QWEN3MOE || arch == LLM_ARCH_OPENAI_MOE || arch == LLM_ARCH_QWEN3VLMOE || arch == LLM_ARCH_RND1) {
LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
}
case LLM_ARCH_DREAM:
case LLM_ARCH_LLADA:
case LLM_ARCH_LLADA_MOE:
+ case LLM_ARCH_RND1:
{
res = nullptr;
} break;
llm = std::make_unique<llm_build_llada_moe>(*this, params);
}
break;
+ case LLM_ARCH_RND1:
+ {
+ llm = std::make_unique<llm_build_rnd1>(*this, params);
+ }
+ break;
case LLM_ARCH_QWEN2VL:
{
llm = std::make_unique<llm_build_qwen2vl>(*this, params);
case LLM_ARCH_QWEN3:
case LLM_ARCH_QWEN3MOE:
case LLM_ARCH_LLADA_MOE:
+ case LLM_ARCH_RND1:
case LLM_ARCH_OLMO2:
case LLM_ARCH_OLMOE:
case LLM_ARCH_PHI2:
llm_build_refact(const llama_model & model, const llm_graph_params & params);
};
+struct llm_build_rnd1 : public llm_graph_context {
+ llm_build_rnd1(const llama_model & model, const llm_graph_params & params);
+};
+
struct llm_build_rwkv6 : public llm_build_rwkv6_base {
llm_build_rwkv6(const llama_model & model, const llm_graph_params & params);
};
--- /dev/null
+#include "models.h"
+
+// RND1 is a Qwen3Moe AR model converted to diffusion model.
+llm_build_rnd1::llm_build_rnd1(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ ggml_tensor * cur;
+ ggml_tensor * inpL;
+
+ inpL = build_inp_embd(model.tok_embd);
+
+ // inp_pos - contains the positions
+ ggml_tensor * inp_pos = build_inp_pos();
+
+ // Non-causal attention for diffusion
+ auto * inp_attn = build_attn_inp_no_cache();
+
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
+
+ for (int il = 0; il < n_layer; ++il) {
+ ggml_tensor * inpSA = inpL;
+
+ // norm
+ cur = build_norm(inpL,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, il);
+ cb(cur, "attn_norm", il);
+
+ // self_attention
+ {
+ // compute Q and K and RoPE them
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
+
+ Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
+ cb(Qcur, "Qcur_normed", il);
+
+ Qcur = ggml_rope_ext(
+ ctx0, Qcur, inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+
+ Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
+ cb(Kcur, "Kcur_normed", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, Kcur, inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+
+ cb(Qcur, "Qcur", il);
+ cb(Kcur, "Kcur", il);
+ cb(Vcur, "Vcur", il);
+
+ cur = build_attn(inp_attn,
+ model.layers[il].wo, model.layers[il].bo,
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
+ }
+ if (il == n_layer - 1 && inp_out_ids) {
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // MoE branch
+ cur = build_norm(ffn_inp,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, il);
+ cb(cur, "ffn_norm", il);
+
+ ggml_tensor * moe_out =
+ build_moe_ffn(cur,
+ model.layers[il].ffn_gate_inp,
+ model.layers[il].ffn_up_exps,
+ model.layers[il].ffn_gate_exps,
+ model.layers[il].ffn_down_exps,
+ nullptr,
+ n_expert, n_expert_used,
+ LLM_FFN_SILU, true,
+ false, 0.0,
+ LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
+ il);
+ cb(moe_out, "ffn_moe_out", il);
+ cur = moe_out;
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+
+ cur = build_cvec(cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+ cur = inpL;
+
+ cur = build_norm(cur,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, -1);
+
+ cb(cur, "result_norm", -1);
+ res->t_embd = cur;
+
+ // lm_head
+ cur = build_lora_mm(model.output, cur);
+
+ cb(cur, "result_output", -1);
+ res->t_logits = cur;
+
+ ggml_build_forward_expand(gf, cur);
+}