}
ggml_cgraph * build_minicpmv() {
- const int batch_size = 1;
-
GGML_ASSERT(model.class_embedding == nullptr);
- const int n_pos = n_patches;
+ const int n_pos = n_patches;
+ const int n_embd_proj = clip_n_mmproj_embd(ctx);
// position embeddings for the projector (not for ViT)
- int n_output_dim = clip_n_mmproj_embd(ctx);
- ggml_tensor * pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_output_dim, n_pos, batch_size);
- ggml_set_name(pos_embed, "pos_embed");
- ggml_set_input(pos_embed);
+ // see: https://huggingface.co/openbmb/MiniCPM-o-2_6/blob/main/resampler.py#L70
+ // base frequency omega
+ ggml_tensor * omega = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n_embd_proj / 4);
+ ggml_set_name(omega, "omega");
+ ggml_set_input(omega);
+
+ // 2D input positions (using float for sinusoidal embeddings)
+ ggml_tensor * pos_h = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_pos);
+ ggml_set_name(pos_h, "pos_h");
+ ggml_set_input(pos_h);
+ ggml_tensor * pos_w = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_pos);
+ ggml_set_name(pos_w, "pos_w");
+ ggml_set_input(pos_w);
// for selecting learned pos embd, used by ViT
struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
ggml_tensor * inp = build_inp();
ggml_tensor * embeddings = build_vit(
- inp, n_patches,
+ inp, n_pos,
NORM_TYPE_NORMAL,
hparams.ffn_op,
learned_pos_embd,
ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
// norm
- q = build_norm(q, model.mm_model_ln_q_w, model.mm_model_ln_q_b, NORM_TYPE_NORMAL, eps, -1);
+ q = build_norm(q, model.mm_model_ln_q_w, model.mm_model_ln_q_b, NORM_TYPE_NORMAL, eps, -1);
v = build_norm(v, model.mm_model_ln_kv_w, model.mm_model_ln_kv_b, NORM_TYPE_NORMAL, eps, -1);
+ // calculate sinusoidal pos embd
+ ggml_tensor * pos_embed = nullptr;
+ {
+ // outer product
+ ggml_tensor * omega_b = ggml_repeat_4d(ctx0, omega, omega->ne[0], n_pos, 1, 1); // n_pos rows
+ ggml_tensor * theta_x = ggml_mul(ctx0, omega_b, pos_w);
+ ggml_tensor * theta_y = ggml_mul(ctx0, omega_b, pos_h);
+ // sin and cos
+ ggml_tensor * pos_embd_x = ggml_concat(
+ ctx0,
+ ggml_sin(ctx0, theta_x),
+ ggml_cos(ctx0, theta_x),
+ 0 // concat on first dim
+ );
+ ggml_tensor * pos_embd_y = ggml_concat(
+ ctx0,
+ ggml_sin(ctx0, theta_y),
+ ggml_cos(ctx0, theta_y),
+ 0 // concat on first dim
+ );
+ pos_embed = ggml_concat(ctx0, pos_embd_x, pos_embd_y, 0);
+ }
+
// k = v + pos_embed
ggml_tensor * k = ggml_add(ctx0, v, pos_embed);
// attention
{
- int n_embd = clip_n_mmproj_embd(ctx);
const int d_head = 128;
- int n_head = n_embd/d_head;
+ int n_head = n_embd_proj/d_head;
// Use actual config value if available, otherwise fall back to hardcoded values
int num_query = ctx->model.hparams.minicpmv_query_num;
ggml_tensor * Q = ggml_add(ctx0,
return n_patches;
}
-static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
- assert(embed_dim % 2 == 0);
- int H = pos.size();
- int W = pos[0].size();
-
- std::vector<float> omega(embed_dim / 2);
- for (int i = 0; i < embed_dim / 2; ++i) {
- omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
- }
-
- std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
- for (int h = 0; h < H; ++h) {
- for (int w = 0; w < W; ++w) {
- for (int d = 0; d < embed_dim / 2; ++d) {
- float out_value = pos[h][w] * omega[d];
- emb[h][w][d] = sin(out_value);
- emb[h][w][d + embed_dim / 2] = cos(out_value);
- }
- }
- }
-
- return emb;
-}
-
-static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
- assert(embed_dim % 2 == 0);
- std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
- std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
-
- int H = emb_h.size();
- int W = emb_h[0].size();
- std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
-
- for (int h = 0; h < H; ++h) {
- for (int w = 0; w < W; ++w) {
- for (int d = 0; d < embed_dim / 2; ++d) {
- emb[h][w][d] = emb_h[h][w][d];
- emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
- }
- }
- }
- return emb;
-}
-
-static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
- int grid_h_size = image_size.first;
- int grid_w_size = image_size.second;
-
- std::vector<float> grid_h(grid_h_size);
- std::vector<float> grid_w(grid_w_size);
-
- for (int i = 0; i < grid_h_size; ++i) {
- grid_h[i] = static_cast<float>(i);
- }
- for (int i = 0; i < grid_w_size; ++i) {
- grid_w[i] = static_cast<float>(i);
- }
-
- std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
- for (int h = 0; h < grid_h_size; ++h) {
- for (int w = 0; w < grid_w_size; ++w) {
- grid[h][w] = grid_w[w];
- }
- }
- std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
- for (int h = 0; h < grid_h_size; ++h) {
- for (int w = 0; w < grid_w_size; ++w) {
- grid_2d[0][h][w] = grid_h[h];
- grid_2d[1][h][w] = grid_w[w];
- }
- }
-
- std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
-
- int H = image_size.first;
- int W = image_size.second;
- std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
- for (int h = 0; h < H; ++h) {
- for (int w = 0; w < W; ++w) {
- pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
- }
- }
-
- return pos_embed_2d;
-}
-
bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
clip_image_f32_batch imgs;
clip_image_f32_ptr img_copy(clip_image_f32_init());
}
set_input_i32("positions", positions);
- // inspired from resampler of Qwen-VL:
- // -> https://huggingface.co/Qwen/Qwen-VL/tree/main
- // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
- int embed_dim = clip_n_mmproj_embd(ctx);
-
- // TODO @ngxson : this is very inefficient, can we do this using ggml_sin and ggml_cos?
- auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
-
- std::vector<float> pos_embed(embed_dim * pos_w * pos_h);
- for(int i = 0; i < pos_w * pos_h; ++i){
- for(int j = 0; j < embed_dim; ++j){
- pos_embed[i * embed_dim + j] = pos_embed_t[i][j];
- }
+ // inputs for resampler projector
+ // set the 2D positions (using float for sinusoidal embedding)
+ int n_patches_per_col = image_size_width / patch_size;
+ std::vector<float> pos_data(n_pos);
+ // dimension H
+ for (int i = 0; i < n_pos; i++) {
+ pos_data[i] = static_cast<float>(i / n_patches_per_col);
}
-
- set_input_f32("pos_embed", pos_embed);
+ set_input_f32("pos_h", pos_data);
+ // dimension W
+ for (int i = 0; i < n_pos; i++) {
+ pos_data[i] = static_cast<float>(i % n_patches_per_col);
+ }
+ set_input_f32("pos_w", pos_data);
+ // base frequency omega
+ const float base_freq = 10000.0f;
+ const int n_embd_proj = clip_n_mmproj_embd(ctx);
+ std::vector<float> omega(n_embd_proj / 4);
+ for (int i = 0; i < n_embd_proj / 4; ++i) {
+ omega[i] = 1.0f / std::pow(base_freq, static_cast<float>(i) / (n_embd_proj / 4));
+ }
+ set_input_f32("omega", omega);
} break;
case PROJECTOR_TYPE_QWEN2VL:
case PROJECTOR_TYPE_QWEN3VL: