]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
convert : update Falcon script for new HF config (#3448)
authorcebtenzzre <redacted>
Thu, 5 Oct 2023 19:00:34 +0000 (15:00 -0400)
committerGitHub <redacted>
Thu, 5 Oct 2023 19:00:34 +0000 (15:00 -0400)
Also adds Falcon-180B support.
Closes #3049

Co-authored-by: jb <redacted>
convert-falcon-hf-to-gguf.py

index cb79586d641369bca13b34dba4aa9c06d7d386d4..9252e1c46a78c16aa1fc381dbd0031d9ec469a09 100755 (executable)
@@ -4,6 +4,7 @@
 from __future__ import annotations
 
 import argparse
+import contextlib
 import json
 import os
 import struct
@@ -20,10 +21,10 @@ if 'NO_LOCAL_GGUF' not in os.environ:
 import gguf
 
 
-def count_model_parts(dir_model: Path) -> int:
+def count_model_parts(dir_model: Path, prefix: str) -> int:
     num_parts = 0
     for filename in os.listdir(dir_model):
-        if filename.startswith("pytorch_model-"):
+        if filename.startswith(prefix):
             num_parts += 1
 
     if num_parts > 0:
@@ -77,20 +78,26 @@ print("gguf: loading model "+dir_model.name)
 with open(dir_model / "config.json", "r", encoding="utf-8") as f:
     hparams = json.load(f)
 
-if hparams["architectures"][0] != "RWForCausalLM":
+if hparams["architectures"][0] != "FalconForCausalLM":
     print("Model architecture not supported: " + hparams["architectures"][0])
 
     sys.exit(1)
 
 # get number of model parts
-num_parts = count_model_parts(dir_model)
+num_parts = count_model_parts(dir_model, "model-00")
+if num_parts:
+    is_safetensors = True
+    from safetensors import safe_open
+else:
+    is_safetensors = False
+    num_parts = count_model_parts(dir_model, "pytorch_model-")
 
 ARCH=gguf.MODEL_ARCH.FALCON
 gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
 
 print("gguf: get model metadata")
 
-block_count = hparams["n_layer"]
+block_count = hparams["num_hidden_layers"]
 
 gguf_writer.add_name("Falcon")
 gguf_writer.add_context_length(2048) # not in config.json
@@ -98,9 +105,9 @@ gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
 gguf_writer.add_embedding_length(hparams["hidden_size"])
 gguf_writer.add_feed_forward_length(4 * hparams["hidden_size"])
 gguf_writer.add_block_count(block_count)
-gguf_writer.add_head_count(hparams["n_head"])
-if "n_head_kv" in hparams:
-    gguf_writer.add_head_count_kv(hparams["n_head_kv"])
+gguf_writer.add_head_count(hparams["num_attention_heads"])
+if "num_kv_heads" in hparams:
+    gguf_writer.add_head_count_kv(hparams["num_kv_heads"])
 else:
     gguf_writer.add_head_count_kv(1)
 gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
@@ -146,8 +153,8 @@ special_vocab.add_to_gguf(gguf_writer)
 tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
 
 # params for qkv transform
-n_head    = hparams["n_head"]
-n_head_kv = hparams["n_head_kv"] if "n_head_kv" in hparams else 1
+n_head    = hparams["num_attention_heads"]
+n_head_kv = hparams["num_kv_heads"] if "num_kv_heads" in hparams else 1
 
 head_dim = hparams["hidden_size"] // n_head
 
@@ -156,6 +163,10 @@ print("gguf: get tensor metadata")
 
 if num_parts == 0:
     part_names = iter(("pytorch_model.bin",))
+elif is_safetensors:
+    part_names = (
+        f"model-{n:05}-of-{num_parts:05}.safetensors" for n in range(1, num_parts + 1)
+    )
 else:
     part_names = (
         f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
@@ -165,60 +176,64 @@ for part_name in part_names:
     if args.vocab_only:
         break
     print("gguf: loading model part '" + part_name + "'")
-    model_part = torch.load(dir_model / part_name, map_location="cpu")
-
-    for name in model_part.keys():
-        data = model_part[name]
-
-        old_dtype = data.dtype
-
-        # convert any unsupported data types to float32
-        if data.dtype != torch.float16 and data.dtype != torch.float32:
-            data = data.to(torch.float32)
-
-        # QKV tensor transform
-        # The original query_key_value tensor contains n_head_kv "kv groups",
-        # each consisting of n_head/n_head_kv query weights followed by one key
-        # and one value weight (shared by all query heads in the kv group).
-        # This layout makes it a big pain to work with in GGML.
-        # So we rearrange them here,, so that we have n_head query weights
-        # followed by n_head_kv key weights followed by n_head_kv value weights,
-        # in contiguous fashion.
-        # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
-
-        if "query_key_value" in name:
-            qkv = data.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
-            q = qkv[:, :-2 ].reshape(n_head * head_dim, head_dim * n_head)
-            k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
-            v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
-            data = torch.cat((q,k,v)).reshape_as(data)
-
-        data = data.squeeze().numpy()
-
-        # map tensor names
-        new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
-        if new_name is None:
-            print("Can not map tensor '" + name + "'")
-            sys.exit()
-
-        n_dims = len(data.shape)
-        data_dtype = data.dtype
-
-        # if f32 desired, convert any float16 to float32
-        if ftype == 0 and data_dtype == np.float16:
-            data = data.astype(np.float32)
-
-        # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
-        if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
-            data = data.astype(np.float32)
-
-        # if f16 desired, convert any float32 2-dim weight tensors to float16
-        if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
-            data = data.astype(np.float16)
-
-        print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
-
-        gguf_writer.add_tensor(new_name, data)
+    if is_safetensors:
+        ctx = safe_open(dir_model / part_name, framework="pt", device="cpu")
+    else:
+        ctx = contextlib.nullcontext(torch.load(dir_model / part_name, map_location="cpu"))
+
+    with ctx as model_part:
+        for name in model_part.keys():
+            data = model_part.get_tensor(name) if is_safetensors else model_part[name]
+
+            old_dtype = data.dtype
+
+            # convert any unsupported data types to float32
+            if data.dtype != torch.float16 and data.dtype != torch.float32:
+                data = data.to(torch.float32)
+
+            # QKV tensor transform
+            # The original query_key_value tensor contains n_head_kv "kv groups",
+            # each consisting of n_head/n_head_kv query weights followed by one key
+            # and one value weight (shared by all query heads in the kv group).
+            # This layout makes it a big pain to work with in GGML.
+            # So we rearrange them here,, so that we have n_head query weights
+            # followed by n_head_kv key weights followed by n_head_kv value weights,
+            # in contiguous fashion.
+            # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
+
+            if "query_key_value" in name:
+                qkv = data.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
+                q = qkv[:, :-2 ].reshape(n_head * head_dim, head_dim * n_head)
+                k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
+                v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
+                data = torch.cat((q,k,v)).reshape_as(data)
+
+            data = data.squeeze().numpy()
+
+            # map tensor names
+            new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
+            if new_name is None:
+                print("Can not map tensor '" + name + "'")
+                sys.exit()
+
+            n_dims = len(data.shape)
+            data_dtype = data.dtype
+
+            # if f32 desired, convert any float16 to float32
+            if ftype == 0 and data_dtype == np.float16:
+                data = data.astype(np.float32)
+
+            # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
+            if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
+                data = data.astype(np.float32)
+
+            # if f16 desired, convert any float32 2-dim weight tensors to float16
+            if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
+                data = data.astype(np.float16)
+
+            print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
+
+            gguf_writer.add_tensor(new_name, data)
 
 
 print("gguf: write header")